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ABSTRACT

To test the validity of current ideas on the poles of the S-ma-
trix, a simple example is treated: non-relativistic scattering by a
spherically symmetric rectangular potential well(or barrier). The pales
of the S-function assoclated with this problem, in the case of zero ap
gular momentum,are determined,and their behavior as a function of the
well depth (barrier height)is discussed. Some results for higher ang-
ular momenta are also given.,

The usual physical interpretation may be applied only to avery
restricted class of poles, Difficulties appear in the case of "short-
lived decaying states", However, the present model leads to a connect-
ion between the limiting cases of strongly bound states in a deep well
and of certain characteristic states attached to a "hard sphere"a to
a perfect conductor(antenna). It is shown that some poles, previously

described as "meanlngless", glve rise to important physical effects,

# Pellow of the National Research Jouncil of Brasil; present address: Technische
Hogeschool, Eindhoven, Holland.
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L, INIRODUCIION

The general properties of the poles of the S-matrix,introduced ky
Wheeler and Heisenbergshave been the object of a great number of papers.
However, few attempts have been made to test and to illustrate these prop
¢rties by determining all the poles of the S-matrix in concrete physical
examples, This has been done for the Coulomb potertisisin this case, how-
ever, there are only purely imaginary poles,which correspond to bound
statess no complexlpeles exist, To our knowledge no example where complex
poles occur has been completely treated.

A simple example of thiskind is the scatteringof mn;relativisﬁc
particles by a spherically symmetric rectangular potential well(or bar-
rier). This example was considered in 1930 by Beeka, who observed that,
when the well depth decreases,the bound levels are "pushed" imto the cont
inuous spectrum, giving rise to “virtual® levels. After the introduct-
ion of the S-matrix, the rectangular potential well was mentioned as an
example in a paper by Eéller% where it is stated (incorrectly) that there
are no complex poles in this case, Complex poles were also disregarded
~in a later treatment of the problem by Schntzerb;

As will be shown in Sect. 3, the poles of the S-function assoclat
ed with this problem, for angular momentum £=O,:may be completely detep
mined, Some results for higher angular momenta will be given in Sect.h.
The interest of this example is that it allow us to test the usual point
of view on the poles of the S-matrix. We have found several lnexact
statements in the literatﬁfe; in faét9 the whole problem of the physi=
cal interpretation of the poles of the S-matrix should be dealt with

much more careful than has usually beenr done hitherteo.
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let us swnmarizé the usual point of view. We shall restrict ouxr
selves to the case of none-relativistic scattering by a central potent-
tial of finite radius. In this case, as 1s well known, the S-matrix is

a diagonal matrix, with elementis

Sy (k) =exp [2 1My ], (1)

where _’_q_:z_(m_ is the phase-shift corresponding to the angular moment-
um § and wave number X. In the cases in which we are Ilnterested, the
analytic continuation of S) (k) in the complex k-plane is a meromorphlc
function. The following properties are generally ascribed to the poles
of this function:

(AY The poles are located either on the positive imaginary axis
or in the lower half-plane®?°,

(B) A pole on the positive imaginary axis, k = iK, (§n> 0), cor=
responds to a bound state with emergy B, = -()ﬁ Ign)a/Zm, where g is the

mass of the particle7.

(C) Complex poles are usually interpreted either by means of

10,11

so=called "quasi=stationary" or “virtual" states or in terms of

resonance scatteringlz. The first interpretation imvolves the analytic
continuation of Schr¥dinger's wave function to "Complex energies"., A
pole at the point k§ = k' ~ 1K(K > 0) is associated with the "complex e~
nergy".

W=E -1 /2=(h%m)x - 1K)? (2)

If k' > 0, the corresponding "wave function" 1s sald to repregent a
"decaying state", with decay constant [ / )ﬁ and "energy" E (defined
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with an unc.ertainty given by E }. Poles with k! < 0 are associated
with "capture" processes. It is assumed, in both cases, that E>>0
(cfo Sect. 5.2).

It 1s well known that a "complex-energy wave function" cannot
be normalized, owihg to its exponential increase with the distance
“(this 1s attributed to emission that took place "a long time ago"ll).
This difficulty is usually circumvented by interpreting a "complex-
energy wave function®™ as an approximation to a wave packet which is a
proper solution of Schrddinger's equationlB’lh. It must be emphasized,
however, that this approximation rests upon the following assumptions:
(a) ICI<€E; (v) | I | <€ 1level spacing. If these conditions are not
fulfilied, it is very doubtful whether such an interpretation 1s pos-
sible (cf. Sect. 5.2).

‘The Iinterpretation of complex poles by means of resonance scab-
tering associates (2) with a "Breit-Wigner peak" in the scattering
cross-gection; E glves the resonance energy andNET is the half-width
of the peak. Besides conditions (a) and (b), it is assumed that the

12

pole in question is a simple pole., According to Hu ", this is always

so If the scattering potential has a short range, 1.e., if k'a &1,

where a 1s the radius of the potential,
II. FORMULATION OF THE PROBLEM
We shall consider the potenﬁial:
Vir) = <V, ra, ¥(r) =0, r>a,

where ]_I_o>0 in the case of & well, and Yo < 0 in the case of & bar-
rier. It 1s convenient to introduce the following dimensionless

parameters:
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o = [an(s -»\ro)]:"/2 a/'ﬁ, (3)
L= ka = (2m E)l/a ash, (L)
i A.Z = Vo/E (+for a well, - for a barrier), (5)

where E is the energy (taken, for the moment, to be real), and

&= hZ%/ (2ma®) = E/BZ, (6)
The parameters & and ﬁ_ correspond to the wave number inslde and out-
side of the potential, respectively; _§_ is the energy of a particle far
which kg = 1 3 &2 1s a well-depth (barrier-height) parameter., It fol-

lows from the above equations that
0(2 = PE T AZ (+ for a well, « for a barrier). (7)

It follows from (1) and from the well-known expression for the
phase-«shiftls thatlé
sy () B3, O nBp) - 3 0 1= (B
’ P @@ -wyy oD (p)
where J, (B) is the spherical Bessel function of the first kind, and
h,g(‘l‘) (8) » nga) (3 ) are spherical Hankel functions of the first  and
second kinds, respectivelyl?.

(8)

To obtain the analytic continuation of 8§ ( js ), it suffices to
consider (8) as a function of the complex variable ﬂ =+ 1 Y. It
follows from the properties of the spherical Bessel functions that (8)
is a meromorphic function of p_, which satisfies the well-known relations

S () S (=p) =8y (B) s8] (f =1 (9)

According to (9), 1fP, is a pole of §y (ﬁ), so is _ﬁ* , while -/@_
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andJi% are zeros, Therefore, it suffices to determine the poles

on the 'imaginary axls and in the right half-plane,
III. THE CASE OF ZER0O ANGULAR MOMENTUM

For,_g_ = 0, (8) becomes
b 1

SO(P) = exp (-21}3) Lot + iﬂ ) (o€ cotel = 1p E’ - {10)

The poles of go (ﬁ_) are the roots of the complex transcendental equa-
tion
o cotd = 18 . (11)

It can be shown by considering the real and imaglnary parts of (7)
and (11), that property (A) of Sect. 1 is satisfied: _8_0%3_) cannot

have any poles in the upper half=-plane ,' except on the imaglinary axis,

ITII -~ 1. The Potential Well
To determine the roots of {(11), it is more convenient to work
with the variable o= x + 1 y than With}i. Eliminating }i from {(7)
and (11) we find
Lt sinol = £ 2™l (12)
The corresponding values of ﬁ are given by
Pt X242 (13)
where the aign must be chosen in such a way that (11) 1s satisfied,
The problem is now reduced to the determination of the roots
c‘)‘fr(la.) as a function of the parameter A. This is carried out in ap-
pendix A, Making use of (13) and of the results derived in appendix
A. 1t is a simple matter to determine the poles of S_(f) in the B-
plane. BSome of th_eée poles, together with the corresponding values

of A are shown in Fig, 1.
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For each given value of A, there exists an infinite number of
poles. When A varies, the poles describe certaln paths im the ﬁ_ -
plane (the curves in full line in fige. 1)+ The poles corresponding
to a given A may be numbered according to their limiting positions for

A —> 03 thus’ﬁ-n = M, + Ly, where

1im + %
=nfl=1 ® (n=0 -1, =2 ﬂu')-o (lf;!-)

The following abbreviations will be introduced for describing the poles:
a-poles ( a = anti), for poles with M, =0, ¥, <0; b-poles (b =band),
for poles with gL~ # O, ¥, ¥ O. The denomination "anti-pole" will be
justified in Sect. 5.2,

Let us describe the behaviour of the poles when 4 increases from
0 (free particles) to oo (infinitely deep well), beginning with  the
pole 34 on the imaginary axis. For 0<A <1, f3, corresponds to ‘a
root of (A3) (see Appendix A); it is an a-pole, and it moves from L
o to =} when A increases from O t_o l, For 421, ﬁo arises from =a
root of (A2) in the interval 0 <& x{3T. According to (Al), when A
increases from 1 to 7TV/2, ﬁ"’ is an a-pole, which moves from =} to
the origin. For & 2> T/2, /@_obecomes 8 b-pole (first bound state, and
it moves upwards from the origin to 1 oo when A ipcreases from
Ti/2 to ®.

It must be pointed out that the origin itself is never a pole
of 8o (), since this would violate the unitarity condition. In the
present case, for A =T/2 - €, |€ | &1, ve have, in the neighbour-
hood of the origin,
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S - (B f ) e (e L e} ame )L,

=1 +1n € (B+ % ine )™, (15)

50 that the residue at /}_ =ﬁo vanishes when £ -+ 0, This is due to
the fact 1:1’1&1;#2r = -F'd which ig a zero of §O(ﬁ')’ approaches the ori=-
gin simultaneously Withﬁ,o' Thus, the M"conservation of the number
of poles" fails to hold at the origin.

Let us consider next a pair of poles,ﬁ_ *n, withn)»1l, For
0 AL ;.e._n, where -‘&n is defined by (A?);ﬂn is a c-pole which cor-
responds to the root @, of (Al), andﬁ,n is the mirror image Ofﬁn
with respect to the imaginary axis. The paths described by the first
few palrs of poles are shown in fige 1. For é"o’ﬁn approaches asymp-
totically the straight line M = nm, When A 1ncreases,ﬁn-; moves up-
wards, until it approaches the straight line y = ~1, and then it moves
towards the imaginary axis. When A= A Pn andﬁ_ =n approach, from
opposite sldes, the poin‘tﬁ_ = =i, where they coalesce for A = A,. The
paths described byp_ X n are tangent to the straight line v = -1 at
this point. _

Thus, for A = A _S_o(ﬁ) has a double pole at the pointP = .—;L.
It may be easily verifled that all other poles are simple poles. How- .
ever, the existence of double poles k = k'=iK, with k'a = 0, K g =1,
contradicts Hu'sr statement, quoted at the end of Sect. 1. To explain
thig discerepancy, we notice that it is implicitly assumed in Hu"s
paperlz (see his eqs (32)-(33) ) that K a € 1, but, as shown by the

present example, this need not be true.

For A>A , the double pole atﬁ = ~j splits into a pair of
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poles, which move in opposite directions along the imaginary axls.
We shall call the one which moves upwards ﬁ_n, and the one which moves
downwards )@__- n (this choice is, of course, entirely a matter of conv-
ention), Thus, ﬁ_ -0 is an a-pole, which moves from -i to -1 o when
A increases from Ap to o, On the other hand, for &n { & {gp, where
Cn 1s defined by (A6), 3y 1s an a-pole, which moves from =i to the
origin. For & > gp» ﬁ-n becomes a pole, which moves from the origin

to 1 oo when A increases from Cp to o. Thus, every pair of c-poles

An approximate analytical representation of the poles for
1 < A < A, may easily be derived froem (13), (A8) and (All)-(Al2). Let
us notice, in particular, that,for 1 < & «' An » we have: |

ﬁ-n% &Zn ~ 1 ¥py where xn 5 In are given by (Al3) and (Al}). The case
4 € 1 will be considered in Sect. 4.1

III = 2. The Potential Barrier

To carry out the tranmsition from the potential well to the po=-
tential barrier, it suffices to replace A by 1A in (12) and (13):

ol gipex = 1 &t (16)
B= uriv=t (X2 aBt/e (17)

The roots of (16) are determined in appendix Bj the poles of
8o ¢ ]_3_)1:1 the 3 - plane then follow from (17). All of them are c-
-poles, For each value of A, there 1s an lnfinite number of poles
ﬁ_ 1'_ n = t At i ¥ps corresponding to the roots X, of (16).

1t suffices to consider the behaviour of the poles 1in the
lower right quadrant. The paths described by the flrst few poles as
a function of A are shown in fig, 2, We find that B —>Cp -1 2
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for A= 0, V¥hen A increases, pn moves upwards and away from the imagina
ry axis, tending to approach the real axis when A becomes ver largeofn
fact, when é_})ﬁ?n (cf.appendix B}, we have,according to (17), (B9)and
(B10),

ﬁnzl.k EL + %(mr/&)z] ~ 1Zn (np/A) El 4% '(nﬂ,)“a ° (18)
Thus, f -» oo and 1;11-)0 for Ao, This means ’that §O(ﬁ_) has no poles
(at finite distance) in the limiting case of an impenetrable barrier(hard
sphere™)

Notice that, for 1<A &gy o nave: B ax - 1y, where x,, }In
are given by (B7)and (B8). The case AK1 will be treated in Sect. l.1l.

IV. THE CASE OF HIGHER ANGULAR MCOMENTA

The complete determination of the poles of §! g@) is more difficult

for &) 0 than for g_: 0. We shall restrict ourselves to.a discussion of

the general behaviour of "large" poles and to some special results ‘for_g_'a 1,

IV = 1. General behaviour of "large" poles

A pole of §l(ﬁ‘) at =0, = M, - 1%, vhere \J = -1 >0 (1t suf
fices to. consider gﬁ>,o), will be called a "large“ pole if it fulfils the
following conditionés

(1) lﬁnl»m (11) %I»Aag- (144) Eﬁ,[)}lﬂ; (1v) exp(u }» 1.  (19)

According t9 (5) and (6),(19) implies that [_E_np) IV | and ]g:ﬂﬁ».& (1 +1),
ke /(2 Egg}s height of the “centrifugal barrier". It is not surprising
that under thése conditions sWe find common features in the behaviour of

the poles, as will be shown below.

It follows from (8) and from the relationship

B @ me B py gy ) B = 1p -2 (20)
that, in the free-particle limit (A~ 0) we have, as it should be,
lim S, {(B) = 1
A-»% P ‘ (21)

it may be expected, therefore, that the poles of Sy (ﬁ) are rejected
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to infinity when A —> 0, so that there are only large poles for very
small A.

To determine the large poles of (8), we may, according to (i)
and (ii), make the following approximations: _°_<_,zﬂ_ i A%/ (ZA);
M}alﬁ._,l & 1, On the other hand, according to (iii) and (iv), we
may replace the spherical Bessel functions by their asymptotic expang
ions, neglecting terms in exp (-} /Q_) in comparison with exp(1 8). If
this is done, we find that the large poles are approximately glven by
the equation

1 :(nl) [‘é ap-t exp (y!)]a = 0 (+ for a well, - for a barrier).

| (22)

In this approximation, therefore, the large poles of Sp (ﬁ_) for a po-

tential well ‘(barrier) with even Lcoincide with those for a potentlal
barrier (well) with odd ..

If we put

sy =0, + € (0g & < W2, (23)
where
g - {nﬂ for a well with even L or a barrier with odd X
n (n-%) for a well with odd 4 or & barrier with even 4

(24)

we find that (22) may be replaced, in both cases, by the pair of equa-
tions

tan €n = wAv, (25)
exp (u) = (2/M)UE + vA/2 (26)

Neglecting -in in comparison with g, , we get

=1
en = tan™ (U /W), (27)
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w, = % log _EZUn/A}E + (2 wn/A )2] = f,(wn)

(28) ‘mdy be solved by 1teration18, taking

w1 =10 (20 /0) (U 0) (29)
(r+1)
Wn = f(W(:) ) . (r = 1,20000)- (30)

In general, the third or fourth iterstion already gives a very good

approximation.

)

In particular, if 32}<ggn, which is certainly the case for

AD1,

2
Wn ~ log (ZUI]./A) + % Un-z ELOS (zUn/Aﬂ + sacy (31)
un~ Un + g - U;ll wn + an e (32)

Equations (A13)-(All4) and (B7)-(B8) are particular cases of these
results.
On the other hand, if H(z%)» y_n, which 1s the case for very

small A, we find

=1 1l .2 1 -2
Y L1 + L, + L2 Ly f (L2 -3 LS + 3 Uﬁ ) L1 + seey (33)
u_ e U +Uw-1+ (34}
n n nn eee s
where
L, = log {(2/&); L, = log log (2/A). (35)

Notice that (33) remalns valid if w =7 =0
It follows from (33) and (34) that

1lim = n«1o0,
A=0 /1

which generalizes the results obtained for d = 0. Kotice, in par-



ticular, that there is always an isolated(unpaired) pole on the imagi-
nary axis in the first case of (24), but not in the second one.

IV -~ 2 The case 2 =1

For £ = 1, (8) becomes

8100 = exp (-2LANXT cotot-o(® 4 B2 4 1yt oot oo +3-2 -%!3)“1
The poles of §; ([3) are the roots of

o1 cot (-2 482 L1 f37t = 0 (37)
(a) The potential well

Let us consider first the poles on the imaginary axls, __ = lv.
No such poles exist for |y| D> A. For |x|<&, according to (7) and (37),
they are given by the points of ilntersection of the curve

x"'l cot X - X

2 2yl 4 g2 (38)

which has been drawn in full line in fig. 3, with the family of cir-

cles
> +vi= & (39)

some of which have been drawn in dotted line in fig. 3.
The curve (38) is defined in the imtervals; Q™ X {“n
(D =1y 2, 400)y Where g_';a is the pth positive root of the equation:

;"l cot ¥ = ;"‘2 = = 1/h, The straight lines x = 5, where &

is given by (A5), are vertical asymptotes.

There are no poles on the imaginary axis for A< T, For A =T,
(38)=(39) have a double root at y = 0. However, this is not a pole
of §; %_) (ef. Sect. 3.1)s For A>T, this double root splits into a
pair of roots, giving rise to an a-pole,which moves downwards for in.

creasing A, and a b«pole (first bound p-state), which moves upwards



~1l-
when A increases, A similar process takes place each time that A
goes through an integral multiple of =.

How do these poles appear on the imaginary axis? A comparison

Wi th the case‘g = 0 suggests that they rmst arise from the confluence
of paiis of c-poles. If this is true, there must be a pair of c-poles
close to the origin whenever 4 approaches an integral multiple of .
In order to determine these poles, we shall make the following assump-
tions in (37):

0A (-A +nn) = 5,41 (n = 1,2...), {40)
2
Iples; |1B1& 2a. (41)
Under these conditions, (37) may be approximated by
- 3p2.i03 «
6, - 1 Oy %ﬁ +3p 0, (42)

neglecting terms of the order of A_fa ﬁ_“‘.
The roots of (Ij2) are
F: =2t (26 /12 - 128 /9) + 0(5.3/2 ),
n ' n
Jal

(43)
- 2
= =31 +§ 16, + 0(57)

Notice thaf}in and}Qﬂqlare approximate roots of (37), but this is
only true fav)i' if 1t fulfills condition (41). Thus,;jl' is not
an approximate foot of (37) for}g = 1, However, it may be shown that,
for n » 2, there exists indeed an a-pole close to the point -3i.
For n = 2 and n = 3, this may be clearly seen in fig. 3,

For A «» nm , the c-polesﬁt n aﬁproach the origin along a
parabolic arc (with vertex at the origin). For Ad>n mn, they disso-
clate into an a-pole and a b-pole, |

The behaviour of the poles differs from the behaviour for



2 = 0 1in the following respects; (1) asccording to Sect. l4.l1, ﬁ-n
—» G171 oo as A 0; therefore, there is no isolated pole on the

imaginary exis; (2) the "joining-point" of the c-poles 1s at the ori-
gin (instead of the point‘}i = «1),

(b) The potential barrier

In this case, according to Sect. li..l,ﬁn-»g‘\ﬂ = loo as
A= 0, so that there 1s an isolated pole on. the imeginary axis, ﬂo =
= 1 ¥,o When A increases from 0 to oo,ﬁo moves upwards from -ioco
to -1,

As was the case for § = 0, the c-polesﬂ gn=2Iu +1iv
(n) 1) tend to approach the real axis for large values of A, However,
in contrast with the case £ = 0, one pole remains at finite distance
as A=» 00, namely the a—poleﬁ, = -1.

Generally, for any angular momentum ,_Q_, 4 poles remain at fi-
nite distance in the limlting case of a "hard sphere"”, These poles
are the roots of the equation

{1) |

hg (ﬁ) = 0. (44)
The poles corresponding to the first few values of !_ are given in
the following table:

TABLE I

.The poles of §.(ﬁ_) for a "hard sphere"

L= 0 1 2 3
ﬁ' o . —1 ‘ i .f_- - —11—
2 2 + 1,75 - 1,871
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Notice that, in agreement with the results of Sect. l4.l, there are
only pairs oI.' ¢c-poles for even g, whereas, for odd 4__'., there 1s also
an isolated a-pole.

By comparing the "hard sphere® with its electromagnetic counter-
part, a perfect conductor, we find an Iinteresting connection with an-
tenna theoryeoo In fact, the roots of (44}, for ¢ ¥4
are also characteristic values assoclated with the sp-called magnetic
modes of obcillation of a perfectly conducting spherezl. These char-

- acteristic values are the poles of the S-matrix of the assoclated

scattering problem,

V. DISCUSSION

V. 1 - General properties of the pole distribution
- The results obtained in the previous Sections allow us to veri-
£y, in the present example, some general properties of the pole dis-
tribution for non-relativistic scattering by a central potential of
finite range22:

(1) There is an infinite number of poles, but only a finite
number of them lie on the imaginary axi523’2h.

(2) For large n, the distance lJﬁn+1 - J&nl between two con-
secutive c-poles approaches the value T (see 2&). This follows from
Sect. 4.l. |

(3) The distance of the c-poles to the real axis increases
logarithmically with n (see 24); If we put:)&n = ULJ exp(-ign )y

we find, according to Sect. 4.l 25,

sin 6~ {n ﬂ)-l logn (n=+od. (4s)



V. 2 = On the physical interpretation of the poles

According to Heltler and Hull, almost all the poles of the S~
natrixz have a simple physical interpretation (namely, the interpre-
tation that we have outlined in Sect., 1). In the non-relativistilc
case, the only "meaningless™ poles would be those which are located in
the region of the complex k-plane where the real part E of the "com-
plex energy" (2) is negative, 1.e., below the bisectors of the third
and fourth quadrants (c¢f. fig. 1 and fig. 2).
| Besides the fact that a continuous transition from these so-
called meaningless poles to the so-called meaningful ones 1s possible
(as shown by the present example), it must be pointed out that the in-
terpretation of E as the approximate energy of a "decaying state" is
certainly not valid if | [VE|®» 1. Therefore, there seem to be no
grounds for accepting the above eriterion.

As we have mentioned in the Introductlion, the approximations
involved in the usual Interpretation of c¢-poles are based upon con-
ditions (a) and (b) of Sect. 1. In the present example, these condi-
tions are fulfilled only in a few cases (c¢f, fig, 1 and fig. 2). One
of them 1s the case of the lowest=order poles for a very high barrier
(which are given by (18) for g_ﬂ 0). These poles correspond to vir-
tual energy levels lying above the top of the barrier, The well-
known analogy with optical interference phenomena in thin plates may
be applied to them. The "level width" may be estimated by the usual
form.ulal9

= &7v/(20), (46)
where ¥, is the "velocity" inside the potential and T 4is the "trans-

missivity" of the potential step.
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(L6) may also be applied to the lowestw=order c-poles for a very
deep potential well, provided | [ | & E. In this case, it gives:

/78 =~ 4 (E /E_)l 2. This result is equivalent to the fact that
the c-poles tend to spproach the straight line v = -1 in thg/irplane
(ef, fig. 2 and Sect. 3.1l). The virtual levels of a w~ell are much
broader than those of a barrier of comparable range and transmissivity;
this is due to the much larger value of v, in the case of a well,

One runs into serious difficulties as soon as one trles to ap-
ply the usual interpretation in cases where the above-mentioned condi-
tions are not fuifilled, As the poles get farther away from the real
axis, the corresponding resonance peaks in the scattering cross-sec-
tion become broader and broader, tending to overlap in an inextricable
way, until they merge into a slowly=-varylng background, which is usual-
1y included in the so=-called potential scattering.

On the other hand, it is exceedingly doubtful whether these
poles can be interpreted in terms of "decaying states". This is clear-
1y seen when we consider the case of a very shallow well (or a very
low barrier)}, in which all the poles are large poles (Sect. h.l).. Ir
we bulld up a wave packet that is initially concentrated within the
potential, in this case, it will propagate and spread practically in
the same way as 1t would do in the case of free particles, and this
process has nothing to do with exponential decay 27,

It has been shown by Regge 2,29 that the asymptotie behaviour
of the large poles depends very critically on the asymptotic behaviour
of the potentisl, Physically unimportant changes in the potential
may completely modify the behaviour of the large poles, so that these

poles cannot have much physical significance 29, This Yhypersensiti-



-19=
veness" of the poles with respect to asymptotie conditions, which
had previously been noticed in the case of "spurious" poles, 1s a very
unwelcome feature of the S-matrix formellsm.

Let us consider now the poles on the negative imaginary axis
(a=poles). The "energies" that formally correspond to them, according
to (2), are real negative energies, just as in the case of bound states
{bmpoles)° However, while the energy levels of the bound states are
determined by the condition that the wave function at r * a may be

smoothly joined to a purely decreasing exponential for r » a, the ener-

gies associated to s-poles are those for which the wave function at

r ® a may be smoothly joined to a purely inereasing exponential for

r > a. For thls reason, we propose to call them anti»levelémhnd'to

call the associated poles anti-poles.

In the case of a potential well withw£;= 0, the anti-level as-
soclated to the a-polejio (Sect. 3.1) lies below the bottom of the
well for 0 C A {1, and within the well for 1< A { ®/2. All other
anti~levels lie within the welly as may readily be verlfied, there is
one anti-level between every pair of bound states,

Let us sum up, It is convenlent to classify the poles of the
S-matrix into several (not sharply separated) groups., They range all
the way from those which are associaﬁed wi th well-defined physicai
concepts to those which seem to be no more than mathematlcal proper-
ties of the formalism. The bound states belong to the first category.
The usual interpretation of c-poles may be applied to "long~lived de-
caying states", either for an attractive or for a repulsive potential.
However, it seems to be very difficult to give.a precise and geﬁqral

formulation of the scattering problem in the case of "short-lived de-
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caying states".

The limiting case of a "hard sphere" is especially interest-
ing. In the related case of a perfect conductor, it is known that
there exist certain characteristic states of the field, whic¢h are more
or less strongly d amped by radiation according to the shape of the con-
ductor° Our model indicates the existence of a connection betﬁeen
these "antenna states" and the other 1imiting case of strongly bound
states in a deep well (ecf. the end of Sect. L4.2).

The large poles seem to have very little physical significance.
It might be expected that the a-poles, which are "meaningless™ in the
usuél interpretation, cannot have any physical importance., However,

this is not true, as will be shown in the next Section,
V. 3 = The low-energy scattering cross-section

It will be shown in this Section that some poles of the S«
métrix that would be considered to be "meaningless" according to the
usual interpretation (in particular, a-poles) may give rise to impor-
tant physical effects in the low-energy scattering cross-section,

The scattering cross-section d, for angular momentum £ ;s

given by the well=-known expression
dt"(2l+1)ia2ﬁ-2|1-81 (B) 1 (47)
{(a) The case & = 0
Let us consider a potential well that is almost deep enough

for the appearance of the first bound state, so that A=x/2-§,
0< ¢ €1. According to (15), this implies the existence of an a-

pole atﬂ_ uﬂox - 1% £/2, and according to (15) and (47),

-1
% = b a2 B;z + (x€/2)° ] , (48)
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so that the cross-section becomes very large as 11-1 0., An a-pole

very close to the origin glves rigse to an anomalously large scatter-

ing crogs=section at low energles,

This behaviour is well known in the case of neutron=proton scat-
tering. It is usually interpreted in terms of a so~called virtual
singlet state-of the deuteron, the definition of which has occasioned
«ome confusion in the literature. There have been several attempts
to define a “virtuel level' at a small positive energy. It must be
stressed, in this connection, that, in the present example, all c-poles
are far away from the origin for A n/2 , as may readily be verified
from fige. 1. The definition by means of an a-pole of the S=matrlx has
been considered by several authors 31’32’33.

Let us follow the behaviour of the low-energy cross-section
during the process which leads to_the appearance of the next bound
s-atate (5;4'3n/2). In S=-matrix language, this process corresponds
to the transformation of the pair of c—poles)ﬁ.i 1 intc an a-pole and
a b=pole (cf. Sect. 3.1 and fig. 1).

It may be verified without difficulty that, as 1“approacheé
the bisector of the fourth quadrant, the low-energy cross-sectlon be-
comes very small (<§ﬂ:§?)o The value of A for whic#)ﬁl crosses the
blsector practically coincides with the value A = T V2 =~ L.ul,
which marks the appearance of the first zero in the cross-sectlon.
This zero appears at the poin?}& ='1/2; when A increases, it splits
into a pair of gzeros, one of which moves towards lower energies,
while the other'one moves towards higher energies., In fig. li, the
ratio g /(= a°) has been plotted as a function of}@, for A = L.4é

together with the corresponding values of the phase-shift 120(1¥f:1
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at the zeros of the cross~section). A vanishing cross-section at low
energy is well known in the theory of the Ramsauver-Townsend effect,
For A = glsslhAQ, the zero-energy cross-section vanishes. For
A > &;, the low-energy cross-section begins to increase., For A = 51
=3 .61, }31 anijﬂ -l coalesce at the poinﬁ}g = = i, giving rise to
a pair of a-poles. The low-energy cross-section keeps increasing while
one of these a~-poles moves towards the origin, and it attains again
very large valuesrwhsn the a-pole is very close to the origin
(é_ --b31t/2 ~e.Tl).
A similar process takes place before the appearance of other

bound states, Thus, the typically quantum=-mechanlical anomalies (very

small or very large values) of the low-energy cross-section, which

precede the appearance of a new bound state, are related to poles of

the S-matrix that would be considered to be “meaningless" according

to the'uauallinterpretation.

(b) The case f =1

Let us consider a potentisl well that is almost deep enough
for the appearance of a new bound p-state, so that (40) 1s satisfied,
In this case, as we have seen in Sect. 4.2, there exists a pair of c~=
poles,}i + n, given by (43), very close to the origin.

To obtain the low-energy',p -wave crogs-section, we may employ
(36) and (47), replacing the denominator of (36) by the first member
of (42), and expanding exp (=2 ;}1) in powers‘ofjﬁ. The result is 34

-1
a‘l/(lzxaz)zjs‘* Egﬁ- 5,)° +/f (%ﬁz - an}al
(49)
In the region

[R2-5s1«5o,, (50)



n % 1" 2 / ) 3/2
(49) gilves rise to a "Breit-Wigner peak” of half-width (L/3 1 ( 8. /3
centered at}§ = 20 /3 o This agrees with the usual interpretation.
The exlstence of a sharp rescnance in thlS case may be attributed to
the "centrifugal barrier',
It might be expected tlwt only the poles {and corresponding
zeros) that are close to the orisin would determine the bshaviour of

the low-energy cross-section, If this were so, (36) could be replaced

by
s ()R ex (-218) (B +RI(A+AIP-BIHB-8 )7 (51)

Replacing (51) in (L7}, and taking into account (L3), we would get

¢, /(12 n 8°) = [(132_ 5 6,)% + (5 8,)° ﬁ] [ﬂ

-1
+ % { % én)%] ° (52)

)2+

LOEN
(@)

Although this agrees with (4$) in the recion (50}, it is by no nmeans

a good approximation outside of this region, In particular, (52)

would glve /g for & ¥ U,

11 o, (p)/i12 n a2y =
B30 [1 g/ ﬁa] 1 for 5 =0, (53)

whereas, according to (49¥) 35

5 0  for & F 0,
1n [g/02 7] - | (51)
£¥+0 /9 tor &, = 0.
The difference between (52) and (4%) is due %o the omission of
the root ﬁi ~ -~ 31 of (43) from _§1(ﬁ} . According to Sect. L.2,
}3 '* is an a-pole for n » 2. In this case, therefore, the correct be-

haviour of the low-energy cross-section may only be obtained by tak-

ing into account the a-pole }3 ' {together with the corresponding
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zero), even though it 1s far away from the origin, This is another
example of the physical effects that may be produced by an a-pole,

The author is greatly indebted to Prof, G.Beck for suggesting
this problem and for many helpful discussions, He is also grateful
for the hospitality of the Technische Hogeschool at Eindhoven, where

this work was written.

APPERDIX

&. The roots of equation (12)
Replacing X =x + i ¥ in (12), and separating real and imag-
inary parts, we find the follewing three possibilities:

x“ltanxsy‘ltanhy(l)

(x #0 % 0) (41)

y = cosh™t | x/(A sin x)] (1I) 8 » 7 ’
xtsinx =12 A"’l,

(42)
y =0,
x=0

(A3)
y™L sinh y =&~ (4 )o0),

The corresponding choiee of sign in (13), in order to satiafy (11),1s
such that y {0, in the case of (Al) and (A3), and such that
Sgn v = « 8sgn (x sin 2x) (ay)
in the case of (A2), as may be easily proved,
Since the roots of (12) are symmetricsl with respect to the X
and y axes, we shall restrict ourselves to the first quadrant
(x2 0, ¥ 20) in the following discussion,.
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There are no roots of (A3) for A > 1. For eachvalue of A be~
ionging to the interval O =1, (A3) has one root; when A Increases
from 0 to 1, 3y decreases from oo to O,

The roots of {(Al) and (A2} may be found by graphical means.
Equation {II) defines a family of curves depending on the parameter A.
For each value of A, the roots of (Al) are given by the points of in-
topgection of curves (II) and (I), whereas the roots of (A2) are given by
the intersections of (II) with the real axis.

Curve (I) has been drawn in full line in fig. 5. It is defined
fornn £ x £ £ {n = 1,2,3,+0s) , where &, 1s the nth positive root

of the equation tan x = x . For large n, we have

-1 o —3
gn ~J cn - Cn = § Cn = esseg (AS)

where

C = (n+3) . (26)

Portions of curves (II) have been drawn in dashed line in fig. 5; the
corresponding values of A are glso indicated,

Let I be the interval n®£ x < (a+ 1) . InXI , curves
(II) intersect the real axis only for A » l. The corresponding root
of (A2) increases from 0 to m when A increases from 1 to oo,

The following_discussion applies to all the intervals, ln with
n »1l. To illustrate the Eehaviour of curves (II) in I s & typlcal
curve { A = 0,01 in ll) has been drawn in fig. 5. Each curve (II)
goes through a single minimum in ;n. This point 1s located on the
straight line x = gn. When A increases, it moves downwards along

this 1line, reaching the real axis for A = A, where

b ¢

an = lg/ smgl~ve - 30 - o2 - . L)
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It can easily be shown that, for every value of A between O
and én’ cufves (I) and (II)} intersect at one and only one point in -l;n'
The corresponding root, & = x + 1 y,, moves downwards when 4 in-
creases, Notice that & ~> %+ 1o for A=>0, and & —» &, for
A4 .

For A > 1, an approximate analytical representation of gn may
be derived. Under this condition, the intersection occurs close to

the minimum of (II), so that (II) may be approximated by

Y, A Y, + ¥ (g - x)?, (48)
where
Y = cosh™t | A /Al, (49)
-1/2
" = 2
b, = y"(E) = [1 - (A/An):, (A10)

On the other hand, if we put x = Cn = &, , {(I) may be replaced by

-1, o2 -2 _ 1y a1 -1 - v =1
(e, Gn) +Cn + (C 3) Cho6, & Y tanh ¥ = (b Y) -,

from which we find, by iteration,

2 2 pd
c c ¢2 N
~ C 1= [( ~B—el)+ (2o B -1)" }.
*n n { b, ¥n ( 3 ) bnT; ) '

{A11)

In the immediate neighbourhood of A = A , this maybe replaced by
-1 -1
X =~ K- [1 - (b, Y) ] £ (A12)

Equations (A8) and (All)=-(Al2) give e very good approximation to the
roots of (Al) when 1<A < A . In particular, for large n, i.e.,.
for 1 <A «&n s We find

-1
Kn ~y Cn - Cn 108 (Ecn/A) F ssee (Al3)



| 2
Y, ~ log (2c /A) + 3 cn? {[L:\g (Ecn/A)-l:l -3 G -1} + eeof(All)

For A = A , we have X = £ . Thls is a double root of (12),
which arises from the confluence of a root in the upper half-plane with
a root in the lower half=-plane, For A & A, it splits into a palr of
roots of (42}, which move in opposite directions when A increases, ap-

proaching the end=-polnts of ln when A —» 0o,

B, The roots of equation (16)

Replacing = x + 1 ¥ in (16), and separating real and ima-
ginary parts, we find that there are no solutions with x =0 or y = 0,
For x ¥ 0, y # 0, we obtain

X tan x =« y tanh y (I')

(B1)

y = sinh™1 |x/(A cos x)| (II')

The curve (I'), which is defined for in-l <{x £nn(n~=1,2,..),
has been drawn in full line in fig. 6. Portions of curves (II!) have
been drawn in dashed line; the corresponding values of A are indica-
ted, In each interval il g_n‘_l &£ X £g,, each curve (II') goes
through a single minimum, located on the straight line x = g'n s Where

'
én is the nth positive root of the equation cot x = - x . For large

T, _ -
- g;laun:ttw-(n’lt)l-%(n'n)?’-... . {B2)

When'gn increases, the minimum of {II') moves downwards, approaching
the real axis for A —oe.
For every walue of A, {I') and (II') intersect at one and

only one point in ;E_'n.

. The corresponding root of (16), X = +

X
.—rl
+ 1y , moves downwards when A increases, We find that _o_(n..;gn_l +
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+ i oo for A -0, and & —+n T for A-*oo.,
The following formulae, the derivation of which is similar to
that of (A8)-(All), give a very good approximation to the roots when
AD1:

x_ =~ n=%- (o)t hf; - (nm)73 (v YA - % ba ¥L ), (B3)
e L b 1 2
ToRYy, + 350 (g,~ x ) (BL)
wherse 1/2
- -1 . -
Y1 = sinh C 8 , bl=(L+Z°), (B5)
. 12,1/2 !
2= (1+ 5212 . (B6)
In particular, for 14A € g' , we have
x, ~nmn=-(n 1{)'1 log (2 n n/A) + ..., | (B7)
~ log (2nw/A)} + 1 (an)"2 [10 (2nn/A)-1]2 +x 4% aals
yn g ] 2 g 2 LI ]
(B8)
On the other hand, for A% E!' (2 & 1), we find
Kn ~ nm-=- (nﬂ)-l Zﬁ + see (Bg)
Ynzzn + % (n ﬂ)-g an + s e (BlO)
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The poles Pn of 8 (P) for a potential well.
D n=0; e n= :l;on=:2; @®an = ¢ 3,
The numbers beside the poles give the corresponding values of A. The

curves in full line are the paths described by the poles. The bisec-
tors of the third and fourth yuadrants are also indicated.




FIG. 2

The poles of §, (ﬁ) for e potential barrier.
en=1;0on=2@n =3

The numbers beside the poles give the corresponding values of A.
The curves in full line are the paths described by the poles.The
bisector of the fourth quadrat is also indicated.
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FIG. 3

Deteruination of the purely imaginary poles of 3 (..} for a

potential well.

x"'l cob X = x"z "—'V-1 * vﬂz | }:2 + v2 = }‘120

Notice that the intersections occur close to the straight line
g ==3for i =27 and & = 317,
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The ratio g / 52) and the phase-shift [l o @8 & function of
pfor a potential well with 4 = 4.46.
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Determination of the roots of {El).
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