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ABSTRACT

We study, within the framework of the Variational Method
in Statistical Mechanics, the influence of the cubic and quartic
crystalline anharmonicity on the classical and guantum thermal
behaviour of the specific heat, Debye temperature ©, Debye-Waller
factor W, crystalline expansion -~ and  phonon spectrum. The sys
tems we mainly focalize are the single oscillator and the mono-
atomic linear chain and simple cubic crystal. The trial Hamilto-
nian is an harmonic one, therefore the various anharmonic influ-
ences are mainly absorbed into the renormalization of o(T).
Several differences between the classical and quantum results are
exhibited.

Satisfactory qualitative agreement with experience was
obtained in the low-temperature regime, in particular in what
concerns the existence of a minimum in ©(T) which has been obser
ved in Cu, Al, Ag, Au and Pb. For the intermediate-temperature re-
gime the customary linear behaviour of W(T) (hence ©(T) almost
constant) is reobtained. Finally in the high-temperature regime,
the present treatment leads to a Vv T - dependence for the W-
factor, which implies in the wrong curvature with respect to
experimental data. A possible explanation of this disagreement might
be related to the melting phenomenon, which is not covered by
the present theory.



I - INTRODUCTTION

After the starting-point given by the works of DebYe[l]
in 1914, Faxen[zj in 1918 and Waller[B:| in 1923, a great quantity
of theoretical and experimental work has been dedicated to the
study of the thermal behaviour of the x-ray (neutron, y-ray,etc)

scattering by a vibrating regular lattice. Various improvements
have been introduced, through different generalizations of the
historical "single-atom harmonic perfect crystal", by taking into
account the anharmonicity of the crystal, the presence of more
than one atom per unit cell, the existence of different kind of
deffects (impurities, dislocations and others) in the crystalline

periodicity, the quantum effects, etc.

Let us recall that the scattered intensity I we are
talking about is proportional, for a single-atom <236talﬁu3e_ZNm»
where W(T) is the so called (temperature dependent) Debye-Waller

factor. If we call To a reference temperature, it obviously

holds that
I(T) . om2[w(m) - w(r )] (1)
I(To)
It is customary to introduce a quantity noted YCETB)
through
: sin? ©
W(T,) - W(T) = =——Y (T,T,) (2)



or Y(r, T) = AT g I@ (21)

In quite general situations, Y(T,TO) does not depend neither on
the incident wavelength A nor on the scattering angle 6 . Let
us also recall that, within the quantum harmonic hypothesis, we

have

w = —f(T) (3)

where f(T) is a well known function (see for example Ref.[4] )
which tends to be constant in the limit T - 0, and increases
linearly with T in the (classical) limit T > « ; the characte-
ristic Debye temperature GD separates these two regimes. We
remark that expression (2') is well adapted for obtaining Y(T,TO)

directly from experience; consequently, the demand of validity of

relation (3) leads in general to a temperature dependent "Debye

temperature” which we shall note @DW(T). Furthermore, always
within the quantum harmonic hypothesis, we have that the vibra-
tional contribution to the constant volume specific heat is given
by

cC,=9(T/0,) (4)

where g(x) is a well known function (see for example Ref. [5] )

which behaves as xd (d = space dimensionality) in the 1limit

T >0, and tends to be constant in the (classical) limit T » o ,



OD being oncemore- the characteristic temperature which sepa-
rates the two regimes. If we demand now the validity of relation
(4) and try to fit experimental data, we obtain (quite generally)

another temperature dependent "Debye temperature" which we shall

note OSH(T). Usually ODW(T) and OSH(T)

do not exactly
coincide, hence there is no hope, for any theory which (explici-
tely or implicitely) adopts a quasi-harmonic framework, to simul-
taneously interpret with accuracy scattering and specific heat
experimental data. This criticism holds for most available theories,
and our own tréatment does not escape from it. Nevertheless, par-
tial success is of course not excluded, as it will become clear
later on.

(6]

The W factors of copper (in the range 4-500°K ) and
) have been measured and inter-

[7]
[8]

preted within central force models. However it is known that

aluminium (in the range 4—4006K

these models are inadequate for explaining, over the entire wave-

length region, other vibrational properties. In what concerns

copper, DeWames at al [8] calculated, by using several sets of

force constants [9_ll],its W factor; they concluded that the
experimental accuracy is not high enough to distinguish the most

adequate among them.

The anharmonic contribution to the W factor has been
taken into account in several works. For instance, Owen and
Williams[lzJ have phenomenologically introduced the anharmonicity
of a single-atom crystal through use of a characteristic tempera-
ture o{T) = O(To) [ 1 - ay(T - To) } where To is a reference
temperature, <y is the Grilneisen constant and a is the cubic

thermal expansion factor.



This procedure leads to an Y - parameter which reasonably fits
the experimental data (in range 300—9000K) for gold and copper,
but not those for aluminium. Maradudin and Flinn.hj]have expli-
citely introduced, within a classical framework, the cubic -and
guartic anharmonic contributions to the W factor; they obtained
besides the usual linear (in T) harmonic term, corrections in

T? and T® , which allow for a satisfactory fit with experimental
data in what concerns the Y factor but not in what concerns

o (ry14]
SH . Since that period there has been a regain of interest

[15—24,29]'

in calculation of the W factor b

[15-17]

In particular a certain
success has been obtained in the simultaneous interpreta-
tion of the frequency spectra and W factor measurements in cubic

metals.

In the present work we study, by taking into account the
cubic ant quartic anharmonicity, within a variational statistical
framework, the thermal behaviour of the frequency spectrum, the
crystalline expansion, the Debye Waller factor and finally the
specific heat of single-atom crystals. In particular, this theory
predicts for the W factor: a) a small temperature dependence in
the limit T »> 0; b) a linear dependence for intermediate tempe-
ratures; c) a VT dependence in the limit T - « , Further-

S (T)

more, it becomes possible to interpret the minimum of ~ SH

observed by Horton and Schiff[l4J and Flinn and McManus[7] in
Cu, Al, Ag, Au, Pb.

In Section II we perform, in order to exhibit the kind
of approximation we use, the classical and quantum calculation of
the thermal expansion and thermally renormalized vibration fre-
quency associated to a single anharmonic oscillator; in Section

ITTI we establish the same physical quantities for a first-neigh-



bour linear chain. 1In Section IV we present, for a single
oscillator as well as for a one-two-and three-dimensional crystal,
the results we obtain for the vibrational contribution to the
constant volume specific heat; in Section V we discuss, for a
three-dimensional crystal, the thermal behaviour of the Debye-
Waller factor; finally in the Section VI we conclude and compare
the predictions of the present theory with available experimental

information.



II- SINGLE OSCILLATOR

IT.1 INTRODUCTION

In order to present the problem and exhibit the nature
of our approximation, we shall discuss in the present section a
single anharmonic oscillator (with cubic and quartic contribu -
tions) within the framework of the Variational Method in both
Classical and Quantum Statistical Mechanics. We shall focus the
thermal behaviour of the renormalized frequency and of the ex-

pansion. We shall assume the following Hamiltonian

H = P + L mw?x? - cx? + bx* (1)
2m 2
where w, ¢ and b are real positive quantities (w and c conven-
tionally; b to ensure stability). According to the relative va
lues of w, b and ¢ the potential energy might present one or
two minima. The two-minima possibility might lead, in the case
of systems of interacting oscillators, to structural phase tran
sitions. As this eventuality lays beyond the scope of the pres-
sent paper, we shall impose the existence of only one minimum ,

hence

c? < 16 mw? b (2)
9

Furthermore, by introducing the variables

m = < x > = thermal mean value



the Hamiltonian (1) can be re-written in a convenient form for

variational purposes with a trial Hamiltonian given by

H = b + 1 mQ%u? (3)
o 2m 2

The variational free energy F (to be not confused with the
exact free energy) is given by[25]
F=F + <H-H_> (4)
o o

o

where FS and See e > denote respectively the free energy

and the canonical mean value associated to Ho.

IT.2 CLASSICAL STATISTICS

The use of (1) and (3) into (4) leads to

F=F +-% mu?n? - cn® + bn* + (L mw? - 3cn + 6bn? - ;Lmﬂz)-
o t
2 2 2
<u2>o+3b<u2>§ (5)
where we have used that «<u"* > = 3 < u®? 3?. Next we impose
the minimization equations AF 0 and OF 0, which lead
0 an
to
vZ (v — 1+ 6CA =12 B A2) - 12 Bt = 0 (6.a)

vZ (A -3cA?% + 4BA?%) - (3C- 12BA)t = 0 (6.b)



where we have used that

3F
— = Q% < u? >
0
L mQ?<u?> = L kBT (classical equipartition)
2 0 2

and have introduced the reduced variables

vV Q /v H A= M m w H
A
kT
£ = B P g =z 2B . oo ¢ 7E
A m2w3 3 5
m3w

The constant 4 has been artificially introduced in order to make

easier the comparison with the quantum case. The restriction (2)

becomes

16 (2')

The equations (6.a) and (6.b) implicitely give v(t) and A(t)

(see Fig. 1), whose assymptotic behaviours are

va 1l + (6B - 9C2 ) t

A v 3Ct

in the limit t =» 0 ,

and



4 4B 32 4B

N . '1/2 2 - -l 22_
v o (l2Bt) 174 {1 , {12B) ( 1- —3C° y ¢~1/2  (2B) 3¢, 7y

_ 1/2 _ _
oY 3 g2 (X | 3/2}
4 32 4B

1/2 2 _ 2 _
An A -nt /2, AT g X0 L oyt - 3€ ) 32

© 2 4B 4B
in the limit t -+ o

with

>
11

C/4B

. 2
<  (1--=X,
8/ 3 BY? 2B

and L

Note that within restriction (2') it is L> 0.

II,3 QUANTUM STATISTICS

The trial Hamiltonian (3) may be rewritten in terms of

boson operators

HO = AQ (B' B + 1/2) (3")

with the well known transformation

x = /J k! (B+ + B)
‘ 2m 9

p =i/ 8m2 (gt _ g
2

=+
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which must be defined in terms of the renormalized frequency [261,

The expression (5) still holds with

F_ = kT ln{Qsh LY ]
2kBT
and
< u? > = e ctgh A
2mQ 2k T
B
e . X C3F - 9F _
The minimization equations —— = 0 and = 0 now become
1Y) on
vZ(v? - 1 + 6CA =~ 12BA2 ) - 6B ctgh |—| =0 (7.a)
2t
v (A - 3CA% + 4BAY) + = (12B)A - 3C) ctgh_llﬁ—] =0 (7.b)
2 ' 2t

The v and X thermal behaviours are given, in the limit t -» 0,

by
, -v /t
vV vy + C e
0 v
—vo/t
0
with
Vv (A =3CA% + 4B)A%) +-% (12BA - 3C) = 0
0 4] : Q : 1] 2 ’ 0 '

v’ - v +6CA vV - 12BA%v - 6B = 0
0 0 0 0 0 0
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3 o - 2
12B\)0 leQ(C 4BAO)

2v§ + er§ - (3C - 1zBAo)2

2
6v, (C - 4B)\0 )

2v3 + 6B - (3C - 12B3, )?

As expected the equations (7.a) and (7.b) reproduce (6.a) and (6.Db)
in the classical limit t » o , Within this limit we have the

following behaviours:

~-1/2 2y -1/2 -1 2 V2 _
v mmy¥d Jp @28 77 ) 3¢t T, am) - f) 3¢ )tl .
4 4B 32 4B |

1/2 1/2 -3/2
+ 1B g 3 o732 |1 - ), am’t
4 32 4B 48

2

— — — — 2 -
A -nt V24 (10712 [1 —-EELJ 1 - 2L [1 - 29—}];t 3/2
o 4B 4B

where, for v, we have exhibited the quantum correction with respect
to the classical behaviour. It is remarkable that, within a high

assymptotic order, classical and quantum results coincid (the same

happens with A(t)).

The solutions v(t) and A(t) of (7.a) and (7.b) are re-
presented in the Fig. 2. The analysis of v,, Ay, C, andﬂCA shows
that, within the restriction (2') and depending on the relative va-

lue of B and C, we have (see Fig. 3)

v > 1
0z

A > 0
. =

C > 0
v <



2> 0

The fact that, in contrast with the classical situation, we have,

is clearly a conse

hQo
2

at vanishing temperatures, Vv # 1 and A0¢\0
0

quence of the energy of the fundamental state being over

the bottom of the potential.
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ITT. LINEAR CHAIN

ITI.1 INTRODUCTION

In this section we discuss, within the variational frame-
work, a cyclic linear chain made of N identical first-neighbour -
interacting oscillators. Oncemore we shall be interested in the
thermal behaviour of crystalline expansion and frequency spectrum.

We shall assume the Hamiltonian

2
joF
_ 3 1 2 2 3 "
H = —_— + —mw(X,,, - X.)-c(x. ., - x.)° +bx. ., -x.) (8)
jil{ om 2 1 73 By~ %y 5 7% }

with the constants w, ¢ and b satisfying the same restrictions as

for the single-oscillator case.

By introducing the new variables

m
il
2
L;.c
+
——
I
EN
1
g
+
[#))
o
=
N
A
~=
-
+
'_-I
c
[
N—
N
+
o
_
[
(-
-l..
’—l
1
o
l
N—
+

+N[Iimw2n2 - cn?d +bn‘*J +
2

+ (odd terms in uj+l - uj ) (8'")

Then, through the Fourier-transformation given by



(g runs all over the first Brillouin zone),

the Hamiltonian takes the following form

p_|? \
H = } 9 2 | L m? - 3en +6bn?l| 1 -cosq|  |x .2 +
2m 2 j 14

q

L3 } {éiq -1){51“1*‘1')—1}[éiq"—lﬂéi(q"'q')—l] XX X WX g
~ Taraq" "q" <

+ N [—— mw?n? - end® + bn“J + (odd term in seq.) (8"}

We now introduce the following trial Hamiltonian:

| 2
; ~\LP']
H = } —9_ 4+ Lo |x |2 (9)
© 2m 2 9 Qq
g9
IIT,2 CLASSICAL STATISTICS

The use of relations (4), (8") and (9) lead to the

following expression for the variational free energy:

=18
!

- nQ?
F, +) [Gm»z ~ 6cn + 12bn%). (1 -cosq) - ——9—} <[X§[2 > F
q 2 ]
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6b

12b
+—— (1 - cosq)? ’<lxq]2>§ + 5

_ - ' 2 2 +
égH oosq) (1 - cosq )<|x§|>f|qu >

+ N —%?—nmﬂnz -cnd o+ bn") (10)

Then the minimization of F with respect to Qq and n leads to
p? (u? - 1 + 6CA - 12BX ) - 12Bt = 0 (11.a)

u2 (A% - 3CA%2 + 4BA%) - (3C - 12BA)t =0 (11.b)

where we have used the classical equipartition principle and the

phonon frequency spectrum
Qé = 2w*u?( 1 - cosq) (12)

and we haveintroduced the same reduced variables of section II,

We remark that, by doing u > v, equations (1l.a) and
(11.b) rigorously reproduce equations (6.,a) and (6,b), However it
should be clear that 1y represents the renormalized longitudinal
sound velocity, while v is the renormalized frequency of a single

oscillator.
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III.3 QUANTUM STATISTICS

In order to study the guantum statistics of the Hamilto-
nian (8'") , we shall put it into a second quantization form through

use of the transformation

1
X = S U ) B+ + B
aq 2m0 -q q
g
AmQ Y.
p,. =1 *-9—] ‘ [B+ - B }
i} 2 q -dj
L )
r + ]
where ’ =
| Bq * Bg' aq’

This procedure leads to a free energy

. 2
F =F +2 {1'6C>‘+12B}‘~(l—oosq)-uq/2} Y o+

o q
q Vg
y_)?
+ 1B Y iomsy) -9 b wn Loz ocat o+ mab (13)
N a Hg 2 .

where F and F, are given in #w® units and

F= t E In (2sh (qu/Zt))

g
_ 1
Y =<B+B +1/2 » = — ctgh
q g g /2 2, 2 g [pq/Zt)
fg
Mg =
w 3F oF
From the conditions ——— = 0 and ——— = 0 we obtain
ou oA
g
P(p2-1+ 6 CA - 1283 ~ 2B ) geng ctgh‘{_?éﬂ) =0 (14.a)
N g R
p(A- 3CA% + 4BA3 ) - (3¢ - 12B)) Z seng ctgh [\u stg‘lg’ J =0 (14.b)
N q



- 17 -

As expected, these equations reproduce (ll.a) and (1ll.b) in the
classical limit t » «® . On the other hand, in the limit t - O,

we obtain

n(p?- 1 + 6CA - 12BA2) o —24B , 2B .. (15.a)

i v,

6C - 24B) I(C - 4BXo) £2 (15.b)

p(x = 3CA% + 4BA%) ~
il vi

where we have used the quasi-continuum limit (N - «). These equations

lead to

Hvu, o+ Cot?

n
2
AN AO + C,t
with
U (u2 - 1+ 6CA - 12BA?) 24B
0 0 0 0 H
B (A - 3CA? + 4BA®) = 8C = 24BAy
0 0 0 0 H
n 2n [Huz [pz + 12B J_ 18 (C - 4B\ )j
0 0 0 ) 0
‘ I
c)\ = H2 (C - 4B}\0) N
2 {an ~[u2 + FlEEJ - 18(C - 4B) )? ]
o 0 I 0

we remark that, through the transformations

. H2
Y ' C. »r — C ;
0 0 M 24\)2 v
0

I 3/
BTaR ; c, > A2

12v§

c » 21 c
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the above relations exactly reproduce the ones we obtained in

Section II.

Iv. SPECIFIC HEAT

v-1 INTRODUCTION

Let us now calculate the constant "yolume" specific heat
CV for both the single oscillator and the linear chain cases,

Within the variational approximation it is

c, = 2 < H >, (16)
T
Iv.2 SINGLE OSCILLATOR

Within classical statistics expression (16) may be rewritten

as follows

_ Tt T3V
c, = kg ll -t J (17)

where we have used (6.a) and (6.b). Note that the thermal expansion
enters only indirectly, through its influence on v (t). Furthermore
if v monotonously increases (with t), then CV monotonously de-
creases; if Vv presents a minimum (see Fig. 2.a), then CV_ present

a maximum (see Fig. 4). Its assymptotic behaviours are
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; - _3¢c? .
4B -

C N -2— kB 1 + t (18)

v 4 6 /12B
in the limit t » o« ,
and

c, v ok 1 - (68 - 9C2)t:] (181)

v L

in the limit t -+ 0.

The discussion of these assymptotic behaviours leads to

three different cases (see Fig. 4).

Within Quantum Statistics, expression (16) becomes

2 ot 2t

where we have used (7.a) and (7.b).

The assymptotic behaviour in the limit t > 0 is given

Yo/t
C_ v 4y €
v 0 t

while in the limit t » o it is still given by expression (18)

(see Fig. 5).
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Iv.3 LINEAR CHAIN

The classical specific heat for this case is given by

c_ =Nk, ] -t _3um (20)
v 1 at

which differs from the single oscillators case only by a factor N,

In the quantum case we obtain, through use of equations

(14.a) and (14.b),

c, = kBli—é— E send ctgh [JL sen%J (21)
>t g t

Clearly expression (21) reproduces (20) in the classical

limit. On the other hand, in the limit t =+ 0, we have

NIk
c ~ ——B ¢ (22)
A"2
3u0

The temperature dependence of CV is shown in the Fig, 6,

If we compare the equations (7.a) and (7.b) with (14.a) and
(14.b) we observe a great similarity between them. The difference
holds on the fact that, while in the first case (single oscillator)
the temperature dependence appears explicitely in the unique ctgh-
term, in the second one (linear chain) it appears through an integral
on ctgh-terms. Therefore it is clear that for a d-dimensional crystal

we shall obtain a d-dimensional integral on the same type of ctgh-

terms.
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Hence, in the limit t -~ 0, the assymptotic behaviour (22) will
becomes Cy © td , as in the well known karmonic Debye case. At
high température,all cases (for any value of d) are expected to
have the same type of assymptotic behaviour. Let us conclude by
saying that these considerations lead to

LN+ Cutd+1 (t + 0) (23.a)
0

1
Nt /e (t + o) (23.b)

where Cu is related, for any value of d > 1, to C| through a trans

formation similar to the one we exhibited in Section IITI.3.

V. DEBYE-WALLER FACTOR

Let us recall that the scattered amplitude of x-rays (and

other similar beams) is given by

->
exp (-W) = <exp [fzk’.(uj - Gj.>]> (24)
where K = k - k' is the scattering vector, Uj 1is the displace-
ment of the j-thatom from its equilibrium position and <.... > de-

notes the thermal canonical average. In any quasi-harmonic approxi-
mation the probability distribution of the displacements is Gaussian

in both classical and quantum treatments (see, for example, Ref;[27])-
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Hence (see for example Ref.[28]).
2
exp (-W) = exp { L R -]t s } (24")
2 J J 0

where now <.¢+.,>y denotes the thermal average with a Gaussian
law. Within the variational treatment we are dealing with , = we

obtain

2
2 K .
3 790 0 = — ) <lugl® >
6 6 g
where we have performed a Fourier transformation, Within the quasi-
continuum limit and Debye approximation, we obtain for d = 3 (see

also Ref.[24])

3 2 2 2 _—O(T)
W= K A" T T [_ i-____ + i} zdz (25)
2 ka (0 (T))3 e"=-1 = 2
0
where m is the mass of the atom and _0(T) the thermally

renormalized Debye temperature. Therefore the anharmonic influence

appears exclusively through . ©(T), which is given by
‘ﬁ_QD(T)
0(T) = ——m—m—— = 2
(T) " 2ha qup(T) (26)
B
where ' a is the characteristic crystalline parameter, Y] the

D

Debye frequency and dn the Debye wave vector. By using relations

(23a), (23.b), (25) and (26) we finally obtain

1
3 /2
WL K? [ “s } T»&

16 aqu b




in the limit T - o , and

W~ o + BT + yT*

in the limit T -~ 0,

where
2.
a = 3K“h 7
16manwu0
3%k, K%
B = B
96mha3qgw3u
0
Y = -Cnoc/u0

In Fig. 7 we present typical harmonic and anharmonic Debye-Waller

factors as functions, of temperature.
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VI. CONCLUSION

The purpose of the present work was to study the influence
of (cubic and quartic) anharmonicity of real crystals on the thermal
behaviour of some relevant physical quantities (constant volume spe-
cific heat, thermally renormalized Debye temperature (©), Debye-
Waller factor (W), crystalline expansion, phonon spectrum), The cal
culations were performed within the framework of the Variational
Method in Statistical Mechanics, which in a relatively simple and

unified manner provides the thermal dependence, for the whole " range

of temperatures, of the above quantities. In order to be clear, our
methodology = consisted in first presenting the single oscillator ca-
se, then the linear <chain, and finally we generalized some of our
results to d-dimensional monoatomic crystals. Because of our harmonic
choice for the trial Hamiltonian, most of the physical quantities

were given, as functions of temperature, by relations formally equal
to those customary for the purely harmonic case, and the anharmonic

influence was mainly absorbed into the renormalization of o(T) .

In what concerns the low-temperature regime, the present
treatment succeeded in providing forms of 0(T) which qualitatively
fit well with experimental data. In particular was obtained (for a
defined region of the space of the harmonic and anharmonic elastic

14]

constants) the minimum of O (T) which is typical[7’ of Cu, Al,

Ag, Au and Pb.
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For the intermediate-temperature regime, we obtained the

customary [7’12’14’18'23’29] linear dependence of the W and Y-

factors (in other words 0 (T) approximatively constant).

Finally, in the high-temperature regime, the present treat
ment leads to a /T ~dependence for the W-factor, which implies in
the wrong curvature when comparison is made with experimental results

for Al[lZJ and Na[23’29].

Nevertheless, let us point out that the
high temperature regime practically coincides with the region just
bellow the melting point, where the phase transition effects, not
included in the present treatment, are expected to be important
(and in the sense of accelerating the increase of the W-factor with
temperature) . More precisely, the Al and Na were respectively obser-
ved g2;23'29]in1 the regions 300-900°K and 100-370°K (we recall that
their melting points are respectively 933°k and 3719K) . Furthermore it is

suggestive the fact that several other substances (which were obser-

ved in regions relatively far from their melting points) did not de-

viate from the linear increase of W(T); namely Cu (observed in the

300-900°K regionl 2], melting point 1356%k), au (300-900°k [12]; 1336%) ,

o. [18,23,29 23
Fe (200-1100 g [18:23, J, 1809°K), Mo (100—5000K[ ]; 2890°K) and
23
Cr (lOO—SOOOK[ ]; 2130°K) .
One of us ( C. T. ) aknowledges.early useful comments of

A. Craievich on the subject and the other one (R.A.T.L.) a fellowship
from CNPg-Brazil.
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CAPTION FOR FIGURES

Fig.

Fig.

Fig.

Fig.

1

2

3

4

Classical thermal behaviour of the: a) reduced
renormalized frequency; and b) reduced linear
expansion parameter, The saturation value de-
noted by A, is C/4B. In the limit t =+ o is
val+ (6B - 9C2)t and A ~ 3Ct; in the limit

. » bﬁ 36
t > oo it is v Nv(12bt) and A v A w ~ Lt

Quantum behaviour of the: a) reduced renormalized
frequency; b) linear expansion parameter. In
the limit t - 0 it is v, + Cv gVo/t and
AvA, + C‘}\' E\)o/t; in the limit t = 0 the classical

assymptotic behaviours are re-cbtained (see Fig. 1).

Mapping of the B-~C space according the cases
Cv 2 0 and Vo 2 1, The region I is forbidden by
condition (2'); region II corresponds to C,< 0 and

Vg < 1; region IITI corresponds to Cv >0 and

Vg < 1; region IV corresponds to Cv > 0 and vy > 1.

Thermal behaviour of the classical specific heat.

2 N2
(a):1<i£<2; (b) : i£>27
6 B 6 B
2
(c) : 2 £ ¢
6 B



Fig. 5 - Thermal behaviour of the quantum specific heat

for both cases B zké% c? .
Fig. 6 - Thermal behaviour of the quantum specific heat
of a linear chain for both cases B §‘€% c?.
Fig. 7 - Thermal behaviour of the gquantum Debye-Waller

factor of a three-dimensional crystal in both
harmonic (dashed line) and anharmonic (continuous
line) cases., A, might be greater than A, (as in
this figure) or not, depending on the values of

B and C.
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