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Abstract

Landau’s theory of Fermi liquids is applied to normal neutron matter .

The quasiparticle interaction function  f is calculated in the Hartree-

!
Fock approximation for the energy of the s‘;l:fem . Hereby the semi-realistic
hard-core potential of Gammel-Christian-Thaler is used . It is found that the
resulting Landau parameters fulfill the sufficient condition for the existence
of spin zero sound . The velocities of the spin waves are calculated from the

linearized Landau-Boltzmann equation, when no collisions between the quasi-

particles are present . In addition the spin diffusion coefficient is determined .



l. INTRODUCTION

We apply Landau’s theory 1-3) for normal Fermi liquids to neutron matter .
The notation of a quasiparticle was first used by Landau and later made precise in terms
of formal many-body perturbation theory in order to construct a theory of normal

Fermi liquids valid for long wavelength excitations .

The dynamics of the quasiparticles is described in terms of a Boltzmann type transport

equation .

The energy E of the system is a complicated functional E [ np ] of the quasiparticle
distribution function np . The change in the ground state energy caused by a small

number of elementary excitations is given by

JE = -fp_ epdnip) t+ %%, foor Snprdmepy MV
)

where  g%p) is the excitation energy of the system if only one quasiparticle is
present , and &n (p) represents the deviation of n (p) from the ground state

distribution n° (p) of the quasiparticles .

In the presence of other quasiparticles we have to take into account their interaction

energy fpp’ which can be equivalently redefined by

2
-FPP, = Cgc‘g————E———- . “l 2)
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Since the qpasiparticle interaction fpp’ is defined only in the region of the Fermi
surface and is assumed to be a smooth function of its arguments, we consider Fpp’
for momenta on the Fermi surface (i.e. [Pl = |P/| = kF ) .
Hence fpp’ only depends on both the angle between B and F/ and on the

spin quantum numbers of the quasiparticles .

can be decomposed into two

In the absence of an external magnetic field fp ,

independent components, corresponding to parallel and antiparallel spins . We write

these components in the following form
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where %H' and f;ﬁ" are the spin symmetric and spin antisymmetric parts of the

quasiparticle interaction .

We expand fsﬁé’?) in a series of Legendre ‘polynomincls, where ﬁ(o) are
constants depending on the Fermi momentum Pg - One usually defines dimensionless

parameters representing the strength of the interaction

s(a) ¥* S(a)
. m PE (1,4)
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Here m™ means the effective mass of the quasiparticles at the Fermi surface and
3
fm,*PF/'trz' ‘F\ is the density of states per unit volume at the Fermi surface .

The quantities F‘ are referred to as Landau parameters .
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for the Landau parameters is obtained from the exclusion principle condition that the
forward particle-particle scattering amplitude A (p,p’) for two like particles with

parallel spins tends to zero when PF—p’

We calculate the Landau parameters in a simple approximation by means of a microscopic

4)

theory outlined in a recent paper by Nitsch /. Based on his treatment we are able to
calculate transport coefficients, the velocity of spin waves, etc. in the same approxima-

tion .



In Section |l we derive the velocity of spin waves in neutron matter from a
Boltzmann equation , the sufficient condition for their existence being satisfied 3) .
In Section Il the spin diffusion coefficient D and a corresponding relaxation time ’C’D
of the quasiparticles are calculated . A summary and a brief discussion, in particular
dealing with the microscopic method of calculating the Landau parameters, are given

in Section IV .’



ll.  SPIN WAVES IN NEUTRON MATTER

At low temperature collisions between quasiparticles are so infrequent that the system
can no longer support low frequency distortion (e.g. first sound) . A higher frequency
collective mode (spin density fluctuations or zero sound) can exist, however . For this
collective mode the average field of the other particles is responsible for the restoring

force . The perturbation of the system is described by the Boltzmann equation

an _
St +{mnel =1 (1,1)
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| is the collision integral , € o (r;t) means the true energy of the quasiparticle

and the curly bracket is the Poisson-bracket .

Combining equations (11,1) to (11,3) and considering a periodic perturbation
= L(3F¥ -wt)
dnp(Ft) = SN, (F,w) e (1,4)

where hq‘« PF and R w «< /U'

-
we get an equivalent equation for cf'nP . noting that v? EP:.: \/P and
(] lord
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In equation (11,5) we have dropped | since we consider the collisionless regime ,
i.e., we assume the collision frequency Vv > w .

The Fermi surface is no longer isotropic ,

cf’npr-—fg—i;—?——- U (6, ‘f’) (11,6)
P



where WU, (6, ()0) is the normal distortion of the Fermi surface for the spin

orientation &~ , or more conveniently

u*(6,9) = w(6,9) = W(6,¢). ,7)
From equations (11,5) to (11,7) we obtain

(cos® MU. (6¢)+ cose S‘F—Scx. s,o.(el,?,)dﬂ::_o. (11,8)

Here © denotes the angle be?ween the vectors q and V the angle

between (8,¢%) and (6:50') , (,u/(C] ) and dS)..—'S('n.Gd,e c‘.‘f

For | Pl —> PE and |7’} —>Pr the interaction function FBI_D., is expanded in

terms of Legendre polynominals

=S F'LS""R(cose) , (1,9
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Equations (I1,8) , (II,9) and the addition rheorems for spherical harmonics yield
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Equation (11,10) has a nontrivial solution when

S5¢ _m | _ (1,12)
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with

o, = {l-m)! gP @) cos 6’ (Q)d"O" (11,13)
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Equation (11,10) represents a system of homogeneous equations for the quantities §L .
m

This system separates into independent subsystems correspondmg to different values of m,

But the modes of different | are not decoupled .

Spin waves correspond to the longitudinal (m =0) antisymmetric (F%) mode .

We obtain explicitly :
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This equation is a nonlinear egquation in A , the solution ,/\5 provides the velocity

of the spin waves V. = “s Ve

parameters F(;
(0 <

from unity, i.e. V, =

quasiparticles .

Numerical results for ?‘S and Ve

F|° < 0.6) .

. We have included only the first four Landau
These coefficients are all positive for the densities considered
We find real values for AS which do not differ remarkably
due to the "weak" exchange interaction between the

F '

are given in Table 1.



111 SPIN DIFFUSION COEFFICIENT

We consider a system of neutrons in which there exists a magnetization gradient without
an external field being present . This gradient is maintained by not specified sources

of "up" and "down" spins and gives a steady-state diffuse flow .

Investigating spin diffusion we have to take those terms at the left hand side of (I1,1)

which contain a magnetization gradient . We get (cf. Sykes and Brooker 6 )

_ o o€ o (I, 1)
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with n° meaning the equilibrium distribution function and €°  the equilibrium
energy of a quasiparticle . /U.'f‘ denotes the Fermi energy of the quasiparticles with

7)

spin 1 . Following Hone’’ we calculate the spin diffusion coefficient in a volume
with vanishing net magnetization . Thereby the calculation simplifies because of the
symmetries
Vpt ==Vpd ; Vit=-yny; SV dne
7t e ) 3% 3t
where n+ , ny  are the quasiparticle numbers per unit volume with spin up

and spin down, respectively .

The connection between V/.;.'P and Ym4 is given by

m* Xe
m X

=_Qfm,*k,: (1, 2)
% v .

'XF/ X represents the ratio of the spinsusceptibilities of the noninteracting and the

V/M* =2 Ve Vnt

)

interacting system (cf. Pfarr 8)) . Torrey9) has shown by a semiclassical argument

that the magnetization M satisfies the continuity equation
c—)

aatM =VDVI\—/)\ (111,3)

proved the validity of this relation for quantum fluids . In a series of
1) 12)

10)

and Hart

papers Leggett and Rice and Leggett showed that equation (111,3) is incorrect

o) . > . .
when ax. M is not parallel to M (in spin space) . Since we are interested in
!

O
-



the magnitude of the spin diffusion coefficient D rather than in the deviations of

the transport equation when N7 M is not parallel to M we may omit the corrections

given by Leggett 12) .

Taking into account the relation
M =/u"n, (’n’l\ - T'L‘L)

( /Ur.n_ magnetic moment of the neutron) we immediately get from (llI,3) a similar

relation for the quasiparticle density :

g{‘i —-\73)} =0 (111,4)

~?
where j{‘ = ——D V’I’M‘

(ni,s)
and D is the spin diffusion coefficient .

On the other hand

-
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Using (lI1,2), (1l1,5) and (111,6) we get for D (cf. ref. )

D= —(1+F )'cp vFLc(XD‘) (1,7)

where

T, 75 = Jﬁ ke v
D 8 KB D
means the relaxation time appropriate to our problem and
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The numerical values for DT, @'DT and Vp may be taken from Table 2 .

The numerical value of ¢ (/)\D) turns out to be about 0,8 for all densities .



IvV. SUMMARY AND DISCUSSION -

We have found that the spin density fluctuations propagate essentially at the velocity
of the quasiparticles . Because of the "weak" exchange interaction only a few of them

are included in the collective antisymmetric mode .

Furthermore we note the dependence of the spin diffusion coefficient on the nuclear
forces which cause a change of D in the considered region of density of two orders

of magnitude .

The interaction energy Fpp' of the quasiparticles was calculated by functional differen-
tiation of the Hartree-Fock energy of the system . The expansion coefficients of the

e et . s,Q
quasiparticle interaction F '

|
amplitudes Asl,o 3) (cf. eq. (1,5) ) . The Pauli principle provides us with a sum

3,13)

are connected with those of the forward scattering

rule for the expansion coefficients of the forward scattering amplitude
In our simple approximation for the quasiparticle-interaction the Pauli principle sum rule
is violated which might be due to the low order estimation for the energy . In order to
get more accurate results many-body ( n 2 3) contributions to the energy expectation
value have to be included . Moreover we expect that incorporation of a second-order
contribution of normal perturbation theory involving non-diagonal matrix elements

will improve our results . A more elaborate discussion related with the above problems

is provided in References 14 - 17 ) and in the literature cited there .
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Table 1

e Ve vex10”
x=7

tfm-] ] [cm/sec]
0.7 1.021 4.6
1.0 : 1.065 7.0
1.4 1.057 1.3
2.0 1.040 21.2
2.5 1.016 34.6

Table 2

. v Tl | (DT

[fm '] (107 %ec1 | [10%emZsec ']
0.7 5.65 0.09 0.92
1.0 7.98 0.13 3.29
1.4 1.18 2.02 121.73
1.5 0.56 5.12 378.44
1.6 0.41 8.16 738.05
2.0 2.69 R 473.23




Table captions :

Table 2 T8 is the temperature in units of 108 K.



