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ABSTRACT

Within a real space renormalisation group framework, we
study the phase diagram of a semi~infinite cubic-lattice gq-
state Potts ferromagnet, in which the free surface coupling
constant J¢ = (1+A)JB might be different from the bulk one
Jy. We calculate the starting value Ac(q) above which sur-
face order is possible even if bulk order is absent. Our re-
sults can be alternatively seen as approximate for thesimple
cubic lattice (as a matter of fact,the Ising value A (2) we obtain
appreaches the series result better than any other theory we are
aware of; consequently Ac(q) is expected to be quite satisfac
tory even for q # 2) or as exact for a well defined diamand-

like hierarchical Tattice. In the g >0 limit, A diverges as 1//3.

Key-words: Surface; Potts model; Renormalisation group; Phase

diagram.



CBPF-NF-025/84

I-INTRODUCTION

Surface magnetism is an interesting problem which, in the
last decade, has received both theoretical (Mills 1971, 1973,
Weiner 1973, Binder and Hohenberg 1974, Binder and Landau 1976,
Burkhardt and Eisenriegler 1977, Lipowsky and Wagner 1981, Sarmento
et al 1982, Wortis and Svrakic 1982, Lipowsky 1982, Lam and Zhang 1983 Ka
neyoshi et al 1983, Tamura et al 1983, Selzer and Majlis 1983, Aguilera-
Granja et al 1983, Sarmento et al 1984) and experimental (Pierce andMeier
1976, Alvarado et al 1982) attention (see Binder 1983 for a review) .
One of the simplest three-dimensional models that can be assumed is the
spin 1/2 Ising one in semi-infinite simple cubic lattice (seeFig.
1), the coupling constant JS(Jsgzo) on the free surface being not necessa-
rily ecual to the bulk one JB:>O (it is convenient to introduce the adi-
mensional parameter A = J./J, -1).

It s intuitive that for 0x Jg < JBthe free surface ac-
quires, for temperatures low enough, spontaneous magnetisation

-if and only if the bulk itself acquires such long range or-
der; therefore only two phases are expected, namely the (bulk)
ferromagnetic (BF) and the paramagnetic (P) ones. But for A
high enough a third phase, namely the surface ferromagnetic
(SF) one, becomes possible. In this phase, the free surface
maintains a f4inite magnetisation which monotonously, goes to
zero when one penetrates in the bulk. This phase is expected
to occur at an intermediate range of temperatures, se
parating the 1low temperature regime (where the BF
phase exists) from the high temperature regime (where the P

phase is restaured). The SF phase is expected to be possible
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for A:>AC, where A, is a still unknown finite value. A Mean

Field Approximation (MFA) argument for the simple cubic lattice
(60, = 4J¢ + Jp)
cated theories have provided more re1iab1e values, namely

yields A_ = 1/4 (Mills 1973). More sophisti-

0.307 and 0.357 (cumulant and cluster renormalisation groups;
Burkhardt and Eisenriegler 1977), 0.3068 and 0.3297 (effec-
“tive field theories; Sarmento et al 1982, Kaneyoshi et al 1983,
Tamura et al 1983), 0.4232 (improved effective field theory;
Sarmento et al 1984), 0.816 (Bethe approximation; Aguilera-Granja
et al 1983). These values are to be compared with the series
one 0.6+ 0.1 (Binder and Hohenberg 1974).

The central purpose of the present paper is to extend this
type of calculation (phase diagram in the A-T space) to the
g-state Potts ferromagnet, which recovers that of Ising for
q = 2 (and which, for g ~ 1, is isomorphic to random bond per
colation; Kasteleyn and Fortuin 1969). In particular Ac(q)
is calculated for arbitrary values of g, and Ac(2)is compared
to the above mentioned values. To perform the present study
we use a hierarchical-Tattice-1ike real-~space renormalisation
group (RG) (see, for instance, Tsallis and Levy 1981 and references
therein), This type of approach has proved its efficiency in
a great variety of situations, commonly found in literature.
Nevertheless, to the best of our knowledge this is the first
time that this technique is applied to discuss surface mag-
netism for the d = 3 Potts model for arbitrary values of q.

In Section Il we introduce the model and the formalism;in

Section III we present the results; we finally conclude in Sec

tion IV,
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II‘MODEL AND FORMALISM
Let us consider the following Potts Hamiltonian:

M- DI . (o, =1,2...,9,Y4) (1)
<t ]> | J

where <i,j> run over all pairs of first-neighbouring sites of

> 0)

a semi-infinite simple cubic lattice; Jij equals Js (Js
if both sites belong to the free surface, and equals JB(JB>O)
otherwise. We introduce the following convenient variables
(thermal transmissivity; Tsallis and Levy 1981 and references

therein):

-I . e‘qJB/kBT

e [0,1] (2)
1+ (q-1)e"978/ k6T

e [0,1] (3)
1+ (q-1)e " 9Jg/ksT

where T is the temperature and kB the Boltzmann constant. From

Egqs. (2) and (3) we obtain

J ﬂn]+(?;1 s
ASg =15 ————— -1 (4)
B £n1+§q_]2t
1-t

To discuss the phase diagram corresponding to the present
system we shall construct an appropriate RG. The cells we use
are Mygdal-Kadanoff like, and are indicated in Fig. 2; the cor
responding Tinear expansion factor b equals 3. These cells ge

nerate, through the standard procedure (illustrated in Fig. 3



CBPF-NF-025/84

for cells which are simp1er), two different diamond-Tike hi-
erarchical Tattices. The transformation indicated in Fig., 2(a)
approaches, through the standard bond-moving procedure, the
bulk of our system., The transformation‘indicated in Fig. 2(b)
js of the same type: the larger cell is assumed to Tlay on
the free surface of our system in such a way that 1/3 of its
"initial" 27 bonds are outside of the semi-infinite lattice,
and therefore 9 bonds are absent (i.e. their transmissivities
vanish).

The series and parallel composition laws of two arbitrary

transmissivities t, and t, are respectively given(Tsallis and Levy

1

1981) by
t, = t]t2 (series) (5)
and
1-t 1 -t 1-t
S 2 (parallel) (6)
1 +(q—1)tp T+ (g-1)t; 1 +(q-1)t2

Consequently the RG recursive relations associated with Figs.

2(a) and 2(b) are given by

(7)

and

s' = C |:1 +] (—qi:)s,JB[] + ](q—-:;t”]a (8)

] +(q_])[l:(;f;)s3}3[l+1€::;t3}3
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The flow, in the t-s space, determined by Eqgs. (7) and (8)

provides, for arvbitrary g, the desired phase diagram (in

particular Aci, the universality classes and the thermal and

crossover critical exponents,

ITI-RESULTS

The RG flux diagrams we obtain are, for all values of g,
as illustrated in Fig. 4 for g=2. The evolution with q s
indicated in Fig. 5 (in the t -s space) and in Fig. 6 (1in the
A-T space). A diagram such as that of Fig. 4 is rich in in-
formation:

i) the three trivial (stable) fixed points at the corners
of the unitary square characterize the possible phases,
namely the BF phase [(t,s) =(1,1)], the SF phase [(t,s)=
(0,1)] and the P phase |[(t,s) = (0,0,)];

ii) the two bulk semi-stable fixed points, namely B1[jt,s)=
(tB,sB)] and Bz[lj,s) = (tg,1)] are two equivalent mathe
matical representations for the d =3 phase transition;

iii) the single surface semi-stable fixed point, namely
S[Kt,s) =(O,ss)] corresponds to the d =2 phase transition;

iv) the surface-bulk unstable fixedpoint SB Bt,s)=(tB,sSBﬂ
presents a multicritical nature, constituting a univer-
sality class by itself;

v) the critical line t =ty (excepting, as said before, for
the SB point) belongs to the d = 3 universality class;

vi) the critical Tine joining the SB point and the S point
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belongs to the d=2 universality class,

From the quantitative point of view, our main result, name
Ty Ac(q)(value of A above which the SF phase becomes possi-
ble) is obtained by using Eq. (4) (with s =s., and t = t@,and
is indicated in Fig. 7.

A11 the considerations made in this Section strictly ap-
ply only for standard second order phase transitions, i.e., for
q<4 for d=2(Baxter 1973, Straley and Fisher 1973), and q <
q. (with q_ ~ 3; Jensen and Mouritsen 1979, Pytte 1980).for d=3. However
the d =3 phase transition being only slightly first order for

q. < 9 < 4, the overall picture can be retained for0O<qg<4.

IV-CONCLUSION

We have studied some surface effects in a semi-infinite
cubic-Tattice g-state Potts ferromagnet, in which the sur-
face coupling constant JS = (1+A)JB might be different from

that (J in the bulk. The phase diagram (in the A-T space,

8)
for instance; see Fig. 6 ) presents three phases, namely the
bulk ferromagnetic (BF), the surface ferromagnetic (SF) and
the paramagnetic (P) ones. The BF-P, BF-SF and P-SF critical
Tines join in a multicritical point which presents its own
set of critical exponents (with a typical crossover to éither
d=2 or d=3 universality classes). The BF-P and BF-SF crit-
ical lines have the d=3 set of critical exponents, and the

P-SF critical line has the d=2 one. From the quantitative

standpoint we have calculated the g-evolution of Ac(value of



CBPF-NF-025/84

A ‘above which the SF phase becomes possible), The result A_ =
0.7360 we obtain for the Ising model (g =2) is quite satisfac
tory: it approaches the series result 0.6 0,1 more than
any other theory we are aware of. Consequently the results
we obtain for other values of q (see Fig. 7) become satisfac
torily reliable; in particular, in the q-»0 limit, Acdhmrges
as 1//q. We are presently trying, by using better renormalisa-
tion group cells, to numerically improve Ac(q) with consistent
improvements in the d=2 and d =3 results, in order to a-
chieve numerical reliability for the critical exponents as-
sociated with the above mentioned multicritical point.

A11 the results we are discussing strictly hold for stan
dard second order phase transitions, i.e. for 0<q<4 ford=
2, and 0<q <qc(w1th 9, X 3) for d =3, However, the transi-
tions being only slightly first order (small Tatent heat) in
the range . <q<4, we can retain, as a resonable approxima-
tion, the phase diagrams (Figs. 6 and 7) for the entire range
0 <qx 4.

An alternative point of view is to consider the hierarchi
cal lattice generated (through the standard procedure illus-
trated in Fig. 3) by the transformation of Fig. 2(b) (where
the transformation of Fig. 2(a) has tobeused also). In this
case all our results are exact and hold for q >0, In the g~ @
limit, A. vanishes as 1/4nq.

We acknowledge very valuable conversations with E.M.F, Cu
rado, J.S. Helman, L.R. da Silva and A.0. Caride. This work

has received partial support by CNPg: and FINEP (Brazil).
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CAPTION FOR FIGURES
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Cell of a semi-infinite simple cubic Tattice. The full
(dashed) bonds represent the bulk (free surface) cou-
plings JB(JS). On each site a q-state Potts random va-
riable is Tgcalized.

Renormalisation group cell transformation: (a) for the
bulk (transmissivity t); (b) for the free surface(traQ§
missivity s). o represent the termina]s, and @ represent
the internal nodes (which are being decimated).
ITlustration of the procedure for generatinghierarchical
lattices: (a) for the "bulk" medium; (b) for the "semi-
infinite" medium. o (@) represents the terminal (inter
nal) nodes.

q =2 renormalisation group flux diagram in the t (bulk
transmissivity)-s(free surface transmissivity) space.
B denotes trivial (stable) fixed points; @ denotes
critical (semi-stable) fixed points; o denotes the mul
ticritical (unstable) fixed point. The dashed lines are
indicative, Three phases are possible: bulk ferromag-
netic (BF), surface ferromagnetic (SF), and paramagnet
ic (P).

g-evolution of the t-s phase diagram indicated inh Fig. 4
Same g-evolution appearing in Fig..5, but in the A-T space.
g-evolution of A, as obtained in the present renormali
sation group theory. The available q=2 (Ising model)
results are indicated as well: MFA (mean field approxi

mation, Mills 1973), RG, and RG2 (renormalisationgroups
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Burkhardt and Eisenriegler 1977), EFA (effective field
approximations; EFA,: Sarmento et al 1982 and Kaneyoshi
et al 1983; EFA,: Tamura et al 1983 EFA3: Sarmento et
al 1984), series (Binder and Hohenberg 1974), BA (Bethe

approximation, Aguilera-Granja et al 1983).
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