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Abstract

We propose an algorithm for computing the potential V(x) associated to

the one-dimensional Schrodinger operator

a
[N]

m
1}
]

+ V(x) -0 < x < ®

N

dx

from knowledge of the S-matrix, more exactly, of one of the reflection
coefficients. The convergence of the algorithm is guaranteed by the

stability résults obtained for both the direct and inverse problems.
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1. Intzoduction

The one-dimensional scattering problem appears not
only within the context of quantum mechanics, cf. Landau
[12], but also in the mathema;ical description of a series
of other physical phenomena. These include the reflection
of electromagnefic waves by various media -- such as a
plasma, cf. Szu et al. [16], the ionosphere, cf. Kay (91,
a dielectric slab, cf. Portinari [15] -- or the propaga-
tion of waves in transmission lines, cf. Colin [3].

. One-dimensional scattering plays a role also in the study
of long water waves in a channel, due to its relationship
to the Korteweg-deVries equation, cf. Gardner et al. [8].

The results contained in the first part of this
paper give partial answers to the question raised
by Ssabatier in [3], namely "How stable are scattering

problems, and in which sense?" This question is a basic

concern to anyone who is either seeking numerical approaches

to these problems, or dealing with experimental data. In
our case, we were led to this investigation in the course
of our search for an efficient numerical procedure for the
one-dimensional inverse scattering problem. The numerical
results we obtained are described in the second part of
the paper.

The organization of this paper is as follows:
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In Section 2 we recall some basic results on one-
dimensional scattering and introduce the terminology we
will be using in the other sections.

In Section 3 we state and prove some continuity
results for both the direct and inverse problems. We also
point out how these results can be applied for the radial
problem, and reétate a previous result by Marchenko.

Section 4 1is devoted to the proof of some technical
lemmas needed in Section 3,

In Section 5 we discuss some numerical results,

while in Section 6 we include for the sake of completeness

the proof of some of the basic results of one-dimensional

scattering theory.



2. Background

In this section we explain briefly the basic facts of
one-dimensional scattering, introducing at the same time the
notation and terminology we adopted.

Consider the stationary Schrddinger operator

Ez-20%+gq, 3 = d/dx

on L2($). We assume that the real potential g(x) tends to
zero sufficiently fast as x -+ +». Then it is known that
the continuous spectrum of E comprises the positive axis
$+, and has multiplicity 2. In additién, there may exist a
finite number of negative eigenvalues ..

With each point kz, k real, %n the continuous spectrum,

one can associate a two-dimensional space of generalized

eigenfunctions y(x,k). These are solutions of the eigenvalue

equation

(2.1) -y" +qy = kzy .

They do not belong to L2($) but can be shown to be bounded.

Indeed, there exist constants

A = A (y) . B, = B_(y)

such that

’

(2.2) lim y(x,k) - {A+elkx + B+e_lkx} =0
x-)i oo -—

i.e., the solutions of (2.1) behave asymptotically as the



solutions of the unperturbed equation

L1} 2
- y" =Xk"y .

Conversely, given any pair of constants («,B8), there exists

a unique solution of (2.1) for which

Of course, A_,B_ may also be prescribed arbitrarily.
The pairs of constants (A_,B,) and (A ,B_) are called

the incoming and outgoing components of the solution y(x,k).

This terminology is motivated as follows:

If y is a solution of (2.1), then

u(x,t) = e ¥t y(x,x)

is a time-harmonic solution of the perturbed wave equation

tt XX
The terms
Ay e:ka e—lkt - A+ elk(x—t)
and
-ikx -ikt _ =ik (x+t)
Bie e —Bie

represent waves moving to the right or to the left, respec-
tively. We call a wave incoming if it moves from + « towards

the origin, and outgoing if it moves away from the origin

towards + o,

iy



It turns out that the incoming components (A_,B+)
determine the outgoing components (A+,B_) uniquely. The
operator relating them is given by a 2x2 matrix called

the scattering matrix and denoted by S:

o s(h)- ()

The S-matrix depends only on k, S = S(k), and not on the

particular solution y being considered.

We can attribute a physical meaning to the elements
_Sij(k) of S:

Let y_ denote the solution of (2.1) which is a wave
of unit amplitude coming in from -», i.e., A_ =1, B+ = 0.
(The existence of such a y_ canbe proved rigorously.) Then

by (2.3) the outgoing components of y_ are

Now Sy < A, is the amplitude of a wave travelling to the
right, i.e., in the same direction as the above incoming wave,
while s,, = B_ is the amplitude of a wave travelling in
the opposite direction. The latter is thus reflected, while

the former is transmitted. Accordingly, we will call

sll(k): transmission coefficient from the left,

SZl(k): reflection coefficient from the left,

slz(k): reflection coefficient from the right,

szz(k): transmission coefficient from the right.




S has the following important properties,valid for
real k:

(1) s = g

11 22

(ii) S is unitary

(iii) sij(-k) = sij(k)

(iv) sll(k) can be continued to the half-plane Im k > 0

as a nonvanishing meromorphic function with simple poles at

the points in , where - K§ = Aj < 0 are the eigenvalues of E

(v) lim s.,.(k) =1
(vi) lim s.,.(k) =0, for i+ j.
[k|+e ]
Property (i) allows us to refer to s11 = S,, as the

transmission coefficient. From now on, we will denote it by
t(k), the reflection coefficients from left and right
by r (k) and r'(k), respectively, while r(k) will stand

for either r_(k) or r+(k). Thus using this notation,

t (k) (k)
(2.4) s = [ ] i

r (k) t (k)
Based on the unitarity of the S-matrix and on the
uniqueness result mentioned after (2.2), we see that a

solution of (2.1) is uniquely determined by any one of the

pairs of asymptotic components

(a_,B,), (a,,B)), (A_,B)), (A_,B,) .

Now we will give the proof of properties (i)-(iv).

By definition of y_ ,

. ¢ s g+ 2 p b e 6 T



elkx + r-(k)e_lkx , X A\ —o

(2.5) V_(x,k) ~ ;
B 511 (k)elkx ’ XM

and similarly

e~ KX 4 ¥ (k) eF¥, L

(2.5) v, (x,k) i
+ + Szz(k)e ikx , X Vv =

For any real x > 0, Green's formula holds:

X

(2.6) 0 = f {w+(L - K. - v (L - kz)w+}

-X
' 1) | X
= {‘P-‘p.,. = IP.,}!'_}I *
-X

It is possible to show that one can differentiate
?
relations (2.5) to obtain the asymptotic behavior of y_

]
and v, - By using these expansions we get

(2.7) S lim Yy, - YYo= - 2ik s, (k)
+ xr 4o F +¥ - 11
(2.7) _ lim y_y, - ¥,. = = 2ik s,,(k) .

X+ -

(i) follows from (2.6) and (2.7).

To prove (ii), take the complex conjugate of (2.5)+:

Fikx

+i -
efkx L v rx) e , X0t

(2.8) wi(x.k) v €3 JHikx

+l
8

’ X v

and note that @+ has incoming components (E,r+) and out-

going components (1,0), while E_ has incoming components



(r”,t) and outgoing components (0,1). So by (2.3) and (2.4),

(2.9) tr +rt=20
(2.10) _ =%+ |t]2 =1
+
(2.10), e+ |F]2 =1,
giving us (ii).
Next compare (2.8) with
eilkx+ ri(_k)eﬂ.kx , XN+
\P (X,"k) v :
x t(-k) eXikx . X v+ o,

Observe that ﬁ_(x,k) and y_(x,-k) have the same outgoing
components. The incoming components of $+(x,k) and w+(x,—k)
also coincide. Since a solution is characterized by either

its incoming or its outgoing components, we must have

‘p_'_(xl-k) = $+(Xlk) .
Therefore
(2.10a) rfe-x) = rf(x)
and
(2.10b) t(-k) = E(&) ,

which proves (iii).
To prove (iv), consider the solutions ¢+ and ¢_ of (2.1)
characterized by

(2.11) 6, (x,k) ~ etikx XN+ o,



We can show that'these solutions may be extended to the upper
half-plane as analytic functions, with (2.ll)+ still holding
in that region (see Section 6). The Wronskia; W[¢+,¢_] of
these solutions is also an analytic function for Im k > 0.
Since (2.l1) does not involve the first derivative of y, the

Wronskian of any fixed pair of solutions is a constant and

therefore

(2.12) Wi ,¢_1 = 1lim Wi ,¢_] -
x+i9

From (2.3) and (2.4) we can deduce

(2.13) ¢, (x,k) _tlT)' eikx rt% e ikx X N -,

for real k. Applying (2.11)_ and (2.13) to (2.12) we get
Wlo,,9_1 = = 2ik/t(k) .

This implies that t(k) may be extended to Imk > 0 as a
nonvanishing meromorphic function whose only poles are zeros
Observe that for Im k > 0, the solutions ¢+ and ¢_

decay exponentially, the first for x + +», the second for

X > —o, If for some k = kO’ with Im k0 >0

W[¢+,¢_] =0,
then

9, (xskg) = ad_(x,k,)

identically. This implies that these functions have an
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exponential decay for x -+ +~ as well as for x + -». Thus
2
ko

of E we conclude that k0 = in ’ Kj > Q.

To complete the proof of (iv) we still have to show '

is an eigenvalue of E and frcm the self-adjointness

that the poles of t(k) are simple. The proof of this fact,
as well as of (iv) and (vi) will not be presented here.
They can be fouhd in Friedrichs [7] or Faddeev [6].

Next we show that S 1is completely determined by
either of its off-diagonal elements and the discrete spectrum
{-Kg} of E. Indeed, equation (2.10)  enables us to get [t

from the knowledge of |r|. To determine all of t, we form

the function

k—lK
(2.14) T (k) t(kfrq }.

k+lK

T(k) is analytic and does not vanish on the upper half-plane

while for real k

|T(k)| = [t(k) |
and by (v):

T(k) =1 as k -+ + = ,

By applying the Cauchy integral formula to log T(k),

we get

o
log T(k) = —rr f log iTéS)L s , _Im k > 0.
0
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Usinc (2.10) and (2.14) we obtain

. o i 2
k+ix . log (1-]x(s)|%)
= 1 -
21500 = ”[m@} oo (& [ —=— o}

-0

for Im k > 0, while for k real

Ct(k) = lim+ t(k + ig) .
e~0

Knowing t and one of the reflection coefficients, the
other reflection coefficient may be éomputed from (2.9), and
thus the S-matrix is determined. |

If we know the potential g(x), we can determine r
as a function of k, k real. The study of the way the

S-matrix depends on g(x) is called the direct problem.

In many physical situations, it is difficult, or
impossible, to measure q directly, whereas one of the
reflection coefficients is suitable to be measured.

Bargmann discovered that neither of the reflection coeffi-
cients alone contains enough information for the unique
determination of the potential g, even if we know the point
spectrum of E, Cf. [2]. This lack of uniqueness can be

overcome if one knows also the normalizing constants on the

right m; , or on the left mg. They are introduced, for

each eigenvalue Aj = - K§ . as the inverse of the L2 norm

of the eigenfunctions ¢+(x, in) or ¢_(x,in), respectively.

'
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The inverse problem is the search of information about g

from the knowledge of one of the reflecticn coefficients,
the corresponding normalizing constants and the point spectrum

of E.
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3. Stability Results

In what follows, unless otherwise stated, our
functions will be real valued and measurable, defined on
. s . +
either the real line R or cn the positive axis R . We

will use the notation:

£l

(1) f |x £(x)] ax

I £1 sup {lef(x)|/2}:

(2)

where both the integral and the supremum are taken on R
or k+, whichever the domain of €£.
P = the set of piecewise continuous functions gq(x)

defined on R and satisfying

(-]

j (1 + |x]) |q(x)] ax < = ;

—c
a function q in P will be called a potential.

Ri = the sets of continuous complex functions ri(k)
defined on R and such that:

. + .
(i) r— have real Fourier transforms

(3.1), F,(t)= % rik) e~ dk

f + +2ikt

that are absolutely continuous and whose derivatives F;(t)

satisfyl
ioo
+ f (L + [t]) le':(t)l dt < ¢, <=,

a
for all real a.
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(ii) |r(k)] < 1, for k # 0; if |r(0)]| = 1, then
r(0) = -1. (Note that |r(0)] ivl, by continuity; and
by (i), 1r(-k) = r(k), so that r(0) is real.)

(iii) r(kx) = o(1/]k]), |k| ~ =.

We will refer to the functions in R as reflection

coefficients.

As remarked in the previous section, a set of scattering

data is a triple
+ + +

s = (r ,k,m )

‘"where r is a reflection coefficient, « = (Kj) and m = (mjy
are N-tuples of positive numbers, N being a nonnegative
integer and the Kj's being all distinct. The iollection of
all such scattering data will be denoted by S .

The assumptions made above on the potentials are nearly
the weakest that we can make and still have a scattering
theory. Indeed, the integrability of g implies the asymptotic
behavior of the solutions of (2.1), as described  in (2.2),
while the existence of the first moment of g implies the
finiteness of the point spectruﬁ of E (see Section 6).

On the other hand, the conditions imposed on the

scattering data are also nearly as mild as they could be,

as is assured by the following result, cf. [4]:

Theorem 1 (Faddeev). There exists a one-to-one correspondence

between the set of potentials P and either set of scattering

data S+ or S .



We now state the two main continuity results we
obtained. Observe that we restrict ourselves to sets
smaller than P and S.

+

Let P be the set of potentials g such that:

(a), each q € P¥ vanishes on some half-line {x < a};

-2

(b) g(x) =o0(x ), |x]| ve;

(c) the operator E associated with g has no point spectrum.

Theorem 2 (Stability of the Direct Scattering Problem).

Take in P' the distance corresponding to the norm
. iqgl = Igl Iql + gl .
(3.2) g gl + g (1) q (2)

Then the direct scattering mapping

q-*>xr ,

q € P+, e L2($) is continuous.

Remark. To get an analogous result for r , introduce the set

P , requiring instead of condition (a)+ :
(a)_ each q € P~ vanishes on some half-line {x > al.

In order to state a continuity result for the inverse

mapping, let us introduce two new sets:
+
Let R denote the sets of reflection coefficients r

o+

for which F_ are bounded and satisfy

)
*

' -3
F (t) = of|t] ™) , [t] ~ o,

]
where F+ are defined in (3.1).

- +
and the reflection coefficients r~, and are defined in

Ty
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Theorem 3 (Stability of the Inverse Scattering Mapping).
+

Take in RI the distance associated with the norm

' T
bzb = IF I+ IF 1, ,

and in P the distance associated with uniform convergence

on compact sets. Then the inverse scattering mappings

are continuous in the above topologies.

Remarks. (a) Actually, the mapping RI + P is continuous

in the topology of uniform convergence on half-lines

1
uniform convergence on {x < a}l.

{x > a}, while Ry + P is continuous in the topology of

(b) The same continuity results hold if we fix

an integer N > 0 and consider scattering data

s £ (r,k,m)
with N-tuples k and m, r € Rl , and take

Isl = IF'8_ + IF'I + Ikl + Inmk ,

(1)

where the norms for k and m are kN norms.

To prove these theorems we introduce the functions

B+(x,y). They establish the link between the potential g
- +
and the reflection coefficients r , and are defined in

terms of the functions ¢, introduced in (2.11)+ , specifically

as Fourier transforms with respect to k:

e
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(3.3)+ ¢+(x,k) e =1 + B+(x,y) e dy .

Fikx 7 +2iky
—-co
We have observed in Séction 2 that ¢+ are analytic
for Im k > 0, and it can be shown that B
Fikx

¢, (x,k) e =1+ O0(1/]k]|) , k| ~ .

So we deduce from the Paley-Wiener theorem that
B+(XIY) =0, iy _?_ 0.
It can be proved that

(3.3a) | B, (x,y) = 2K, (x,2y+x),

where K, satisfy

|
o

{ayy - 3.t g(x)} Ki(x,Y)

and

(3.3b)

K+(x, +x)

*q(x)/2.

Q.-lQ-
»

The functions K, have the following important

property: if v, (x,k) satisfies

2

- v" = k%v
then
4
yi(x,k) = volx,k) + JKi(X.y) vy (y, k) dy
X

are solutions of (2.1).



The relaticnship between the functions B+ ar:d the

potential g(x) is expressed ky the equations

4o 4o
(3.4), B, (x,y) = + [ g(t) ét + T dz ] qg(t) B(t,z) 4t , +y>0
x+y 0 x+ty=-2

while the so-called Marchenko equations

+
(3.5)i Q, (x+y) + Bi(x,y) + fﬂ+(x+t+y) Bi(x,t) dt = 0, +y>0

0

relate B, to the scattering data, since Q is defined as

+ 1QKjt
(3.6) Qi(t) = Fi(t) +2 ) mye .

The derivation of both equatioﬁs will be given in Section 6.

To study the direct mapping, first we solve (3.4), which
is a Volterra equation for B(x,y). Once B is determined, we
set y = 0 in (3.5), regarding now B as the kernel. The
equation we obtain for Q is again of Volterra type:

+o
(3.7, 9,(x) + B, (x,0 % fBi(x,t—x) Q, (t) at = 0 .

X

When considering the inverse mapping, we regard
as given and solve equations (3.5) for B, observing that
these are a family of Fredholm equations, where x enters
as a parameter. Once B is determined, we can get g from

(3.4) by setting y = 0 and differentiating with respect to x:

(3.8)+ q(x) = ¥ BlB(x,O).
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Consequently, we have to analyze the continuity

properties of the chain of mappings
q++B++Q<—+r,

The proof of Theorem 2 is based on Claims 1-3 of
Section 4, which give the continuity of q + @, . Since
in the absence of the point spectrum, @ = F, the Fourier
transform of r, we can use the unitarity of the Fourier
transform to obtain the continuity of q -+ r+.

Theorem 3 is a direct consequence of Claims 4 and 5
'in Section 4. We remark that, for the sake of brevity in

the statement of this theorem, we required

F'(t) = o(t]”3) , lt] ~ =,

instead of the weaker conditions

i < o

F'l(l)

F,(t) = o(t™%) , £ N e,

which are the ones we actually use.

We end this section with two observations:

First, results similar to Theorems 2 and 3 can be
obtained for the radial problem, since equations analogous
to (3.4) and (3.5) hold in this case, cf. [1] and [5].

Second, by using Theorem 4 of Section 6 we can restate
a previous stability result by Lundina and Marchenko, Cf. [14],
with hypothesis only on the scattering data, avoiding a priori

assumptions on the potentials.
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4. Technical Lemmas

In this section we will denote by L(l)(D) or L(z)(D).

the sets of functions f on D for which

respectively; by X(D) the set of bounded functions £

that belong to L(l)(D) and decay like

2

£(x) = o(x ©) , x| ~ e,

We also use:

M = Y x rY.

Claim 1. For any g in Ll(k+) n L(l)(k+), the equation

o o

(4.1) B(x,y) = I g(t) at + T az J g(t) B(t,z) dt, x,y>0
x+y 0 X+y=-2

has a unigque solution B. This solution belongs to CO(M)’
its first partial derivative alB belongs to Ll(M), and the
mapping

S: g >+ B
is continuous with respect to the norms

[Halll = tary + 1an gy,

i

[HIBlll, = 1Bl + §B(-, 000 + 13;B(-,0)1, , 1<p<e.

Also, if g is continuous, so are BlB and BZB.

oy
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Proof: Consider the operators

V._: B -+ C(XJY)

1

T dz I g(t) B(t,z) dt
0 X+y=2

q

for q in Ll(R+) n L(l)(k+). Then,

umw/wugT[ flmwl&}m=szflmulu
0 +

X+y—-2 0 x+z

A

©0 o Py t
f dz J la(t)| at = f [q(t)] 4t J dz = tql ;,
0 z 0

so that ﬂvqgl!°° < lql(l) ﬂBIw; i.e., Vq is a bounded

operator on L” (M) which depends continuously on

qe it n@ @Y.

Now,

2
1v_ogl
qB

and, in

u [+ ] ©o
= sup ' f dy J dx gq(x) T dz f dt g(t) B(t,2)
v 0 ut+v-y 0 x+y-2z

| A

u ®© ©
I dy I dx |q(x)| [ I [ta(t) ] dt] gl
0 vty X

< gl f x|q(x) | ( f tlg(t) | dt} dx = (ﬂqn%l)/zjnsnm,
0] X

the same way,

Vsl < (et /mi)ipr

14
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1

which implies that on Lw(M), (I+Vq)- exists and

..lu

I (x + Vq) < exp ﬂqﬂ(l). .By'the continuity of the inversion

mapping on the algebra of bounded invertible operators (with

the uniform operator topology), (I + Vq)-1

depends continu-
ously on g.

Let

Q(x,y) = J g(t) dt .
Xty

Then lQlw < Iqﬂl . and thus, since (4.1) may be rewritten as

B = (I-Vq)'l Q.

the continuity of the mapping S from Ll(k+) n L(l)(k+) to L (M)
follows.

Now Q 1is continuous, and so is VqQ; consequently

m=0 q
[} L] L3 . » m
is also continuous, as this series converges in the L (M)
sense. Since

B(x,0) = J q(t) 4t ,
X

and

alB(xIO) = -g(x) ,

we have



HB(°,0)Nl
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A

val (1) »

IB(-, 001, < lal;

lalB(°,0)ﬂl = ﬂqﬂl .

and therefore the continuity of S in the sense stated above

is proven.

To show the other properties of B, let us introduce

the functions

and

Then

and

l(VQQ)(x,Y)l

<

| A

HBe——8 N+—38

£ (x)

n(x)

Iq(t)l at ,

[a(t) |t at .

[Q(x,y)| < E(x+y) ,

[+

7 dz f la(t) | g(t+z) dat
0

xX+y~2z

[}

& (xty) 7 dz f lq(t)| at

€ (x+y)

0

|

X+z

t-x
la(t) | at [ dz < E(x+y) n(x) .
0

By modifying the previous estimates for Vg in this fashion,

we get
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| (V) (x,7) | < E(x+y) [n(x) I7/m!

so that the solution of (4.1) satisfies

!B(XIY)l f_ E(X+Y) exp n (x) _<_ E(X‘*‘Y) exp Hqﬁ (1)

-

This inequality implies that B vanishes at w,

By differentiating (4;1) with respect to x we get

(4.2) alB(x,y) = ~g(x+y) =- T g(x+y-z) B(x+y-z,z) dz
0

outside a null set. Therefore

oo [+ + (o) [o ]
13,8, < f dx J lg(x+y) | dy + J dx [ dy T |q(x+y-2)B(x+y-2z,2) |dz
0 0 0 0 0

o «© xX+y
< Iql(l)+ exp(ﬂqﬂ(l)) J dx I £ (x+y)dy la(z)| az
0 0

1A

Iql(l) + exp (Iql(l)]

OV

ax f dy ] lq(t) |at j la(z)| az
0 Yy X
= 1gl 4, + exp (ol . ) Iqt2.
(1) (1) (1) ’

1l
BlB € L7(M) .

Claim 2. If q € X(k&) in addition to the conclusions of

Claim 1, we have that

B € LP(m) , 2

I A
el
IA

8

3B € Pm) , 1

| A
o
A

8
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and that S: g - B 1is continuous with respect to the norms

LH]

1 igl + Igl (1) + gl (2)

il + IB(-,0)0 _ + #3.,B(-,0)0_+ 1)
B p ( ) p 1 (*,0) P

|B| Bl , 2<pze=.

p 1

Proof: If we consider q and q, satisfying the hypothesis,

and if B, and B, are their corresponding images by S, we

1 "2
obtain from (4.2) that

ﬂal(Bl—Bz)lm < llql-qzlco + qull ﬂBl—lem + IBlﬂmlql—qzﬂl .
This implies that

3,B € LY (M 017 ,

1

and that 31B depends continuously on g, in the Lm(M) norm.

We can also conclude that

3;B(x,0) = -qg(x) € Lp($+) n L(l)(ﬁ+), for 1l<pg=.

All that is left to show is the continuous dependence
of B on q, in any LP(M) norm, for p > 2. To get this result,
let us show first that Vé is a compact operator on Ll(M)

which depends continuously on q:

VBl < I dx I dy T dz f la(t) B(t,z)]| 4t
0 0

0 X+y=-2z
® t+z tt+z~y
[ at
0

la(t) B(t,z)] dz f dy dx
Z

#

oO—18

2
late) 8(t,2)|t7/2dz < lql , 180, .

]
O

joT]

rr
O———8
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Now, for R + + o

o«

f dx I dy ‘ T dz f g{t) B(t,2) dtl
R R

0 X+y-2
® © t+z t+z~y
hS f dt f dz |q(t) B(t,2) ]| f dy J dx
R 0 z 0

[]

f t2|q(t) |/2dat f |8 (t,2) | dz
R 0

sup ]q(t)tz/zl + 0
t>R

IA

IBIl

uniformly for lBﬂl < 1.

In the same way we prove that

lim I(VqB)(x+h,y+k) - (Vés)(x.Y)ﬂl =0

h2+k2*0

uniformly for Iell < 1, so that the set

{v8; 11, < 1
is precompact in Ll(M) by the Kolmogorov-Frechet theorem, and

therefore Vq is compact on Ll(M).

Assume now that for some A # 0 and some B € Ll(M),

: VqB = AB .

Then since
lVéBum < qum Eeﬂl ’

we conclude that 8 = 0. This implies that (I—Vq) is

invertible on Ll(M).
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. 1 © -1
Thus, as an operator on either L (M) or L (M), (I-Vq)
. +
is bounded and depends continuously on g € X{(R'), so that
the same must also hold for Lp(M), l <p < =,

Now

dy |£(x,y)] f la(t) ]| dt
x+y

f f{x,y) Q(x,y) dx dy

OV-—=8
O3

< f dx
0
t-x

. 7 t-x
dx J dat |q(t) ] [£(x,y)| ay
X

il
OV 8

75— 1 £l
V2

<

t+
O“—-“-é O ey

O~ 8

t
dt|q(t) | f dx
0

so that Q € Lz(M). This gives the continuity of the solution
B of (4.1) in the sense of the LZ(M) norm. But continuity in
the L2 and L” sense implies continuity for any P norm, 2<p<e.
Claim 3. If B = S(gq) for some g € X(R+), S as defined

in Claim 1, the equation

-

(4.3) Q(x) + I B(x,t-x) Q(t) dt + B(x,0) =0 , x>0,

—

X
has a uniqgue solution Q. This solution belongs to IP ("),
for 1 < p < =, and satisfies Q(x) = 0(1/x), for x »> +x;

it is also differentiable, Q' € L2(k+) , and the mapping

T: S(X) C LE(M) » L2($+)
B+ Q

is continuous.

e t
[ dt|q(t) | [ dt [ | £(x,y) |dy
0 0 0

op—y
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Remark. Stronger conclusions can be obtained for Q°',

namely that
Q' € L(l) (]R*-) n CO(IR'F)
which in particular implies that
' Ppt
Q' € LY (R) , l1<p< o,

Proof: Consider the operator

VB: w > C(x)

it

f B(x,t-x) w(t) dt , x>0
X

with B in S§(X). We claim that V; is of Volterra type on (k% .

Indeed:

fc(x) [/lwl_ <

K——8

E(t) exp n(x) dt < exp(uqﬂ(l)) f E(t) dt
X

ia

lql(l) exp lql(l) ’

[vge(y) [/Twl | < J E(x) exp n(y) dx f E(t) exp n(x) dt
Y X

A

exp (2nqn(l)] ] £(x) dx f g(t) dt
Y X
< [lql(l) exp an(l)]z/z ’

and in general
n
IVBw(x)]/HwH°° < [ﬂqﬂ(l)expﬂql(l)] /nl! .

Consequently, a solution for (4.3) exists, is unique,

and is given by
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Q = —z<avE)n B(*,0) ,

being thus a ccntinuous functien.
We show now that VB is bounded if considered as an
+ +
operator from LP(R") to LT(R"), where 1 < p<gq<w®,

We already know that V_ is bounded on Lm($+). It is

B

1 1,4+
also bounded on L7 (R ):

| (Vgu) (=) | < f fw(t)] E(t) exp n(x) dt < ﬂwﬂlexp("q"(l))é(x) '
X

so that

*
£ |(VE ) (x)] dx < Iwﬂlexp(ﬂqﬂ(l)) J E(x) dx = !wﬂlﬂqﬂ(l)expﬂqn(l).
0

Thus VB is bounded from LF to Lq, for p,q € {1,~}, g > p.
This implies that the same holds for p,q ¢ [1,#], g > p.

Assume now that

for X # 0, w € L2. Then

ol = IVBwI°° < lVB“Z,wuwnz ’

so that w € Lw(k+), and conseguently

w =0.

*
Also IVBmll°° < nBHmﬂwﬂl .

iy
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+ . .
Thus V., is one-to-one on Lz(k ). VB being the uniform

B
limit of compact cperators, we conclude that

vy he LA 5 - P

is defined and bounded. Observe that for 2 < p < «,

l/p + 1/p' = 1,
-+
v el , = sup j g(x) (Vow) (%) dx ,
BUP'  pg1 =1 B
P 0
and thus,

]l/P'

(4.4) IVBwﬂp, < ( J dx J IB(X,t-x)lP' dt
0 X

°° o 1/p
. [ I dx f Iw(t)lp lg(x) [P dt)
0 X

< IBIp,ﬂwlp .

Therefore, by (4.4), as an operator on L2($+), Vﬁ depends
continuously on B. The same also holds for (I+VB)—1, and

lee,0).

hence for Q = (I+VB)-
Let us refine the previous estimates in order to get

more information about 2. Denoting

3]

s (x) B(x,0)

1]

z(x) exp n(x) ,

we obtain

Is(x)] < &(x) T(x) ,

| (Vgs) (%) | 5_] E(B)c(x)E(t)z(t)dt < E(x)z(x)z(x) | &(t) dt
X

N —8

= g(x)(x)n(x)z(x)],
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| (vgs) (x) ] < Ex) g(x) In(x)g(x)I7/nt ,

so that

=]

la) | = |- T (-vgs)(x)] < E(x)T(x) exp [n(x)T(x)] .

n=0

Since the function

zt(x) exp [n(x)z(x)]

is bounded, and tg(t) € CO($+), we conclude that

t2(t) € Cy(§'). Since

llmulﬁgfdtfmwm|®=nﬁuh,
0 t

we have

e erPi@h , 1<pze.
Now rewrite (4.3) as
Q(x) + f B(x,s) Q{(s+x) ds + B(x,0) =0 .
0

By differentiation we get

0 = Q' (x) + f B(x,s)Q'(s+x)ds + f alB(x;s)Q(s+x)ds + BlB(x,O)
0 0
= Q' (x) + [ B(x,t-x)Q'(t)dt + J alB(x,t—x)Q(t)dt + alB(x,O),
X X

or, if we denote A = j,B,

1

' - -1 .
Q' = (I+VB) (a(-,0) + VAQ] .



since A € L?(m) and 9 € L2 (&), v,0 e L?(®"). also
a(-,0 € 12(2%), co that
e e L2y .

The proof is complete.

Claim 4. Let us consider differentiable functions

2: R~ R

that vanish at « such that
Q' € L(l)(k) n Ll(k)
Then, for 1 < p < g < «», the operators

6(x,0) : P(R") » L¥}h

b P>V (y) = f Q(x+t+y) $(t) at
0

have the following properties:

(a) For any fixed Q and p = q,

lim IG(x,Q)1 = 0
JLim ety o '

uniformly in p.
{(b) For g <, or p =g = », G is compact.
(c) Consider the norm

(4.5) et = 1@ Hl + IQ ﬂ(l) .

Then

32
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(4.6 1G(sx, )1t < ftar ,
) (>)pq_

14

for all p, g and x, and G(x,Q) will depend continuously on

the pair (x,Q), in the sense of any p-q operator norm.

Proof: Let
400
T(x) = + _f [Q'(t)] at , +x>0.
Then X
o) ] < t(x) ,
so that
tor < Il < IQ'Il ,

and

0 X [~} -]
lszl1 = f dx | J Q' (t) dt| + f dx |- f Q' (t) at|
-] oo 0 X

Il

IA
8§ —0

X o oo
dx f [Q'(t)] at + f dx f [Q'(t) | at
o 0 X

Q'

A

(1) °
Therefore

ol < teh e, ety < o't g el ,

where CX is the characteristic function of [x,»). Also

waﬂm < ch+y len¢ul < HQ'ﬂlﬂ¢Dl ’

and

by by < f dy j [6(t) ]| |Q(x+t+y) | at
0 0

< f [o(t)] at f [e(y)]| ay < HQ'l(l)u¢ﬂl
0

x+t



34

Thus, G(x,0) is bounded by I8! as an crerator from Lp to Lq,
for p < g9, p,g € {1,#»}. By the larcel Riesz Interpolation
Theorem, the same holds for p < gq, p,q € [1,=].

Let us show now that

lim 1G(x+h,Q) - G(x, )1 = 0 :
h~C psq

WWoon — Ve le < ol f !{cx+y+h(t)—cx+y(t)}ﬂ(t)l dt
0

’{Cx+h(t) - Cx(t)}ﬂ(t)l dt

]
8

< |{Cx+h(t) - Cx(t)}ﬂ(t)’ at -+ 0

oO-—3

by the Lebesgue Dominated Convergence Theorem., For p = 1,

T n vty 2 f [¢(t) |at f |2 (y+h) -Q(y) | dy
0 +

X+t

®
Fol, J |e(y+h) - Qx| ay » 0,
-
again by the LDC Theorem. A further application of the
MRI Theorem gives us the result for any p =q € [1,»].
Now, G(x,Q) is linear in Q. By the estimate (4.6)
above, it is’ a uniformly continuous function of . Since
it is a continuous function of x, for fixed 2, we conclude
that it is a continuous function of the pair (x,Q).

The compactness of G(x,Q) for g < » 1is a consequence



of G being the uniform limit of integral operators on

finite intervals:

i ﬁ - - Q n = O .
Lin 16(x,8) = 6(x, (A-C M1, o

In the case of Lm($%), we observe that for ﬂ¢ﬂm <1

by i < ie'ly <ol

1

and that

o (¥) | _<_I [(t)] dt = 0, asy > o ,

y
uniformly with respect to ¢.

Claim 5. Consider the family of integral equations

35

(4.7) B(x,y) + f Q(x+t+y) B(x,t) dt + Q(x+y) = 0 , ¥y > 0,
5 :

for real x. Assume that Q is differentiable,

2

Q(X)=o(x_)l X * 4o,

and

Il + 1Q'1 < o |
(o]

(1)
Then:

(a) For each fixed x, there exists a unique solution
B(x,*) of (4.7); this solution belongs to the Sobolev

spaces Wl’p(R+) for 1 < p < », and vanishes at y = +«,

(b) If Q@' is continuous so is BlB(x,y).

(c) Let B be the restriction of B to {x> o, y > 0};

then the mapping
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H: Q ——>Ba
is continuous with respect to the norms

i b, + 10 4

i ql 1 (1)

i

IBaﬂ

sup IB(x, )1
x>0

l,p

Proof: The operators I + G(x,§l) are strictly positive
in L2 as is shown in Section 6. Now, assume that

¢x € Lp, for p < » and

(4.8) b= = Glx, Do, .

By (4.6), ¢x € L”. But if ¢x € L° satisfies (4.8), we

can conclude that ¢x € L2

and thus ¢x = 0.
To prove this last assertion, we only have to

observe that for any ¢ € Lm,

I

ly v (¥) ] ly f Q(xt+t+y) ¢ (t) dt]
0

[}

l¢lm{[y+x| I le(t)| at + |x]| J]Q(t)l dt}
y+x y+x

1A

and this last quantity tends to 0 as y + +w.

Now we claim that if

F(x,0) = {I + G(x,q)}"*
then

lim {sup lF(x,Ql) - F(x,Q)lp} = 0 .

Q. ‘x>a
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This is a consequence of the continuity of G(x,0) as a
function of the pair (x,Q) and its asymptotic behavior

as x + @, Denote

(T, Q) (y) = ax+y) ;
then

B(X,') = = F(X,Q) TXQ
and therefore

lim sup ﬂF(X,Ql)Tle— F(X,Q)TXQIP

Ql*n x>0

< lim {sup "F(x,Q)01_ BT (Q,-)1
> 91*9 x>0 1" p "x'7'1 P

+ sup IF(x,0,) - F(x,0)t It ql }
x>0 1 P x' P

< lim {(”Ql+l)ﬁﬂl-ﬂﬂ+ﬂﬁﬂ sup !F(X,Q)-F(x,ﬂl)lp} = 0.

T+ x>0

By differentiating (4.7) we get
o=
3:B(x,y) + J {Q" (x+t+y) B (x,t) +Q (x+t+y) alB(x,t)} dt
0

+ Q' (x+y) = 0

or equivalently
ﬁlB(x,y) = —F(x,Q)\{TXQ' + G(x,0") B(x,')} (y) .

By using the estimates in Claim 4, we get that
G(x,02")B(x,*) € P
and depends continuously on f, in the sense of (4.5), as does

TXQ'. This completes the proof.
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5. A Numerical Approach

To solve numerically the one~dimensiocnal inverse
scattering prcblem we have to:

(a) solve either the Fredholm integral equations
(3.4)+ or (3.4)_ for B+(x,y) as functions of y, x being
taken as a parameter; -

(b) differentiate B+(x,0) to obtain g(x) from

formula (3.8),
q(x) = + 3lB(x,0).

Observe that approximately solving either of equations
(3.4) by the Nystrdm quadratﬁre technique amounts to solving
a finite linear system whose order depends on both the
accuracy we require and the behavior of the functions Q.
Also we need to solve these equations for a large numbe;
of values of x. |

In this section we shall describe a simpler algorithm
for this problem, using an idea originally suggested by
V. Bargmann and carried out by I. Kay, Cf. [10].

From now on we shall deal with Marchenko equations
(3.5)+ replacing B, by the function K introduced in (3.3a) as

K(x,y) = B (x, y—;—{)/Z ’

and taking instead of Q+ the function
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(5.1) w(t) = Q+(t/2)/2 .

With these changes of variables, relations (3.l)+, (3.5)+

and (3.8)+ become:

(5.2) w(t) = 7% J k) eFt ax ,

(5.3) K(x,y) + I w(t+y) K(x,t) dt + w(x+y) = 0 , X<y,
X

and
(5.4) a(x) = - 3 5 K(x,%)
respectively.

The basis for the algorithm is the observation that
when the reflection coefficient r is a rational function
of k with all its poles in the lower half plane, an explicit
formula for g(x) can be obtained. Observe that by Theorem 4
in Section 6, the analyticity of r (k) for Imk > 0 implies
that g vanishes on the negative axis, if no eigenvalues exist.

Since r is rational and analytic for Im k > 0, it

has the form
M
L

with M < L, and Im Gj < 0. By (2.9), (2.10a) and (2.10b)

(5.5) r (k) =r

[4

0

the relation
t(k)t(-k) = 1 -1 (k) (~k)

holds on the real axis. Then denoting the roots of
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1 -1 (k)r (-k) =0
located in the upper half plane by pj and assuming that
lr(0)] < 1, we get

(5.6) tkt-k) = TT == w559
j j

for real k.

If there are no eigenvalues, t(k) is a non—vénishing
analytic function in the upper half-plane; as a consequence
of (5.6) t must have the fofm

L k + p.

tk) =TT p—sgt .
3

From (2.9) it follows that on the real axis
+ -
r (k) = -r (-k)t(k)/t(-k) ,
so that

M L
(k+u.) (k+p.)
g = pbmel T T Geug) TT Gkt

0 L L
Consequently
+ ~
(5.7) r (k) = p(k) + } Py / (k=py)
where p(k) is analytic in the upper half-plane.
Substitution of (5.7) into (5.2) gives
) L ip,t
(5.8) w(t)=i2pje -, t>0.

Using this relation in (5.3) we get that for 0 < x < y
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[++]

L - ip.t 1ij
(5.9) K(x,y) + i) pj{ j e J K(x,t) dt} e

L (. ip.x ip.y
+ iy {pj e 3 } e 3 = 0.

Therefore, in the range 0 < x <y, K has the form

L ipjy
(5.10) K(x,y) = ) £j(x) e .
and substituting (5.10) into (5.9) we get the LXL system

el(pj+pm)x

(5.11) fj(x) - p. £(x) = - ip. e .

J

g

pj+pm

By using Cramer's rule and (5.4), one obtains from (5.11)

the expresssion

2

(5.12) g(x) = =2 —97 log det [I - A(x)],
dx

where A (ajm) is the matrix that appears in the system

(5.11) , namely

l(pj+pm)x

-~ e
A (X) = Py 535 y

Observe that the order of this matrix equals the number of
poles of r (k).

Although (5.12) is theoretically simpler than (5.11),
the latter formula has more computational interest than the

former. This can be seen as follows: Setting y = x in (5.10),

and differentiating, we have
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d 1pjx
(5.13) gz K(x,x) = )) {fj(x) + 1pj} e '

: ' . »
for x > 0. To compute the values of fj(x) we differentiate

(5.3) and (5.10) with respect to x and obtain

(5.14) 23

lK(x,y) + J w(t+y) BlK(x,t) - w({x+y)K(x,x)
X

+ w'(x+y) = 0,

and )
ip.y
3;K(x,y) = [ fé(x) e I,

If we now use this last expression and (5.10) in (5.14)

- we get the following system for f;(x):

1(pj+pm)x

(5.15) fi(x) - p. ) &
J m

j fm(X)

pj+pm

= By elpjx{pj + i g £ (x) elpmy}.

Notice that the coefficient matrix in (5.15) is again
I -~ A(x), so that to solve this system after having solved
(5.11) is a computationally cheap task. Moreover it
avoids having to numerically carry out the differentiation
in (5.4).

We observe that passing from r to r* makes it possible
to obtain (5:12) and also makes the derivation of (5.11) quite
simple. Nevertheless, a system analogous to (5.11) can be

obtained by making use of r only, Cf. [13].
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We have solved numerically the inverse problem by imple-
menting both (5.3) and (5.11), for some rational coefficients r .
In dealing with Marchenko equations directly, we discretized
(5.3) by wusing Simpson's formula and we needed a 60-point
mesh to obtain an accuracy of 10_5 in the average. The second
method, even for L = 8, was ten times faster than the first.

As it staﬁds, we can use the second method only for
rational reflection coefficients. When solving the inverse
problem for a reflection coefficient r  which is analytic in
the upper half-plane, and if there are no eigenvalues, we can
use the following numerical method:

(a) approximate r by a rational reflection coefficient
r. which is analytic in the upper half plane,

(b) solve the inverse problem for r, by using the
algorithm described in (5.4), (5.11), (5.13) and (5.15).

Theorem 3 in Section 3 gives us the conditions on the
approximation r. under which we can expect the potential 9.
to be close to the potential q we are seeking. The main
difficulty is that the common techniques for approximating
a given function by a rationalone, e.g. the Rehmes algorithm,
can be applied only for real functions, while the requirement
that all poles of re lie in the lower half plane prevents us
from approximating the real and the imaginary parts of r
separately.

The following is a possible strategy for solving the

approximation problem:

it coiotll
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Restricting ourselves to reflection coefficients r

that die out like

o(|k]™h k| v,

(5.16) r (k)

define

R(k) = (k+i) r(k)

and, for w = ele,
- l w4+ 1

By (5.16) s is continuous at w = 1. Obtain trigonometric
approximations

n in®é

s(w) v} aw =] a e
for s and define
n

1 k - i
re(k) k +1i ) an(k + i]

as the approximations we Sought.
Better approximation results can probably be achieved
if instead of defining r. with an n-th order pole, we

could get its poles spread out in the lower half-plane.
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6. Proofs of Some Fundamental Results

1. Existence of the Solutions ¢+; Derivation of Eg. (3.4).

We recall the variation of parameters formula:

If z(t) satisfies

ZI

A(t)z

g

(6.1)

z(to)

and Z is a fundamental solution of (6.1l), then

t
(6.2) vit) = z(t) +J z(t) 27 1(s) b(s) ds
t

0
satisfies

v' = A(t)v + b(t)
v(to) = §

Here, z2,§ and b are n-vectors, while A is an nxn matrix.

Motivated by this result, which is valid for finite

t0 r we write the same formula now for tO = + », taking for
(6.1) and (6.3) the equations
n 2
y" = - k%y
and
| | S— 2
(6.4) y" = - ky + qy
respectively. We impose the conditions
+ikx
(6.5) yv({x,k) v e , X Vv 4+ o

and regard the term qy as if it were the inhomogeneous term
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b(t). Instead of (6.2) we obtain the following integral

equations for ¢,

+ikx - .
(6.6), ¢ ,(x,%) =& + [ sin X(E7%) q(e) ¢, (k%) at

X

The proof of the existence of a unique solution for
each of these equations is obtained by the successive
approximations technique, cf. [1]; this proof makes it
clear that these functions are defined and analytic in the
upper half-plane Im k > 0, and have the asymptotic behavior
(6.5) for large x. Moreover

+ikx  a|etikx|

[o,(x,k) - e | <

- 1+ k|
so that

+ikxy Fikx
{¢+(x,k) - e } e

= O(1l/|k]) k| ~ e,

It is thus a consequence of the Paley-Wiener theorem that

+c0

+ikxy +ikx - +2iky
{¢+(x,k) - e } e =+ f B (x,y) e dy
or 0‘ -
+ikx  +ikx I} +2iky
(6'7)i ¢i(x,k) = e + e j B+(x,y) e dy .

0

By substituting (6.7)+ into (6.6)+ we get

* . ~ikx ¢ _ik(t-x) _~ik(t-x) .
2ik _ 1 e - kt
(6.8) i B (x,y) &MY ay = e f o a(t)er Fa(t)

X dt,




where

2ikz

a(t) 1+ J B+(t,z) e dz .
0

The richt-hand side of (6.8) is thus the sum of two terms:

g{t)dt+ TR

e21k(t—x)__l
2ik
X

f e2:Lk(t--x)__l
X

We integrate both terms by parts. From the first we get

g(s) ds

T 2ik(t-x) R <

e -1 _ 2ik (t=-x)

[ 31K q(t) dt f e f
b 4 €

X

[ e21ky dy f g(s) ds ,
0 x+y

while the second gives:

¢ 2ik(t-x) °
e A | 2ik

f 1K q(t) j B+(t,z) e“t*% gz at

X 0
-] [~

= f e2ik(t-x) 4 f a(s) | B, (s,z) 21Kz 4. 4
b4 t

2ik (t+z-x) at

o

g(s) B+(s,z) ds

t—88 O-———38

Py
e?1kY 4y J a(s) B, (s,z) ds
X+y=-z
Y
e iky dy I dz f B+(t,z) dat .
0 X+y-z

il

O 8 O 8 oOo—- 38
[o )
N
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q(t) I B+(t,z)eZlkz dz dt.
0
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Therefore (6.8) may be rewritten as

[+

o o y
0 = f e2iky C+(y){B+(x,y)- f q(t)dt- f dz f q(t)B+(t.Z)dt}dy,
- 0

oo xX+y X+y~2

where C,_ denotes the characteristic function of R+. This

gives us (3.4)+; (3.4) _ may be obtained in a similar way.

2. Existence of the Solutions w+. Derivation of

Marchenko Equations (3.5).

Consider for Im k < 0 the functions

(6.9) 6, (x,k)

¢i(x'—k) .
They satisfy
Fikx
6,(x,k) v e , XN+ @,
and are analytic for Im k < 0. Since for real k # 0,

wi¢,,0, 1 =wle_,¢0_1=- 2ik # 0

both {¢+,6+} and {6_,¢_} are bases for the space of
solutions of (6.4). Any solution of (6.4) may thus be

written as

or
If

(6.10)



Then

1

-

is the matrix of change of basis:

o(20) - (5]

Since eif ¢i

d =

and this implies that
det M =

Indeed:

-2ik

As a consequence,

incoming waves

(6.11), v, (x,k)

, we must have

-&'1 Y=§I

la]? - |8]%2=1.

Wio,,0,] = wlad_ + Bo_, BO_ + a¢_]
Wlao_, a¢_1 - wlB6_,B¢_]

(la]? - |8]%) (- 2ik) .

we have the existence of the unit

1
= 5® ¢z (x,k)

for real k. By (6.9)_ and (6.10) we have that

(6.12) . y_(x,k) = ¢_(x,-k) + EEL 4 (4, x)

and since

a(k)

49

t
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(6.12), v, (x,K%) = ¢, (x,-k) - 2o (x,k) .

The existence of the S-matrix is a consequence of the fact
that the solutions w+ and y_ are independent. From (2.5),

(6.11) and (6.12) we get:

(6.13) : t(k) = 1/a(k) ,
(6.14) _ r_(k) = B(k)/a(k) ,
(6.14) r, (k) = -B(k)/a(k) .

Some properties of the S-matrix may be deduced directly from
these relations, but we will not carry over the proofs.

The incoming unit waves Y, are meromorphic in the

= —ikx

upper half plane with poles at k = in and grow like e .

To derive the Marchenko equations, we introduce the functions

(6.15), g, (x,k) =y, (x,k) eXiKX

and the Fourier transforms

-2iky gk

=i

(6.16)+ ﬁ(x,y) f[g+(x,k)—l] e

2iky

1
T j[g_(xlk)—l] e

(6.16) _  B(x,y) dk

— OO0

so that
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=~ 2iky
(6.17),  g,(x,k) 1+ JB<x,y) e™ ™ gy ,

~ ~2ik
(6.17) _  g_(x,k) 1+ J B(x,y) e “*¥ay ,

From (6.15) (6.12)+ and (6.9) _

+ !

2ikx,

e {¢, (x,k) e

g, (x,k) = e ¢_(x,-k) + r (k) e ~ikxy

’

and thus by (6.17) (3.3)+ and (3.1)

+ ’ + r

1+ J B(x,-y) e 2XKY gy = 1 + f B, (x,y) e 21KY gy
[so] [+ +]

+ J F, (y+x) e 21KY dy{l + f B, (x,~y) e 2tKY dy},

or, by using the convolution theorem

! B(x,-y) e_2lky dy = ] B+(x,y) e-Zlky dy + [ F+(x+y)e_2lkydy
<] 0 (<]

+ J e 21Ky 4y T B, (x,-(y-t)) F,(x+t) dt .

- 00 - 00
This gives:

(6.18) g(x,—y) = B+(x,y) + F+(x+y) + J B+(x,z) F+(x+y+z) dz ,
0

since B+(x,y) = 0 for y < 0. Now for y > 0,

It

ﬁ(x,—y) 21 z Res{g+(x,k) eZikY} .

Im k > 0
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Since by (6.15) (6.11)+ and (6.13)

+ 14

g, (x,k) = ¥ k) o_(x,¥) ,

we have

- -K.¥ =2K.Y
B(x,~y) =2i Je I e J ¢_(x,in) Res t(k)’

k=ir.
J j

It can be shown, Cf. [6], that

-1

Res t(k)l = i{ J ¢ (x,ik,) ¢_(x,ik.) dx} .
k=in - + J J

Setting ¢_(x,in) = cj¢+(x,in), we obtain for y > 0

- =2k . (x+y) K.X 2
) = - j j . .
B(x,-y) = = 2 § e {e 6, (%,1ky) I l¢, (x,ixy) [“ax,

where we have used the fact that the eigenfunctions of E
are real. Recalling the definition of the normalizing

constants m; given in Section 2, and using (3.3)+ we get

from (6.18):

-2)m e

-2Kj(x+y)[
3 J

-2ik.z
1 + J B+(x,z) e 3. dz}
0

I

©
B+(x,y) + F+(x+y) + f B+(x,z) F+(x+y+z) dz ,
0

or
+ -2Kj(x+y)
0 = B+(x+y) + {F+(x+y) + 2 § mj e }

< + -2Kj(x+y+z)
+ J B+(x,z) {F+(x+y+z) + 2 Z mj e } dz .
0

J

e
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From this equation, by defining Q+ as in (3.6)+, we get

precisely (3;5)+ , and (3.5)_ may be obtained in the same way.
The one-dimensional version of the Marchenko equations first

appeared in [9] and [11].

£

the Marcuenko Cperators

We consider the liarchenko operators Mx as defined by

Mx: h - h(y) + f (x+t+y) h(t) dt ,
0

for h € L2(R+) and Q@ as given by (3.6) and (3.1).
Suppose that

(6.19) (Mxh,h) =0 .

Since Q is real, there is no loss of generality in assuming

that h is real. Thus (6.19) is equivalent to

=

“ 5 ! 1 G -2ik (x+y+t)
(6.20) O = f h*(y) dy + J h(y) dy f {&? f r(k)e dk
0 0 0 -c0

+ 27 mg e

-2k, (x+y+t)
J } h(t) dt .

Now take the Fourier transform of h:

H(k)

Hi

¢}
f h(y) %Y g4y ,
=]

where we extended h

0 for negative y. Notice that H is

a bounded holomorphic function on the upper half plane.
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Using Parseval's identity in the first term of (6.20),

and cha:ging the order of integration in the second term,

we get
o (o) 0
- . =21 . ~2ik
¢ = % jiw(h)iz €k + = f £(k) e 2HR¥ gi f h(y) e 2™ ay
—co -0 0
% -2K.x -2,y
. f h(t) e 21Xt gt + 2 ) m; e f h(y) e Jay
0 0
~-2k.t
. Ih(t) e J at,
0
or using H(-k) = H(k),
(6.21) 0 = j[H(k)H(-—k) + r(k)e 2 K% g2y 7 ax
-=C0

-2K.X
+ 27 ) m; e Hz(in) .

Since h is real, so are the numbers H(in), and
therefore the summand in (6.21) is nonnegative. The integral
in (6.21) is also a nonnegative number, as can be seen from

the identity

-2ikx 2ikx

% j [H(k) + r(k) e H(~-k) ] [H(-k)+r(-k)e H(k) ]

+ [Jtk) |H(-k) ] []t(-k)| H(k)] ak

~-2ikx

- j [H(K)H(-K) + r(k)e n? (k)] dk ,
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2 2 ,
where we nave used that |[t|“ + |r|® = 1. The integrand on

the left-hand side is of the form £(k)E£(:) + gk)g{k) and

4]

by (6.21) it must vanish. But since t(k) ~ 1 for kv + o,
this implies that H must vanish outside a finite interval.
vherefore, los roulriexr transrorm is an entire func:ion and

P
S1nCC

"h(y) =0 for y <0,

h must be identically zero. This gives the positivaness of Mx'

4, Finiteness of the Point Spectrum of E

Let us prove now that E has a finite point spectrum if

J (L + |x]|) Ja(x)] dx < = .

We will show this by proving that for y(x) Z 0 in a subspace

of finite codimension contained in the domain of E,

(Ey,y) > 0.

Consequently, the eigenfunctions of E can at most fill up a
subspace of finite dimension, since we know that all eigen-
values of E are negative.

Integration by parts gives

co

(6.22) (Ey,y) = f ly'|? + f alyl? .

-—CO

We need to bound the second integral in terms of the first one.
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0, Schwartz' inequality gives for x>x:

Observe that if y(x)

X
2 - 2
ly(x) |7 < I=x-x] | ly'(s)|" ds .
X
Let y{u) vanizh at the egually spaced points
= N = - L) X = - R

with R and N to be determined. Then

X

[a = { o]+, [ Yo
3

_R x © x
< -f | (x+R) q(x)]| dx f ly'|? at + [ | (x-R) q(x)]| dx f ly'|2at
xj+1 X
+ ) J ](x—xj) g(x)| ax I [y'[z dt
X

< f ly'|? at { f Ix q(x)] dx + h f lq(x) | dx} .
°° | x|>R | x| <R

To make the bracketed quantity less than 1, and thus (6.22)
positive, we have only to choose convenient values for R

and N = R/h. For example, require that R and N satisfy:

[x g(x)]| dx < %
and |x|>R

N > ZRHqﬂl .
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5. Relation Between Properties of gq and r

Equations (3.4), (3.5) and (3.7) permit us to establish
a relationship between some properties of the potential g and
those of the reflection coefficient r+, more exactly, of
the derivative of its Fourier transform F;. The proof is

based on the following inequalities that hold for x > 0,

cf. [6]:

o, (x) - atx)| < &£
and

l) (0 - ax] < A,
where

E(x) = j [a(s)| das ,

X

T(x) = I[Q_;_(s)lds .

Since X
-K.t
e (t) = F_(t) +2] my e 3,

these inequalities imply
Theorem 4. The potential g(x) satisfies

O(x‘-n

q(x) ) X N 4
if and only if

n

F_:_(t) = 0o(t ) , t v+ o,

If E has no point spectrum, then

qg(x) = 0 for x > A



. 58

if and only if

F+(t) = 0 for t > A.

There exist analogous relations bLetween the
behavior of g(x) and F:(t) at - », between the deriva-
tives q(J)(x) and F(J+l)(t), and a similar result

holds for the radial problem.

—
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