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ABSTRACT

The class of instanton solutions with "extension" parameter A? positive is
extended to A% negative. The nature of the singular sphere of radigs |A|isanalized
in the light of the analytical regularization method. This leads to well defined
solutions of the Yang - Mills equations. Some of them are sourceless (" + i o" and
"Vp') , others correspond to currents concentrated on the sphere of singularity ("+"
and "-") . Although the equations are non-linear, the "Wp" solutions turns out to+be
the real part of the "+ i o" solutions. The anzats of t'Hooft for the superposition
of instantons is used to sum the contributions corresponding to A? with positive
and negative signs. A subsequent limiting process allows then the construction of
solutionsof the"maltipole" type.

The general situation of potentials having a denominator D, with a oorrespong

ing surface of singularity at D=0, is also considered in the same light.



1 - INTRODUCTION

A. A. Belavin et.al. D'land G 't Hooft [2] have given an important solution

of the homogeneous Yang-Mills equation (euclidean metric):

o X A\ o
(1) A =-2i B2V .7 =4i LY
u <24 A2 1V (X2+ )\2)2
I ! -1 - -
(2) 055 =% & % * %4 7 % ' %w v

(1) is a solution for any real value of the constant A. It is natural to consider

also complex values of A, in particular imaginary ones. In this case (\ =

- |2?}) we have a singular sphere of radius |)A|. Outside this sphere (1)
contimues to be a solution, but it is not clear what happens at the surface
itself.( (1) is not well-defined there) . We must give additional rules in
order to complete the definition of the potential.

In section 2 we define the "+ i o" prescription. In section 3 we study the
"outside" and "inside" solutions which are implied by the "+" potentials.‘ In
section 4, the principal value potential ("Wp") is introduced via a combination
of the "+" and "-"prescriptions. In section 5 we find the topological numbers
of those solutiocns. In section 6 we briefly treat the linear denominator
case. Once the use of negative values of A% has been made clear and mathemati-
cally justified, it is then possible, following 't Hooft [3]Irethod[4] [5] to
superimpose instantons with positive and negative A?, fomming the analogue of
what oould be called a "dipole instanton”". This is done in section 7, where it
is pointed out that the procedure can be extended to higher "multipoles".

Finally in section 8, we discuss the general case of potentials, having a
denominator D, which are singular at a surface defined by the equation D=0. All
this singularities can be treated by following the method of analytic regula—
rization, which goes back to M.Riesz [6]methods [7] together with the distribu-
tion theory of Guelfand - Shilov[gl .

Appendix A contains some formulae from reference[sjwhidl are extensively



used in the text. Appendix B is an alternative (and equivalent)way to treat
the singularities.

2-"+ i o" Potentials

When A is pure imaginary in (1), we have a singularity at the sphere

x?2 = |A?|. A natural way to attach a well defined meaning to this singularity

is to approximate the imaginary axis from the right, for instance.For )'s with
Re }=0, (1) is a sourceless solution. Thus we take

A=A +1iA (A >0
1 2 1

A% =A% - a2 +2i>\1>\

>=-2N+io0 (for x» - 0)
1 2 2 1

2
The + sign corresponds to A 20 .
2

For simplicity we shall work with the positive sign. So, instead of (1),
we shall write:

@ atiol_, dw®

H (x2 - 32+ J.o)

We know from the results obtained by Guelfand and Shilov[sl, that the distribu-

tion:
4) (- 2+io?
is a well defined functional analytic (entire) in the parameter o. All powers and

derivatives are well defined. In particular we can compute the field FW and the

current corresponding to (3).

) F,=3,2-32a+[a,a]
. Moo
(6) Fm()‘+ 10l g4 LS

(x>~ A%+ i 0)2



(m 3, =0, F, + [, F,]

(8) J1(1+ io)_ 0

Eq. (8) follows simply from the self-duality of (6) .

3-"+"and " - " Potentials.

Due to (8) the potential (3) is a complex solution of the Yang-Mills
equation. Eq. A.7 shows explicitely its real and imaginary parts.
In order to study the real part of (3), defined throuch A.8, A.7 and A.1,

A.2, we shall consider the potential:

()+_ _ . 2 _ 12,0
(9) Au = 210UVX\) (x )\)+,

which is identically zero for x? < A%, (cf. A.l).
Field and current corresponding to (9) can easily be computed:
20

(10) F\()ﬁ)"' =4iog, [x2 - (x*- A2)+_OL] (x* - )\2)_'_ +

i - 2 _ q2y0-1 2_ 220c]
+4l(0‘\)TXU GUTx\))xT[a(x >\)+ + (x >\)+ .

(D+ _ _ o [ 2_ 12,20 2 _ 42,01
(11) Ju 8i %Xy 3(x-ATF 3 alx A7) g +

+ alo-1) x2(x2- A%j‘z - 2x2 (x2-)2) i"‘] .
If we take nalvely the limit o - -1, the second member of (1l1) gives
zero. However one must be cantious in taking that limit, as the distribution
(x? - A%)Fuhas poles at negative integer values for o. When A.3 is taken into
acoount in (9), (10) and (11), we can see that all three expressions give simple

poles when o - -1, The residues at the poles are distributions concentrated on

the surface of the sphere x?= )\?. Furthermore, the finite part of (11) (at o=-1)



is a derivative of a §-function. In fact, by taking

(12)  P.f. ¥(o) =—‘-§—O-L (o) ¥ (o) ,

o= -n a =-n

and using A.9 (for n=l), we get:

(o) + — . 2 oWy 2
(13) P.f Ju =12 i OUV X, A% §M(x2=)2) (see A.5)

=1

We see then that, in the limit o + -1, the source of (9) is oconcentrated on the
surface of the sphere x?= A\2.

A similar procedure can be followed with the potential (compare with(9) ):

(14) A(“)' =+2io0 x (x*- xz)a
U w v =

Where (x? - Az)oi is defined by A.2, and is zero outside the sphere of radius A.

The field and current for (14) are:

(15) F\Eﬁ)_ =41 oW[XZ + (x2- )\z):@j(xz_ >\2)_2°‘ +

. _ 2_ 42 ~o~1 2_-12 20L]
+4i (o X O_Tx\)) X [oc (%= A7) 7 T+ (x*=-A)27 .

U

(16) Jfla) =-8io, x\)[ 30 (x%- 22743 (22 - 22

-0 (o-1) x? (x2—>\2)m_2 + 2x% (x*- )3 Eoc].

Taking into acoount A.4, we again find that, in the limit o » -1, the

source is concentrated on the sphere.

(Cl)—' _ . 2 " 2 2
(17) p.f. J]J N =-121i A OUV X, §"(x A9 .

It is worth mentioning that, in the limit o > -1, the source (17) is



equal and opposite to (13).

4 - "Vp" Potential

We introduce the definition,

A(OL)___ (o) + (o) =

s A=A+,
I.e
(@) _ _ 5 2_120 _ (o2 1270
(19 A“=-2io0 x\)[(x My - xE-A )_]
For o - -1 the pole parts of the " + " and " - " distributions cancel

each other, leaving only a finite result.

(20) AZP =-2i0 x\)E<2 - %‘"l '

which is a real solution.

Where E& - AEl-l is given by A.8 and coincides with Cauchy's principal value.
It is easy to compute the field and current for the potential (19). The

"+ " and " - " distributions do not interfere with one another as one of them

is zero when the other is not. For this reason the field corresponding to (19)

is a superposition of (10) and (15).

(21) F(u’) = F(O{')+ + F(OL)_
VU it Vi *

Znalogously:

(o) _ _(a)+ (o) =
(22) Ju = J]J + JU

where 39+ gng 5=

i i are given by (11) and (16).



Taking now the limit o - -1, we find that the current is zero.
The corresponding field is given by (21) (with (10) and (15) ). For

o -+ -1 we get:
V 2 |2 ~2
P =4 i [ - 2]
(23) F\)u 4 i OW A% Ix A '

where the“finite part" [ ]_r%is given by A.8.

Note that (23) is self-dual, showing again that the field is sourceless.

According to A.7, the potential (20) and the field (23) are respectively
the real parts of (3) and (6). We see then that the "+ i o" potential (3) is a
camplex solution of the homogeneous Yang-Mills equation, whose real part (20)
is also a solution. (see also reference [9] ).

Note that in (20) and (23), the square brackets are in fact labels for
the limiting processes implied by the analytic regularization method. If one
takes (20) directly in the Yang-Mills equation, one finds ambiguities due to the

existence of products which are not well defined.(See also ref.[11]).

5 - Topological number

The gauge fields so far considered ( (6), (10), (15) and (23))are all
singular on the sphere x? = A2,
For the calculation of the topological number of (6) one must take the

integral over all space of:

(io) Z(io), _ =96 A"
(24) Tr { FW Fp\) } = ——————-(x2 1o

One could think that the already mentioned singularity renders the
integral divergent. However, it is well known, and easy to check, that when
the denaminator is (x%+ >\2)+f1 the topological number comes out to be one
independently of the value of A%?. It is then natural to expect that the integra—

tion of (24) will give also the same result as it is obtained by a continuation



in A to the imaginary axis. Newvertheless to be consistent, one should like to
obtain it by direct calculation using A.6,

(x2 - A2+ i0)% (x® - 12?‘+ + e (x?2 -23%,

as a functianal analytic in o, and then take the limit o + - 4.
To do that, we shall consider a "trial" function ¥(x*), which is 1 for
x? < A and zero for x? > A?. Of course this is not a proper trial function, but
it can be approximated as much as we want by infinité differentiable functions.
We have then:
A2
((x2 - 22+i0)%y) = 72 J ax?® x?(x? -22% +
AZ

2
iTa
+ 7% e f a2 x2 (A2 - x2)%
(0]

2_20c+2 2 2 _ 20l.+lq
I O NP RV o Ll I
o+ 2 o +1 J
. 2y 02 2, 0]
+ m2 et S0 Rty + A2 L Pk .
a+ 2 o+ 1

2

Where a factor 2 7 cames from angular integration.

For o = -4 we have:

(25 ( (2= 22+ it yy =- [—é— (N2 - A2)72 4 —-g—z——u\2 - xz)'3] +
-4
VXY .
T

(25) gives the result of the integration over a sphere of radius A . If we

now take limit A > « we get



- _ 2
(26) lim ( (x> - A%+ io) 4 RN fd“ x (%2 - A%+ io) 4.1
Moo ' 61"

So, for the topological number we obtain:

_ 1 (i0)Z(i0) 4y _ _ 961" _ w? _
(27 % f Fv B & X=Tgp o= 1 -
x2
-
One can also repeat the calculation using a Gaussian function e ’

which is a true trial function. The result, for a - «, reproduces (27).
We would like to point out that it is also possible to use directly
Guelfand-shilov's definition of integrals for certain functionals (Reference [8]

padge 65), namely:

(28) fw z* dz

o]

0. (any complex o)

n

With this definition:

[ (x2 - 22+ i0) ¥ a@* x = 42 dexz x2(x? - 22)% 4+
)\2
)\2
+ 72 elmo J A2 x2 (A2 -x2)% =
0

2
= 72 Jrodz (zOH-l + 22z2% 4+ g2 et J dz (-ZOL+]‘ + A2 2%
)

0]

imo nope+2 (1 113 _ n2(32)*+2 1T
o+l oF2f (o + 1) (a + 2)

= 1T2 e
which, for o = -4, reproduces again (26), (27).

With the same procedurewe can compute the topological numbers of the
previously discussed solutions. The "+" field(10) turns out to have topological
number zero. All the others("-","Vp","+ io")have topological number equal to one.

Of oourse, if instead of using the self-dual matrix ow), we use the



antiself-dual one GW, the signs of the Chermn number would be reversed.

6 - Solutions with linear dencminators

It is vell known 0 that by choosing

1

(29) 0 =
{x.n+A)

in the ansatz proposed by t'Hooft, Wilzced, and Corrigan-Fairlie [31 [4] [Sl we get

the self dual solution:

v
(30) A =-ignm
G
_ i Cw
(31) Fu\) = "t &2

It can also be directly verified that with

n
o V

TS
(32) Au =t l(x.n+>\)

we get the anti-self dual solution:

= __.3:___ - - 2
(33) FU\) = (,x.n+>\)2(2 OUQ np n 2 va np nu own )

These solutions are all singular at the plane
(34) X.ntA =0
In order to give a meaning to those singular expression, in a way similar

to the cases already examined, we shall compute the fields and currents for the

"+ " and " - " potentials.
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(ad+_ _ o 2 —
(35) AY=-1s0 \)n\)(x.n+>3 > s 1)
() o 2
(36) Au =+1is %y nv(x.n+>\)_ (s 1)
wWhich lead to:
() = _ . 2 2
(37) F\)u =i cwn (x.n+>\)i +
+i(c._n -0 n_)n}|(x.ntr )ZOL + s alx n+>\)oc—1
VT | UT V T * * * +
(38) J(OL) S isn?o. n. |2 (x.nth) 3a _ o(o-1) (x.n+A) a-2
. N + w X. : . : |

It is easy to see that outside the singular plane the current is zero
for a = -1. So, the source (if it exists) is concentrated on the plane x.nt+A=0.

As was previously done, we can now define the potentials with the labels

"+ io" "VP', and in the present case also " | |", which is defined by (campare
with (18) ):
(a) || (@+ _ _(0)- .
39 A = A -
(39) " ¥ A
The " + io" and Vp " potentials are sourceless, while " + " and " || " are

solutions of the inhomogeneous equation with current concentrated on the plane

X.nHA=0.

7 = "Multipole" solutims

To clarify the ideas we shall recall 't Hooft 1 methodl4] [P sor two
instantons*

We chose
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A2 A2
(40) p =1+ + —2

x2 (x—xz) 2

from which we get the potential :

(41) Au= i ow 8\) fnp .

Now, once the idea of a negative A2 has been acepted, we can choose in

(40), A? = =A% , and take the limit x - 0, A% > « in such a way that A\> x =P
2 1 2 2 2 2y M

is a oconstant vector. It is then easily seen that:

(42) p—>l+-E—‘—x—— .

xk

where P defines a "dipole mament" for the above mentiocned two instantons case.

From (42) we obtain:

Tw %
D

(44) D= x" + x.P

and
_p - g Bx
(45) Q\)— P\) 4 " X,
X
After a straightforward calculation we get:
Q> Out

4 = i i -
(46) F\)}J le\) =r + 14 [DQT’\) QT (Q\)+D\) )]

g
- iVt _
1Y [ DO, -9 (Q +D >] :
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It is not difficult to chedk, using (44) and (45) in (46), that F\)u is

anti-self dual, implying that we have a solution of the homogeneous equation ,

outside the surface D=0.
It is easy to see that we can still have (43) as a solution if we change

(44) to:
47) D= Ax* + x.P ,

for arbitrary A , including A = 0.
The method can be generalized to higher "multipoles". For instance,

with
(48) 0 = 14 QX ,
x6

we have again (43), but now:

(49) D = x5 + x.0.x )
= - x.0.x
(50) Q, =2 Q\)u X 6x\) ”

(43) and (46), (with (49) and (50) ), provides us with a new solution of the

sourceless equation, except perhaps at the surface D=0.

8 - Regularized singular solutions.

The solutions found in section 7, are singular at the surface defined

by:

(51) D=0
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Where D is de dencminator of the potential (43).

In order to give a well defined meaning to expressions such as (43)
and (46), (containing a denominator D for which (51) has a real solution) we
shall use the methods described in previous paragraphs.

We can give several prescriptions for the definition of the singularity.
All of them can be built up from the " + " and " - "distributionswhichhave the

following definition [8] :

(52) D> =p* for D >0,

=0 for D < 0.

(53) D =0 for D>0

=|p|* for D < 0.

Both (52) and (53) are meramorphic functionals in the parameter o (see ref. [8],

chapter 3 section 4.)

We now follow the usual pattern:

(a)+ _ . 0,
(54) Au =i GW Q\) D+ .
(55) AW 6 o pY,
3! [93Y voo-
(56) A(oc)ir jio - A(‘OLH' : ira A(on)—.
H M 3}
(57) A(oc)’\i'p _ A(OL)"‘ + A(OL)- .
u U H

For o + -1, (56) and (57) are solutions of the homogeneous equation, while (54)

and (55) have sources concentrated on the surface (51) .



APPENDIX A
. o (x2 = 22)% if %2 > A2
Al (x%- >\5+ = - , ,
0 if Xc < A
o330 (02 - x2)% if  x2 < )2

A2 (x°- A =
- 0 if  x% > A?

A.l and A.2 are well defined distribution,analytic in owith poles for a = -n

(n, positive integer ). Near these poles we have:

(=1) n-1 (n-1)

A3 (x2 - 2% =

. (x? = A%) +[x2 - AZJ_P + 0 (o4n)
+

(n-1)! (a:n)

n-1
Ad (2 -0=8 T oM [x2 - xz]'_n+ 0 (or+n)
(n-1) ! (a +n) -

where [x2 - )\2]:11 =Pf (x> - A7

= -n
X
Ko 6 ) and
au
(k-] 15T T k-1 k-1
as s® Dz o [a (x-A) = & (x+x)]
27 A X

We can now define

A6 (- Nz2i0)% = (x* - A%+ et IMo (y2 - %) 2
It is easily seen from A.3 and A.4 that this new distribution is andytic everywhere.
In particular

n

A7 (k2 - A%+io) e E<2 - xz]'n R o VRPN D IR S
(n-1) !



IT

as [ -7 = - o e -7

which, for n=1 gives

-1 2

Vo (x2 - A%) T = (x -1

<+

-1

_ >\2) - (XZ - )\2)—

It is possible to show that ( Reference [8] p.347)
A9 (x2 -2 s® o) +nsP D2 a2y =0

Note also that if we multiply A.8 times a similar expression with m
in place of n, the result is not well defined. However, multiplying (x? - A%+ io) o
times (x® - A%+ io) ™ using A.7, and then taking the real part of the result, we

get:

A.10 E<2 - xzj'n'm = {E{L -ﬁ]"“. E<2- x{]'n -

D N o PP
(n-1)!(m-1) !

As a matter of fact, each of the terms on the right hand side is

meaningless; however the camplete cambination is well defined (see reference [11])

ZPPENDIX B

We present here a perhaps more intuitive way to deal with the singu-
larities prodiiced by the zeros of the denominators. Let us introduce a regulari-

zing function ne(x) with the following properties:



IIT

& N (%) !

ne(x) and all its derivatives are null at the origin nE(O) ;, ————|=0

dxp x=0

(all p) . Furthermore:

& n. (%)
ne(x)= 1 and also ———|= 0 (all p)
XJE ax

The actual form of ne(x) is irrelevant, as long as it is differentiable any number
of times. At the end of the calculations the limit £+0 is to be taken, eliminating

all pole terms in € (regularization) , thus keeping only the finite part.

We start with the reqularized potential

_ n_(2)
B.1 A+=—Zic x\)(xz-)\z)l=—2io x\)e
u Hv € Hv 7
B.2 Z=(x2 = 1%
we define
n_(2)
e
B.3 vV = 7
From B.l we get
+
B.4 - — . [ 2 2 _ ] . _ T
Fu\) 4 i GU\) (Z+ A°) v Vi+4i (OUT X X, cm_x XU)

2, 4 o] .
[V+dzv]

and from the Yang & Mills egs.

+ . v ’_l d2 \ a
Bs ot --s [t ov)] s e a v ]
u lOUVX (v +A)(dz2v 2v3+3 e+ 3




In order to understand the distributions of the second term in the limit 0, we

apply, for instance, the square bracket to a function ¢(x) -

n" n! _ o [ .
e _ .l _ & o(2) a9z _
([ 7 "t ],@)_ L { &z 7z YT zz}dz =

(where use has been made of the definition and properties of N )

d 9(2)
dz z

o(z) _ _2'(e) |, _%e) _, _%(e)

-2
Z2 € €2 g2

A

2
using ¢(g) = &(0) + 3'(0) + —;— $"(0) and dropping the pole terms to get the

finite part, one finally get

with a similar procedure, it is shown thatthe finite part of the second bracket
is zero.

So, we get for the current the same result as given in form 13.
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