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ABSTRACT

Within a real space renormalization group framework,
we discuss the square-lattice spin - %% Heisenberg ferromag-
net in the presence of an Ising-like anisotropy. The controver
sial point on how T. vanishes in the isotropic Heisenberg 1lim-
1t 1s analyzed: quite strong evidence is presented favoring a

continuous function of anisotropy. The crossover from the iso-

tropic Heisenberg model to the pure Ising one is exhibited.



INTRODUCTION

Continuous symmetries cannot be spontaneously broken
in short-range-interaction two-dimensional systems[1]. Conse-
quently the order parameter associated with the Heisenberg
S0(3) ) and XY (S0(2) ) models vanishes for all finite tem-
[2]

peratures. Nevertheless such models are not prevented from
having a phase transition at a finite temperature T, where quan
tities like the susceptibility diverge (essentially associated
with the fact that the two-body correlation function presents,
for a finite interval of temperatures below T., a power-law be
havior). In the case of the XY model in the presence of

an Ising-like anisotropy, it is now well established[s] that,

in the limit of the isotropic XY model, T_. remains finite; fur

c
thermore T. most likely continuously varies as a function of
the anisotropy. In the case of the Heisenberg model in the pres

ence of the same type of anisotropy, the situation is 1less
clear. Although it is a common belief that T. =0 for the <Zso-

(4]

tropic Helsenberg model, controversy exists concerning the
continuous or discontinuous behavior of T. as a function of the
anisotropy. The calculation of this function is the main scope
of the present paper. This is done within a real space renorma
lization group (RG) framework. The RG procedures have been ap-
plied with success for the isotropic Heisenberg model[s] as
well for discrete group of symmetries (e.g. the g-state Potts
model[é] of which the Ising model is the q =2 particular case).
The spin - %} anisotropic Heisenberg model has beentneatai[7]

within a Migdal-Kadanoff framework. We present herein a simple

single-shot treatment of this ferromagnet, whose dimensionless
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Hamiltonian is given by

&'_Pz-ﬂ 1 Q- (S’i‘s’JHs{SJY) +s§s§] (K>0; 0<A<1) (1)
<1,j>

where KEEJ/kBT (J being the exchange integral) and where <i,j>

run over first-neighboring sites of a square lattice.

We shall exhibit that this Hamiltonian can be renor-
malized into itself (no proliferation of coupling constants) if
convenient two-terminal graphs are used (see Fig.1; notice that
both graphs share topological self-duality with the square lat-
tice). We impose that the cluster partition function is pre-

served through renormalization, i.e.

J'.Q t
e 12 =Tr ew 1234 (2)

3,4
where
J«Q’u = K+ 4K'[(1-41) (5755+8Y87) +8757] (3)
and
e 4Kizj[(1—A) (5757 +578¥) + s1s]] (4)

where the sum runs over the 5 bonds of the graph of Fig. 1b.
The non-commutative aspects of the present quantum prob
lem makes Eq.(2) an operationally complex one to handle, in
spite of its apparent simplicity. A similar problem has been
solved[8] for the isotropic case (A=0). In th? present case we

have proceeded as follows. First we expand e * and obtain
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K.

e =a'+b' (878 sYsY)+c s?sZ (5)
12 172
where a', b' and ¢' are functions of K', K' and A' that we
12 12 o é\Q
have determined. Similarly we expand e~ '2%%  and obtain
e“'elz“= I by EH S+s>’s>’) +c,. S%s?
i<j J i 7173
YgY
+ l(SS +SS)Sk£
XX oYa¥yreXgX | oYgY
+ elj (SiSj + SiSj) (Sksﬂ + Sksf_)]
ZoZoloZ
+ f 81828384 (6)
where a, bij’ Cij’ dij’ eij and f are functions of K and A and

(k,2) #(i,j). The use of Eqs. (2), (5) and (6) implies a' =4a,
b' = 4b and ¢' = 4c , and therefore only the calculation of
12 12 12 12

a, b1 and <, is needed. To perform this calculationit isuse-
2

ful to notice that S”:= z S commutes with Jﬂz , and con-
1234

sequently the 16x 16 matrlces associated with @Q and

A*Q 1234
1234 .

e can be presented in two 1x1(M=%2), two 4x4M==%1)

and one 6 x 6 (M=0) blocks where M is the quantum number corre-
sponding to S%. We finally obtain

M _wu2 4G (7

SHKIAT H/4F 2 (8)
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FzABes(8-TK o5 X 1A cosh AK + & sinh AK]

+Ae'KEBcoshBK-rAsinhBK} (9)
G = 2B 2K (X | X cosh 2k (1-8) 1 (10)
EzaBel!*8)K 208K o-4K(q | 220Ky,

+ 28 eX[A cosh AK - A sinh AK]

+ Ae~%[B cosh BK - (2-A) sinh BK] (1)

v 1/2
Az [A% +16(1-A)2] ' (12)
1 |

Bz [(2-0)% 4320180217 (13)

—

Thz 4= 1 particular case recovers the g=b =2 one of Ref.[6].
The fiow diagram in the (1/K,A) space is presented in Fig. 2.
The A =0 axis (isotropic Heisenberg model) renormalizes into
itself and contains a fiked‘point at 1/K =0 which reproduces
the exaet answer. The A =1 3xisv(I§ing model) renormalizes in
0 itsélf as well, and contains é fixed point at 1/K=1/K*z 2/2n(/Z+1)
which reproduces the exact answer. Purthermore the ferro-paré-
magnetic critical line presents the expected Ising critical-

ity. At the Ising fixed point we obtain v=~2n2 /zn(axyax)’A
iK

1
K*

n
wou

1.149 (the results corresponding to b=3,4 and 5 are 1.109, 1.095
and 1.088 respectively, to be compared with the cxact result v=1). At
the isotropic Heisemberg fixed point we obtain v=« which 1is
the exact answer{g]. Finally Eqs. (7-13) provide the following

asymptotic behaviors:



TC(A)/TC(UM—_?S_ (1-A)2 (A1 1imit) (14)

e~ HI/kgT (A p (A+0 limit) (15)

Let us conclude by a synthesis. The present real-
space renormalization-group approach of the square-lattice spin-
—%_ anisotropic Heisenberg ferromagnet reproduces:

(1) the exact[g] T.=0 and v =« for the isotropic Heisenberg mod
el (A=0); (ii) the exact TC and a satisfactory v forthe Ising
model (A=1); (iii) the correct Ising criticality for O0<A<T1.
Consequently we are tempted to consider the critical line of

Fig. 2 as a very good approximation, and the asymptotic behav-

iors indicated in Eqs. (14) and (15) as exact or almost exact.

One of us (C.T.) is indebted to M.E. Fisher and R.B.
Stinchcombe for enlightening discussions, as well as to S.R.A.
Salinas, J.F. Perez, A. Coniglio and D.P. Landau for inter-

esting remarks; he also acknowledges a Guggenheim Fellowship.
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CAPTIONS FOR FIGURES

Fig. 1 - The self-dual two-terminal graphs on which the present
RG is constructed. o(e) are terminal (internal) nodes
on which the spins are located. b and b' are the dis-

tances between terminals (b/b' =2 1is the linear scaling

factor).

Fig. 2 - RG flow diagram. The solid line is the ferro (F)-para
(P) -magnetic critical frontier; the dashed lines are
indicative. B (e) denotes the Ising (isotropic

Heisenberg) fixed points.
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