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ABSTRACT

A real space renorma]ization group approach with two-
terminal clusters is proposed for the calculation of the spe-
cific heat and spontaneous magnetization (for all temperatures)
of the nearest-neighbour spin-% Ising ferromagnet in simple
cubic and hypercubic Tattices. For arbitrary temperatures only
small culsters (renormalization expansion factor b=2,3 for d=3
and b=2 for d=4) are considered: they lead to reasonable values
for the critical points, exponents and amplitudes and to a ther-
mal behaviour of the specific heat (spontaneous magnetization)
which is not yet (which is already quite)very close to what is ex-
pected (from series reﬁu]ts for exahp]e). The global results
improve when b increases from 2 to 3. The drastic effect (on
the specific heat) of an apparently innocuous approximation is
exhibited, The discussion of the T+0 and T>w Timits is per-
formed and the exact behaviours of the free and internal ener-
gies and the specific heat are obtained for sufficiently large

values of b and aZZ dimensionalities.



I - INTRODUCTION

During recent years much effort has been dedicated to
real space renormalization group (RG) approachestl_zo} for Ising
ferromagnets. More specifically in what concerns the thermal
behaviour of the specific heat and the spontaneous magnetiza-
tion[1’2’7’16’18] that effort has focalized almost exclusively
planar lattices (and has obtained a certain success). The pur-
pose of the present paper is to use the same type of RG for
three- and four-dimensional lattices, namely the simple cubic

and hypercubic ones.

IT - CALCULATION METHOD

ITI.1 - General remarks

Let us briefly state the main relations we shall need
(see Ref.[18] for further details). The d- dimensional first-
neighbour ferromagnetic Ising dimensionless hamiltonian we are

concerned with is given by

Mis)y =k 7 s.s.+HT s, (S, =% 1) (1)
O 1 ] i 1 1
<i,j>

If we renormalize the Tattice (through a Tinear expansion factor

b) we obtain, besides the usual additive term (noted G(K,H)) ,

the following renormalized hamiltonian

Si' (S.,= 1) (2)

¥M'(s') = K'(K,H) T s..S., + H'(K,H) ]
;

where only K and H have been retained to construct the para-

meter-space; K'(K,H) and H'(K,H) are respectively even and odd



functions of H. The invariance of the partition function is ex-

pressed by
L exp [6+4f'(s")] = ] exp [Hf(S)] (3)
{s'} {S}

where the sums run over all spin configurations. This relation

immediately leads to

-d

g(K,H) + b = f(K',H") = f(K,H) (4)

where g = G/N is an even function of H (N is the number of sites
of the original lattice) and f is the dimensionless free ener-
gy per site. Relation (4) refers to the renormalization of the
lattice as a whole. Let us now work at the level of the (two-
terminal) clusters (1like those appearing in Fig.l) renormalized
into a single bond (whose terminal spins we note Hp and Mg 3

HpsMg = % 1). The analogous of relation (3) is given by

exp[K(‘) + K'uApB + H'(pA+uB):l

{zi}exp {K H”A”B+ H[pA(uA+uB) + % pioi}}, (5)
where i runs over all internal sites of the cluster (4 in Fig.
1.a), {Gi} refers to all internal spins configurations (Oi=i 1),
Ké(K,H) is an even function of H, the topological weights P
and {pi} (determined further on) take into account the fact that
the topological neighbourhood of the cluster sites is different
~from that of the original lattice sites (see Ref.[18] for further
details) and IHJA“A is associated to all possible two- spins interactions
in the cluster. Let us illustrate the last point on an example:
for the cluster of Fig.l.a it is

Mgy ~ (Fa+Hg) (oy+0gtaghoy) + 010y +op03+0504490)



For the same example relation (5) leads to

1 1
Ké =7 1n(w]w2) t In Wa R
' ] ]
K' =7 In(wywy) = 5 1n wy , (6)
v ] "1
H =g In L ,

;e 4K [2 v 4 e72PH e'4pH]} ,
-2p,H ) .

W, = e A {e12K-4pH . 4[e4|< 2pH ]}
s e 8K [2 + 4 g2PH e4pH}}

and

Wy =2 e*K ¢h 4pH + 4(2 ch 2pH +1) + 2 e 4K

For vanishing magnetic field (H=0) the function K'(K,0) admits
three fixed points, namely K=0, K=« (stable fixed points) and

K= KC (unstable fixed point); the latter depends on d and b,

Let us now relate Ké(K,H) to g(K,H) by introducing a
new function DO(K,H) (which has to be found) through the follow-

ing equation

g(K,H) = DO(KsH) Ké(K’H) (7)
Now if we perform in hamiltonian (1) of a d- dimensional hyper-
cubic Tattice the transformation

sisj > 515j + A (8)

where A is an arbitrary constant, the free energy will transform

as



£K,H) » £(K,H) + daK

therefore g must transform as
-d,,
MK&)»gWJﬂ+dxh-b K(KHJ (9)

in order to preserve the invariance of equation (4). For com-

pletely similar reasons Ké must transform as

Ké(K,H)-*Ké(K,H)+-A[an- K'(K,H)] (10)

in order to preserve the invariance of equation (5); nbdemnes
the total number of bonds of the cluster and, for the present
family of clusters (see Fig.1), is given by

4, (b-1)% (d-1)p9-2 (11)

~d b% in the Timit b (111)

Ny = b

Under transformations (9) and (10) relation (7) becomes
g(K,H)i—dA[K- b-dK'(K,H)] = DO(K,H)*{Ké(K,H)i-A [an- K'(K,H)] }

which, together with relation (7) and the fact that X is an
arbitrary constant, leads to

K - b™9K' (K, H) (12)

_]l
K= np 'K (K,H)

d
D_(K,H) = —
0 nb

We shall exhibit further on that, for finite values of b, slight
violations of this relation induce surprisingly strong deteri-
orations of the thermal behaviour of the specific heat. In the

Timit K+ 0 we have that K'<er,therefore

d
- w _ <
D_(0,H) = D" = e (13)
In the 1imit K+» we have tha’c[lg’zlzl K'fbbd-]K, therefore
¢ 1-b7" d
D (0,H) 2D = o ————= < — (14)
0 b pd-1 ny

Ty



Furthermore it can be shown that Dy(K,H) monotonically decreases
from Dy (0,H) to Do(x,H) for K increasing from zero to infinity.

In the Timit b>=, Dy becomes, for alZl values of K and H, a pure
topological factor namely

D~ p7d (15)
The notations D' and D have been introduced to stress that ex-
pressions (13) and (14) respectively recover, for d =2, equations

(10) and (8) of Ref.[18]. The implications of these facts will

be discussed in the next subsection.

II.2 - Specific heat

We are interested here in the case H=0. If we replace Eq.(7)
into Eq.(4) we obtain the following vrecursion relation

d

DO(K,O)Ké(K,O)i-b- f(K',0) = f(K,0) (16)
hence
dK{ dD, '
-d df dK df
Do 57— + K{ + b7 = — =
° 4K 0 dK dK' dK dK (17)
hence
dZK! dD  dK! d?D
Do Oy 22 _2° . Ke °
dk? dK dK dk?
- 2 1 2 2 2
+ b di d°f (dK' + df d°K' | _ d°f (18)
dK'? {dK dK' dK? dkK?

Through recursion these expressions provide the thermal be-

haviours of the free energy, the internal energy (« df/dK) and

the specific heat C = kg K2(d2f/dK?). If we consider a constant
Dy> the above three relations respectively become relations

(5), (6) and (7) of Ref. [18].



Let us first present a few general results:

straightforward to obtain, in the Timit K-,

d-1

K~ (ny - b9k
and

K* b9 T (used to obtain Eq.(14))
and, for K=0 ,

k! =b9T(b-1) 2,

deé/dK2 =Ny

K' =dK'/dK = dK(')/dK =0
d

dZKl 2 if b=2
2 =
dk 0 if b33
and
293(d-1) if b=2
PTOR EX- if b=3
0 if b4

it s

(19)

(20)

(21)
(22)

(23)

(24)

(25)

These results lead (by using Eq.(12)), in the limit K+», to

a0 d2%D
o _ O=0
dK  dK?
and, for K=0 , to
(d(d-1)
i 24T 443)2
90 _ 4
TP
and
[ d(d=1)(d?+2d-1)
24-2(443)3
32
'd'Do=# o 8d(d=1)
2
dk 39-1(4445)2
0

if b=2

if b3
if b=2
if b=3

if b4

(26)

(27)

(28)



Equations (13,14,19-28) lead (through use of Egs.(16-18)), in

the limit K>, to
f(K,0)nd K (exact) (29)

and, for K=0, to

d -1
£(0,0) =40 (1=D ) yp 2 222, 952 (exact),  (30)
-d
nb(1- b ™)
d(d-1l n 2 if b =2
(d+3)
df(K,0) - < (31)
dK
K=0
0 (exact) if bz3
and
' 2
g.dd-1)(2d"+5d+1) 1, ey
(d+3)3
d2f (K,0) . < g lsdds) g, iF b s
dK2 (4d + 5)2
K=20 (32)
L d (exact) if b4

We see therefore that, for large enough values of b and all
dimensionalities, the present procedure leads, in an unbiased
manner, to the exact behaviour of the free energy, internal

energy and specific heat for K=0 and K+,

The complete thermal dependence of the specific
heat obtained for small values of b (b=2,3 for d=3 and b =2

for d=4) is discussed in Section III,



IT.3 - Spontaneous magnetization

We are interested here in the limit H-0. Eq.(16)
is extended into

d

Do (KyH) K§(K,H) + b7 F(K',H') = f(K,H) (33)

therefore the spontaneous magnetization m(K) =(df/dH)H - 0

satisfies the following recursive relation

b-d

m(K') (?1-} = m(K) | (34)
oH H=0

where the parity (with respect to H) of D, and K) has been
used. If we consider the configuration Wy = Hp =1 in Eq.(5)

and differentiate with respect to H, we obtain

( )

(b-1ypd-] L oy exp(Kmy;)
1 B P {0}
{éﬂ_} S ST R P i . (35)
oH 521 2 ) exp (KHll)
H=0 {oj} J

To close the procedure let us establish the rules which pro-
vide the topological weights Pa and {pi}° In each one of the

terminal sites (A and B), pd-1

different original sites have
been collapsed into one therefore

d-1
Pp = b (36)

Furthermore if we consider the whole cluster, the original
lattice renormalization proportion (for the sites) bd into 1

must be preserved, and if we we take into account that the

renorma]ized cluster has only 2 sites, it must be

)
I b+ 2p, = 2b° (37)



Topologically equivalent sites clearly have the same weight P
(for example sites 1,2,3 and 4 in Fig. l.a). Once a particular
choice has been established for the weights {pi}, Eq.(35) into
Eq.(34) leads to the recursive relation which provides the com
plete thermal dependence of the spontaneous magnetization. In

particular in the 1imit K-+« Eq.(35) becomes

(b-1)p9-!

oH" 1 _.d
) ot
H H:O 1=]

where the sum rule (37) has been used. Eq.(38) transforms Eq.
(34) into an identity, as it should be in order to allow a non
vanishing spontaneous magnetization for vanishing temperature.

On the other hand, in the 1imit K-+0, we have

e ] -
)(31" } = p, = b7 (39)
oH H=0

therefore Eq.(34) becomes m(O)b-] =m(0) hence m(0) =0 as ex-

pected.

In what concerns the choices for the weights, the
simplest one (referred to as the equal weight choice) corre-

sponds to
p; T p =2 Vv i (40)
The next simplest choice (referred to as the different weight

one) partially takes into account the topological differences

between the cluster sites. Let us first introduce the notation

P; Eq(o) if the coordination number of the i-th site
equals 2d;

b. :q(l) if the coordination number of the i-th site

. equals 2d-1;

p Eq(d-l) if the coordination number of the i-th site

equals d+1,
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- d-2
d-1 )

There are (b-1)(b-2) sites of the first type, 2(d-1)(b-1)(b-2
d-1

sites of the second one, and 2 (b-1) of the last one; in gen-

(3)

d-1-J Sites whose weight is q'v/,

eral there are [d-])zj(b-l)(b-Z)
J
We now assume that, for b 3,

(d-1)

q(® /24 = ¢V y2d-1 = ... = ¢ Jd+] (41)

therefore, through use of the sum rule (37),

; - 4-1
db
hence
gld) _2d=5 2 (5=1,2,...,d-1) (43)
2d 1- d-1
db

It is interesting to remark that, in the 1imit b, the number
of sites associated to q(o) grow as bd therefore that weight
becomes the most relevant one and, as q(o)e-z, Eqs. (40) and (42)
become equivalent therefore the equal- and different-weight
choices become indistinguishable for all values of K. However
for small values of b the second choice is expected tobe better

than the first one. The results are presented in Section III.

Let us finally remark that the result q(°)= 2 for d=1 is exact and well
known.

ITI - 'RESULTS
The results obtained for the specific heat C are

presented in Table 1 and Figs.(2-4). One of the most striking
facts is that, contrarily to what happens[lsj for d=2, C pre
sents no maximum at K= Kc: although C « |T-Tcl'ais satisfied,
the left and right amplitudes have different signs. The maxi-
mum (or the highest maximum whenever there are more than one)

occur at K==KM > Kco This unphysical "structure" has already
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been observed in similar treatments[16] and is expected to dis-
appear for sufficiently high values of b; in any case we remark
in Table 1 that, for d ='3, Kc/KM and Cc/CM present the good
tendency towards unity when b varies from 2 to 3 (CCEC(KC) and
CMEC(KM))° We remark also in Table 1 that Kc,v,a,B,Cc,KM,CM

(but not Yu and perhaps the spontaneous magnetization amplitude

A) present the correct tendency towards the exact or series re

sults when b varies from 2 to 3.

In order to exhibit the importance of not violating
Eq.(12) we have presented in Figs.(2-4) the thermal dependences
of the specific heat obtained through two different procedures:
in the first of them (full line of those Figs.) we use, into
Eqs. (16-18), D,(K,0) given by Eq.(12), while in the second
one (dashed line of those Figs.) we approach (like in Ref.[18])
Do(K,0) by a constant D given by Eq.(14). Although D,(K,0) does
not vary very much when K increases from zero to infinity (D,
varies in the intervals [1/4; 3/16], [1/1751/21 ] and [1/7
1/10] for (d=3; b=2), (d=3; b=3) and (d=4; b=2) respectively ),
its variation is essential to avoid large unphysical negative

va]ues[18] for the specific heat.

In what concerns the spontaneous magnetization the
main results are presented in Table 1 and Fig. 5, and they are
quite satisfactory on the whole. The topological weights that
have been used for b=2 are (see Eqs.(36) and (37)) Pa =2p1 =4
(i=1,2,3,4) and Pa =4pi =8 (i=1,2,...,8) for d=3 and d=4 re-
spectively. For the case (d=3; b=3) two different choices have
been used, namely the equal-weight (pA/9=pi/2=1 (i=1,2,...,18 )
full line in Fig.5) and the different-weight (p,=9,p=q° =18/7

(1=1,2), py=q'")=15/7 (1=3,4,...,10) and p,=q(?)=12/7 (111,12,
«2+» 18); dashed line in Fig. 5) ones, the latter is slightly better,



IV - CONCLUSION

The critical points and (thermal and magnetic) ex-
ponents as well as the thermal behaviours (for all tempera-
tures) of the specific heat and spontaneous magnetization of
the Ising ferromagnet in simple cubic (d=3) and hypercubic
(d=4) lattices have been approximatively calculated within a
real space renormalization group framework. For renormaliza-
tion expansion factors b sufficiently large, the exaet behav-
jours, in both low and high temperature limits, of the free
energy, the internal energy and the specific heat are recov-

ered for g1l dimensionalities.

In what concerns the small values of b (b=2,3
for d=3 and b=2 for d=4) most of the results are satisfactory:
for example d=b=3 Teads to KC:OOZO (from series Kcz0.22),
v=0.,82 (from series v=0.63) and B=0.35 (from series =~0.33)
and d=2b=4 leads to KC=0.09 (from series Kcz0.15),v=0.84 (the
exact value is 1/2) and B=0.57 (the exact value is 1/2). The
thermal dependence of the spontaneous magnetization (calcu-
lated within two different choices, namely the equal- and
different-weight ones, for the topological factors which appear
in the present two-terminal cluster approach) is satisfactory
as well: for example we obtain for the d=3 critical amplitude
A=1.30 (from series A=1.57). Comparison of the two choices
slightly favours the different-weight one for small values of
b, although they become equivalent in the limit b-+o. On the
other hand the thermal dependence of the specific heat (cal-
culated within two different vérsions in what concerns the
function Do) is rather unsatisfactory for smail values of b

as the maximum (eventually more than one exists) of the curve
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does not occur at KC; fortunately this unphysical result tends
to disappear when b grows from 2 to 3. Comparison of the two
versions illustrates the fact that small departures from the

correct functional form of D, induce large errorsin the spe-

cific heat (unphysical negative values; see also Refs. [16]
and [18]).

As a final comment let us say that the results

presented herein as well as others[17’18’ZO] s

eem to glob
ally support the belief that the present real space renorma-
lization group approach (with two-terminal clusters) provides,
'for increasing b and for all temperatures, convergence to-
wards the exact thermal dependences of the free energy, in-
ternal energy, specific heat, spontaneous magnetization and
surface tension of d- dimensional Ising ferromagnets. The use

of the full K- dependence of DO and. the different-weight

choice seem to accelerate this convergence.
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H.Vucetich, A.C.N.Magalhies and E.M.F.Curado, One of us (H.0.M.)
would also like to thank the Theoretical Physics Group of the Centro
Brasileiro de Pesquisas Fisicas/CNPq for financial : support

and hospitality during the visit when this work was done,
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CAPTION
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FOR FIGURES AND TABLE

Fig.

Fig.

Fig.

Fig.

Fig.

Table 1

1

Two-terminal clusters associated to: (a) d=3 and b=2;
(b) d=3 and b=3; (c) d=4 and b=2,

Thermal dependence of the specific heat associated to
d=3 and b=2 obtained through wuse of the function D
(full 1ine) or the constant D (dashed line),

Thermal dependence of the specific heat associated to
d=3 and b=3 obtained through wuse of the function D
(full 1ine) or the constant D (dashed line).

Thermal dependence of the specific heat associated to
d=4 and b=2 obtained through use of the function D
(full Tine) or the constant D (dashed Tine).

Thermal dependence of the spontaneous magnetization
associated to (d=3,4; b=2) and to d=b=3 through use
of the equal-weight choice (full T1ine) or the different-
-weight one (dashed line).

Relevant critical quantities: KC and KM are respective-
ly associated to the <critical point and the Tocation
of the highest maximum of the specific heat C;

CC EC(KC) and CME (KM); v =1nb/1n(8K'/aK)K=KC; H=0 and
y;]= 1nb/1n(8H'/3H)K=K . H=0 within the RG framework;
the RG values quoted f6r o and B have been calculated
through the indicated scaling laws; A is defined through
m~ A(b) [T -Kc(b)/K]B(b); the up (down) value appear-
ing in the rows KM’ Kc/KM’ kB/Cc’ kB/CM and Cc/CM has
been obtained through use of the function DO (the con-
stant D) given by Eq.(12) (Eq.(14)). (a) calculated
from data of Ref°[23]; (b) ca]uﬂated'uwoumwa=d-B/v H
(c) calculated through a=2-dv; (d) for d=4 a Tloga-

rithmic factor appears as well (see Ref°[26]).
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d=3 d=4
b=2? b=3 b=3 exact or b=2 exact or
equal weight| different weight| series series
K 0.18324 0.19808 0.19808 0.22167124| 0.00811 | 0.14966
+0.00004(2)
S A —
[22]
‘. 0.230 0.229 0.229 0.22167 0.256 0.14966
(0.226) (0.228) (0.228) (0.264) | +0,00004(3)
/K, 0.80 0.86 0.86 : 0.37 :
(0.81) (0.87) (0.87) (0.36)
./ 2.505 2,046 2,006 . 16.95
B c | (2.338) (1.643) (1.643) (14.07)
1.31 1.17 1.17 1.44
k/Cy 0 -
(1.26) (1.02) (1.02) (1.37)
/e, 0.52 0.57 0.57 : 0.09 1
(0.54) (0.62) (0.62) (0.10)
0.8705 0.8189 0.8189 0.630 0.8426
v 4] 1/2
+0,0015
2.5608 2.5714 2.5770 2.484 3.3182
y 3
H +0,004(P)
2 ~0.611 ~0.457 -0.457 0.110 o -1.37 0
+0,0045'¢
S |
B=(d-y,)v | 0.382 0.351 0.346 0.325 a) | 0-57 1/2
+0.0015
1.30 1.29 1.30 1.569 . 1.4 (d)
A [25]
+0,003 ,

TABLE 1




