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1 Introduction

This talk is based on a series of papers, [1, 2, 3], devoted to the investigation of generalized
supersymmetries in connection with division algebras, as well as the application of these results
in the broad context of the M-theory. In the last work [3], in particular, the notion of hermitian
and holomorphic division-algebra constrained generalized supersymmetries for complex and
quaternionic spinors was thoroughly investigated. It is not a mere mathematical curiosity
prompting us in the search of a classification scheme for this type of construction, but concrete
physical motivations based on M-theory and related topics. It was indeed proven in [2] that
the notion of holomorphic complex generalized supersymmetry is required in order to perform
the analytic continuation of the Minkowskian M-algebra to the Euclidean. Moreover, it is clear
that the present results can be applied to the classification of various classes of supersymmetric
dynamical systems presenting bosonic tensorial central charges (more on that later).

It is worth recalling that the problem of classifying supersymmetries has recently regained
interest and found a lot of attention in the literature. We can cite, e.g., a series of papers where
the notion of “spin algebra” has been introduced and investigated [4]. An even more updated
reference concerns the classification of the so-defined “polyvector super-Poincaré algebras” [5].

The reasons behind all this activity are clear. In the seventies the HLS scheme [6] was a
cornerstone providing the supersymmetric extension of the Coleman-Mandula no-go theorem.
However, in the nineties, the generalized space-time supersymmetries going beyond the HLS
scheme (and admitting, in particular, a bosonic sector of the Poincaré or conformal superalge-
bra which could no longer be expressed as a tensor product Bgeom @ Bint, Where B e, describes
space-time Poincaré or conformal algebras, while the remaining generators spanning B;,; are
scalars) found widespread recognition [7, 8] in association with the dynamics of extended ob-
jects like branes (see [9, 10]). The eleven-dimensional M-algebra underlying the M-theory as
a possible “Theory Of Everything” (TOE), admitting 32-real component spinors and maxi-
mal number (= 528) of saturated bosonic generators [7, 8] falls into this class of generalized
supersymmetries. The physical motivations for dealing with and classifying generalized super-
symmetries are therefore quite obvious. The purely mathematical side as well presents very
attracting features. The ingredients that have to be used have been known by mathemati-
cians since at least the sixties ([11], see also [12] and, for quite a convenient presentation for
physicists, [13]). They include the division-algebra classification of Clifford algebras and funda-
mental spinors. It is quite rewarding that, by using these available tools, we can conveniently
formulate and solve the problem of classifying generalized supersymmetries.

It is well-known that the Clifford algebra irreps [13] are put in correspondence with the
R, C, H division algebras. An analogous scheme works for fundamental spinors (here and in the
following, fundamental spinors are defined to be the spinors admitting, in a given space-time,
the maximal division algebra structure compatible with the minimal number of real compo-
nents). Both the eleven-dimensional M-algebra and the F-algebra in (10 + 2) dimensions are
based on real spinors. Their analytic continuation to the Euclidean, however, see [2] and [3],
are based on complex spinors. The presence of both complex and quaternionic spinors allows
introducing division-algebra compatible extra-constraint on the available generalized supersym-
metries. The reason for that lies in the fact that in these two extra cases one has at disposal
the division-algebra principal conjugation (which simply coincides, for real numbers, with the
identity operator) to further play with. As a consequence, the two big classes of (complex or
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quaternionic) constrained hermitian versus holomorphic generalized supersymmetries can be
consistently introduced.

It is of particular importance to determine the biggest (“saturated”) generalized super-
symmetry compatible with the given division-algebra structure and constraint. The complete
classification is here presented in a series of tables.

For the sake of simplicity, in this work we are only concerned with “generalized supertrans-
lations”. This means in particular that the bosonic generators are all abelian. The construction
of, e.g., Lorentz generators requires a bigger algebra than the ones here examined. One viable
scheme to produce them consists in introducing a generalized superconformal algebra (which, in
its turn, allows recovering a generalized superPoincaré algebra through an Inonii-Wigner type of
contraction). Following [14], this can be easily achieved by taking two separate copies of “gen-
eralized supertranslations” and imposing the Jacobi identities on the whole set of generators
to fully determine the associated superconformal algebra.

2 Clifford algebras and spinors.

We recall here the basic features of the classification of Clifford algebras and spinors which will
be useful later on.

This preliminary material about the classification of the Clifford algebras associated to the
R,C, H associative division algebras is based on [13] and [1].

The most general irreducible real matrix representations of the Clifford algebra

AT + I TF = 2™, (1)

with n* being a diagonal matrix of (p,q) signature (i.e. p positive, +1, and ¢ negative, —1,
diagonal entries)! can be classified according to the property of the most general S matrix
commuting with all the I'"s ([S,'*] = 0 for all ). If the most general S is a multiple of
the identity, we get the normal (R) case. Otherwise, S can be the sum of two matrices, the
second one multiple of the square root of —1 (this is the almost complex, C case) or the linear
combination of 4 matrices closing the quaternionic algebra (this is the H case). According to
[13] the real irreducible representations are of R, C, H type, according to the following table,
whose entries represent the values p — ¢ mod 8

R|C | H
0,2 1,6 (2)
1 [3,7] 5

The real irreducible representation is always unique unless p — ¢ mod 8 = 1,5. In these
signatures two inequivalent real representations are present, the second one recovered by flipping
the sign of all I'’s (I'* +— —I'*).

Let us denote as C(p,q) the Clifford irreps corresponding to the (p,q) signatures. The
normal (R), almost complex (C) and quaternionic (H) type of the corresponding Clifford
irreps can also be understood as follows. While in the R-case the matrices realizing the irrep

!Throughout this paper it will be understood that the positive eigenvalues are associated with space-like
directions, the negative ones with time-like directions.
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have necessarily real entries, in the C-case matrices with complex entries can be used, while in
the H-case the matrices can be realized with quaternionic entries.

It is worth noticing that in the given signatures p — ¢ mod 8 = 0,4,6,7, without loss of
generality, the I'* matrices can be chosen block-antidiagonal (generalized Weyl-type matrices),

i.e. of the form
0 ot
o= () ®)

In these signatures it is therefore possible to introduce the Weyl-projected spinors, whose
number of components is half of the size of the corresponding I'-matrices?.

A very convenient presentation of the irreducible representations of Clifford algebras makes
use of an algorithm allowing to single out, in each arbitrary signature space-time, a represen-
tative (up to, at most, the sign flipping I'* «+» —T'#) in each irreducible class of representations
of Clifford’s gamma matrices has been given in [1].

At first one proves that starting from a given D spacetime-dimensional representation of
Clifford’s Gamma matrices, one can recursively construct D + 2 spacetime dimensional Clifford
Gamma matrices with the help of two recursive algorithms. Indeed, it is a simple exercise
to verify that if ~;’s denotes the d-dimensional Gamma matrices of a D = p + ¢ spacetime
with (p, q) signature (namely, providing a representation for the C'(p, q) Clifford algebra) then
2d-dimensional D + 2 Gamma matrices (denoted as I';) of a D + 2 spacetime are produced
according to either

0 0 1 1, 0

v (58) () (8 )

(r,q) — (+1,q+1). (4)
0 0 1, 1, 0

v (50) (nd) (8 )

(r,q) — (¢+2,p). (5)

As an example, one can realize that three 2 x 2 matrices 74, 71, 7 realizing the Clifford algebra
C(2,1) are obtained by applying either (4) or (5) to the number 1, i.e. the one-dimensional
realization of C'(1,0).

The above construction can be applied to produce all irreps of Clifford algebras, by knowing
some fundamental representations associated with division algebras, for details see [3]. For that
reason it is convenient to review here the basic features of division algebras which will be needed
in the following.

The four division algebra of real (R) and complex (C) numbers, quaternions (H) and
octonions (O) possess respectively 0, 1, 3 and 7 imaginary elements e; satisfying the relations

ei-ej = —0; + Cijrer, (6)

2This notion of Weyl spinors, which is convenient for our purposes, is different from the one usually adopted
in connection with comples-valued Clifford algebras and has been introduced in [1].
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(1, j, k are restricted to take the value 1 in the complex case, 1,2, 3 in the quaternionic case and
2,...,7 in the octonionic case; furthermore, the sum over repeated indices is understood).

Ciji are the totally antisymmetric division-algebra structure constants. The octonionic
division algebra is the maximal, since quaternions, complex and real numbers can be obtained
as its restriction. The totally antisymmetric octonionic structure constants can be expressed
as

Y

Chas = Clar = Cig5 = Caug = Cos7 = Ussy = Ce7 = 1 (7)

(and vanishing otherwise).
The octonions are the only non-associative, however alternative (see [15]), division algebra.
Due to the antisymmetry of Cjjy, it is clear that we can realize (1) by associating the (0, 3)
and (0, 7) signatures to, respectively, the imaginary quaternions and the imaginary octonions.
For our later purposes it is of particular importance the notion of division-algebra principal
conjugation. Any element X in the given division algebra can be expressed through the sum

X = Io—i‘l'i@i, (8)

where xy and x; are real, the summation over repeated indices is understood and the positive
integral 7 are restricted up to 1, 3 and 7 in the C, H and O cases respectively. The principal
conjugate X* of X is defined to be

X" = To — T;€4. (9)

It allows introducing the division-algebra norm through the product X*X. The normed-one
restrictions X*X = 1 select the three parallelizable spheres S*, S3 and S7 in association with
C, H and O respectively.

Further comments on the division algebras and their relations with Clifford algebras can be
found in [1] and [15].

The fundamental spinors carry a representation of the generalized Lorentz group with a
minimal number of real components in association with the maximal, compatible, allowed
division-algebra structure.

The following table, taken from the results in [4] and [13], see also [1], presents the compar-
ison between division-algebra properties of Clifford irreps (I') and fundamental spinors (¥), in
different space-times parametrized by p =s —t mod 8. We have

(10)

~ oo | wl v~ ols
Q| T T | Q| | W) & H
H| QT T T Q| R
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It is clear from the above table that, for p = 2, 3, the fundamental spinors can accommodate
a larger division-algebra structure than the corresponding Clifford irreps. Conversely, for p =
6,7, the Clifford irreps accommodate a larger division-algebra structure than the corresponding
spinors. In several cases this mismatch of division-algebra structures plays an important role.
For instance in [14] a method was introduced to construct superconformal algebras based on the
minimal division algebra structure common to both Clifford irreps and fundamental spinors.
This method can be straightforwardly modified to produce extended superconformal algebras
based on the largest division-algebra structure. The price to be paid, in this case, would imply
the introduction, for p = 2, 3, of reducible Clifford representations and, conversely, for p = 6,7
of non-minimal spinors.

The reason behind the mismatch can be easily understood on the basis of the fact that
fundamental spinors are Weyl projected if the matrices realizing the Clifford algebra generators
can be taken in a block antidiagonal form.

3 Generalized supersymmetries: the M and F' algebra
examples

Three matrices, denoted as A, B, C', have to be introduced in association with the three con-
jugations (hermitian, complex and transposition) acting on Gamma matrices [16]. Since only
two of the above matrices are independent we choose here, following [1], to work with A and
C'. A plays the role of the time-like I'° matrix in the Minkowskian space-time and is used to
introduce barred spinors. C, on the other hand, is the charge conjugation matrix. Up to an
overall sign, in a generic (s, t) space-time, A and C' are given by the products of all the time-like
and, respectively, all the symmetric (or antisymmetric) Gamma-matrices®>. The properties of
A and C immediately follow from their explicit construction, see [16] and [1].

In a representation of the Clifford algebra realized by matrices with real entries, the conju-
gation acts as the identity, see (9). In this case the space-like gamma matrices are symmetric,
while the time-like gamma matrices are antisymmmetric, so that A can be identified with the
charge conjugation matrix Cly.

For our purposes the importance of A and the charge conjugation matrix C' lies on the fact
that, in a D-dimensional space-time (D = s+t) spanned by d x d Gamma matrices, they allow
to construct a basis for d x d (anti)hermitian and (anti)symmetric matrices, respectively. It is
indeed easily proven that, in the real and the complex cases (the quaternionic case is different),

D : . . o
the antisymmetrized products of & Gamma matrices AT#1#] are all hermitian or all

k
antihermitian, depending on the value of k£ < D. Similarly, the antisymmetrized products
CTm-#] are all symmetric or all antisymmetric.
For what concerns the M-algebra, the 32-component real spinors of the (10, 1)-spacetime
admit anticommutators {Q., @p} which are 32 x 32 symmetric real matrices with, at most,
32 + % = 528 components. Expanding the r.h.s. in terms of the antisymmetrized product

3Depending on the given space-time (see [16] and [1]), there are at most two charge conjugations matrices,
Cs, Cy, given by the product of all symmetric and all antisymmetric gamma matrices, respectively. In special
space-time signatures they collapse into a single matrix C'.
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of Gamma matrices, we get that it can be saturated by the so-called M-algebra

{Qu, @} = (AT,),, P'+ (ATpw)  ZW 4 (ATy, ) 2000 (11)
Indeed, the k& = 1,2,5 sectors of the r.h.s. furnish 11 + 55 + 462 = 528 overall components.
Besides the translations P*, in the r.h.s. the antisymmetric rank-2 and rank-5 abelian tensorial
central charges, Z* and ZIm-#sl respectively, appear.

The (11) saturated M-algebra admits a finite number of subalgebras which are consistent
with the Lorentz properties of the Minkowskian eleven dimensions. There are 6 such subalgebras
which are recovered by setting either one or two among the three sets of tensorial central
charges P*, ZWWl  zlm-nsl jdentically equal to zero (a completely degenerate subalgebra is
further obtained by setting the whole r.h.s. identically equal to zero).

The fact that the fundamental spinors in a (10, 2)-spacetime also admit 32 components is
due to the existence of the Weyl projection. This implies that the saturated M-algebra admits
a (10,2) space-time presentation, the so-called F-algebra, in terms of (10,2) Majorana-Weyl
spinors Qa, a = 1,2,...,32.

In the case of Weyl projected spinors the r.h.s. has to be reconstructed with the help
of a projection operator which selects the upper left block in a 2 x 2 block decomposition.

My M, ), we can define

Specifically, if M is a matrix decomposed in 2 x 2 blocks as M =
My M,y

PM) = M. (12)

The saturated M-algebra (11) can therefore be rewritten as

{Q&,@B} = p(Afﬂ,}) Z[ﬁﬁ]‘i‘p(ﬁf\[ﬂlﬁd) ~Z[ﬁl”'ﬁﬁ}, (13)

ab

@b

where all tilde’s are referred to the corresponding (10,2) quantities. The matrices in the r.h.s.
are symmetric in the exchange @ <> b. This time the rank-2 and selfdual rank-6 antisymmetric
abelian tensorial central charges, Z#”) and respectively Z# -6l appear. Their total number
of components is 66 + 462 = 528, therefore proving the saturation of the r.h.s.. The saturated
equation (13) is named the F-algebra.

4 Real, complex and quaternionic generalized supersym-
metries.

For real n-component spinors (),, the most general supersymmetry algebra is represented by

{Qa; @} = Zu, (14)

where the matrix Z appearing in the r.h.s. is the most general n xn symmetric matrix with total
number of % components. For any given space-time we can easily compute its associated

decomposition of Z in terms of the antisymmetrized products of k-Gamma matrices, namely

Zu = D (AT )2, (15)
k
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where the values k entering the sum in the r.h.s. are restricted by the symmetry requirement
for the a < b exchange and are specific for the given spacetime. The coefficients Z#1-#] are
the rank-k abelian tensorial central charges.

When the fundamental spinors are complex or quaternionic they can be organized in com-
plex (for the C and H cases) and quaternionic (for the H case) multiplets, whose entries are
respectively complex numbers or quaternions.

The real generalized supersymmetry algebra (14) can now be replaced by the most general
complex or quaternionic supersymmetry algebras, given by the anticommutators among the
fundamental spinors @, and their conjugate Q*, (where the conjugation refers to the principal
conjugation in the given division algebra, see (9)). We have in this case

{Qa7 Qb} = Zab ) {Q*(m Q*b} = Z*a'j)7 (]‘6)
together with

{QauQ*i)} = Wab’ (17)

where the matrix Z,, (2*,; is its conjugate and does not contain new degrees of freedom) is
symmetric, while W,; is hermitian.

The maximal number of allowed components in the r.h.s. is given, for complex fundamental
spinors with n complex components, by
ia) n(n+ 1) (real) bosonic components entering the symmetric n X n complex matrix Z,, plus
ia) n* (real) bosonic components entering the hermitian n x n complex matrix W,;.

Similarly, the maximal number of allowed components in the r.h.s. for quaternionic funda-
mental spinors with n quaternionic components is given by
ib) 2n(n—+1) (real) bosonic components entering the symmetric n X n quaternionic matrix 2y,
plus
ib) 2n* — n (real) bosonic components entering the hermitian n x n quaternionic matrix W,;.

The previous numbers do not necessarily mean that the corresponding generalized super-
symmetry is indeed saturated. This is in particular true in the quaternionic case, see [3].

Any real generalized supersymmetry admitting a complex structure can be re-expressed
in a complex formalism with n-component complex spinors and total number of n(2n + 1)
(real) bosonic components split into n(n + 1) components entering the symmetric matrix Z
and n? components entering the hermitian matrix WW. The situation is different in the quater-
nionic case. The quaternionic structure requires a restriction on the total number of bosonic
generators. n-component quaternionic spinors can be described as 4n-component real spinors.
However, the r.h.s. of a quaternionic (16) and (17) superalgebra admits at most 4n*+n bosonic
components, instead of 8n? +2n of the most general supersymmetric real algebra. The Lorentz-
covariance further restricts the number of bosonic generators in a quaternionic supersymmetry
algebra.

We conclude this section mentioning the two big classes of subalgebras, respecting the
Lorentz-covariance, that can be obtained from (16) and (17) in both the complex and quater-
nionic cases. They are obtained by setting identically equal to zero either Z or W, namely

1) Zy = Z*,; = 0, so that the only bosonic degrees of freedom enter the hermitian matrix
W, or, conversely,

II) W ; = 0, so that the only bosonic degrees of freedom enter Z,, and its conjugate matrix
AN
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Accordingly, in the following we will refer to the (complex or quaternionic) generalized
supersymmetries satisfying the /) constraint as “hermitian” (or “type I”) generalized super-
symmetries, while the (complex or quaternionic) generalized supersymmetries satisfying the I7)
constraint will be referred to as “holomorphic” (or “type I1”) generalized supersymmetries.

5 Some examples of consistently constrained complex
generalized supersymmetries.

Generalized supersymmetries can be classified according to their division-algebra character Y
(with Y = R, C,H). They can be conveniently labeled with a pair of division algebras as “XY”,
where X specifies whether spinors are realized as column vectors of real numbers (X = R),
complex numbers (X = C) or quaternions (X = H). Accordingly, generalized supersymmetries
fall into different cases:

i) RR,

ii) RC and CC,

iii) RH, CH and HH.

In the CC, CH and HH cases a suffix can be added, specifying whether we are dealing
with a hermitian (type I, therefore CC;, CH;, HH;) or a holomorphic (type 11, CC;;, CH/y,
HH,;) generalized supersymmetry. A closer inspection shows that the following identities hold
for hermitian supersymmetries

RC = CC; (18)
and
RH =CH; = HH;, . (19)

The first identity means that representing complex spinors in real notations is tantamount to
realize a complex hermitian supersymmetry. The second set of identities holds for supersym-
metries realized with quaternionic spinors.

In the following, for simplicity, it will be symbolically denoted as “M},” the space of ( l]: )—

component, totally antisymmetric rank-£ tensors of a D-dimensional spacetime, associated to
the basis provided by the hermitian AI'lF¥1-#] matrices (namely, entering “type I” supersymme-
tries). Similarly, the rank-k totally antisymmetric tensors associated to the symmetric matrices
CT#-#) and entering the type 11, holomorphic, supersymmetries will be denoted as “M,.”
(the symbol “M;” will be reserved to real, “RY”, supersymmetries).

It is quite convenient to illustrate how complex and quaternionic supersymmetries work by
discussing specific examples. The extension of both reasonings and results to general spacetimes
is in fact guaranteed by the already mentioned algorithmic construction. We illustrate here the
example of the supersymmetries associated to the (4, 1) spacetime and its dimensional reduction
to the usual Minkowski (3,1) case.

(4, 1)-dimensional real spinors possess eight components and can be regarded as spinors of
the extended (4, 3) spacetime, see [3]. It can be easily checked that in D = 7 (for the (4, 3) space-
time) dimensions, the bosonic sector of the supersymmetry algebra is given by the 1+ 35 = 36
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rank-k tensors My =" + M;P=7) . Expanding these tensors in the D = 5-dimensional ((4,1)
spacetime) basis we are led to the following identifications

MO(D=7) + M3(D=7) = MO(D=5) + M3(D=5) +2x MQ(D:5) + M1(D:5), (20)
where the counting of the components reads as follows
1435 = 1+104+2x10+5. (21)

The equation (20) above corresponds to the saturated bosonic sector of the RR generalized
supersymmetry in a (4, 1) spacetime.

Let us discuss now the two complex supersymmetries (CC; and CCy;) associated with the
(4,1) spacetime.

It can be easily shown that

i) in the CCj case the bosonic sector is expressed as

M, +M;+M; (22)

The expected 16 bosonic components (real counting) of the saturated complex hermitian algebra
are indeed recovered through

16 = 5+10+1; (23)

it should be noticed that the rank k antisymmetric tensors are not related by the Hodge duality;
ii) in the CCy; case the bosonic sector is expressed as

My + M, (24)

whose total number of bosonic components, 10 + 10 = 20, indeed saturates the number of
bosonic components for the complex holomorphic supersymmetry; in this case as well the rank-
2 and rank-3 bosonic tensors are not related by Hodge duality (indeed one sector is real while
the other one is completely imaginary since the product of the five distinct gamma matrices is
proportional to i). However, a reality constraint can be further imposed on the bosonic sector of
CCy;. If this Lorentz-consistent constraint is applied, the total number of bosonic components
corresponds to half the number of saturated bosonic components of the complex holomorphic
supersymmetry. This consistent reduction is a common feature of all complex holomorphic
supersymmetries and not a special case of just the (4, 1) spacetime.

It should be noticed that the 36 bosonic components of the saturated (4,1) RR super-
symmetry are recovered from the 16 4 20 bosonic components of the saturated hermitian and
holomorphic supersymmetries. In a loose notation we can symbolically write

By using complex spinors in the (4, 1) spacetime we end up with the following list of consistent
division algebra constraints that can be imposed on the generalized complex supersymmetries.
We have the following table of generalized supersymmetries, with their associated number of



CBPF-NF-025/04 10

bosonic components (in the real counting), in a (4, 1) spacetime

full  supersymmetry = 36 components,

hermaitian  supersymmetry 16  components,

holomorphic  supersymmetry 20 components,
(restricted) holomorphic supersymmetry = 10 components,

herm. + (restr.) holom. supersymmetry = 26 components. (26)

In the above table, and similarly in the one below, the “restricted holomorphic supersymme-
try” is realized by implementing a reality condition on the bosonic r.h.s. of the holomorphic
supersymmetry.

An analogous table can be produced in the (3, 1) spacetime, for 2-component complex Weyl
spinors. We can write down the following list of division-algebra constrained supersymmetries

full  supersymmetry = 10 components,
hermitian  supersymmetry = 4 components,

components,

holomorphic  supersymmetry

(restricted) holomorphic supersymmetry

6
3 components,
7

herm. + (restr.) holom. supersymmetry = components. (27)

Similar decompositions work in any other space-times supporting complex spinors. A classifi-
cation of such supersymmetries can be performed also in the case of quaternionic spacetimes
(supporting quaternionic spinors). The results are reported in the next section.

6 Generalized supersymmetries of the quaternionic space-
times.

We present here the classification of quaternionic generalized supersymmetries associated to
quaternionic space-times carrying quaternionic fundamental spinors.

The following results do not depend on the signature of the space-time, but only on its
dimensionality D. Let us start with the hermitian quaternionic supersymmetry HH;. In
association with each one of the quaternionic spacetimes up to D = 13 ([3]) the bosonic sector
is decomposed in rank-k antisymmetric tensors, with total number of (real counting) bosonic
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components according to the table

11

spacetime bosonic sectors bosonic components
D=3 My 1
D=4 M, 1
D=5 M, + M; 1+5=6
D=6 M, 6
D=7 M; + M, 7421 =28 (28)
D=8 M, 28
D=9 M, + M3 36 + 84 =120
D =10 M3 120
D =11 M, + M3 + M, 1+ 165+ 330 = 496
D =12 M, + M, 1+495 =496
D=13 | My+M;+M,+M; |1+ 13+ 715+ 1287 = 2016

Please notice from the above table that the hermitian quaternionic supersymmetry saturates
the bosonic sector, as expected.
Let us now discuss the holomorphic supersymmetries associated with the quaternionic space-

times. The complex holomorphic supersymmetry CHj; is characterized by the table

spacetime | bosonic sectors bosonic components
D=3 M, 3
D=4 Mo 3
D=5 Mo 10
D=6 M; 10
D = Mo+ M;j 1+35=236 (29)
D=8 Mo+ My 1+35=236
D=9 | My+M;+ M, 14+94126 =136
D =10 M, + M 10 + 126 = 136
D=11 | My +My+ M; 11 + 55 4 462 = 528
D =12 My + Mg 66 + 462 = 528
D =13 | My+ M3+ Mg | 78 4286 + 1716 = 2080

The tilde on the rank-k (for k = £) sectors M p specifies that they are self-dual (as such,

their total number of bosonic components, in the real counting, is given by % g ).

It should be noticed that the total counting of bosonic components in the 2third column
implies that the CH [ superalgebras admit [3] half the number of bosonic components expected
for complex spinors of the corresponding size. The recognition of this property becomes quite
important when applied to the D = 11 and D = 12 rows of the table above. Their total number
of bosonic components (528 = % X 1056) coincides with the number of bosonic components
entering the M-algebra (11) and the F-algebra (13).

The last table is devoted to the quaternionic holomorphic supersymmetries HH;;. Accord-

ing to [3], we can state as a theorem that quaternionic holomorphic supersymmetries do not
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involve bosonic tensorial central charges. The only admissible sectors are given by

— D=0,6,7 mod 8

Mg D=1 mod 8
My D =45 mod 8 (30)

Mo+ M; | D=2,3 mod 8

The above results can be interpreted as follows. Quaternionic holomorphic HH;; supersym-
metries only arise in D-dimensional quaternionic space-times, where D = 2,.3,4,5 mod 8.
No HH;; supersymmetry exists in D = 0,6,7 mod 8 D-dimensional spacetimes.

InD =1 mod 8dimensions, HH;; supersymmetries only involve a single bosonic charge.
In this respect they fall into the class of quaternionic supersymmetric quantum mechanics,
rather than supersymmetric relativistic theories.

Finally, the HH;; supersymmetry algebra only admits a bosonic central charge in D-
dimensional quaternionic spacetimes for D = 2,3 mod 8.

7 Conclusions.

This paper was devoted to perform a classification of (real, complex and quaternionic) gener-
alized supersymmetries. The notion of hermitian (complex and quaternionic) and holomorphic
(complex and quaternionic) supersymmetries, as consistently division-algebra constrained gen-
eralized supersymmetries, has been presented. These supersymmetries have been classified and
their main properties have been reported in a series of tables.

Physical implications of these mathematical structures are quite obvious. The classification
of generalized supersymmetries allow to understand the web of interrelated dualities of different
classes of theories which can be either analitically continued (let’s say, to the Euclidean) or
recovered through dimensional reduction.

As an example, we can cite that the analytic continuation of the M algebra was proven
in [2] to correspond to an eleven-dimensional complex holomorphic supersymmetry. It was
further shown in [3] that the same algebra also admits a 12-dimensional Euclidean presentation
in terms of Weyl-projected spinors. These two examples of Euclidean supersymmetries can
find application in the functional integral formulation of higher-dimensional supersymmetric
models.

There is an interesting class of models which nicely fits in the framework here described and
is currently under intense investigation. It is the class of superparticle models, introduced at
first in [17] and later studied in [18], whose bosonic coordinates correspond to tensorial central
charges. It was shown in [19] that a 4-dimensional theory of this kind leads to a tower of massless
higher spin states, concretely implementing a Fronsdal’s proposal [20] of introducing bosonic
tensorial coordinates to describe massless higher spin theories (admitting helicity states greater
than two). This is an active area of investigation, the main motivation beingthe investigation
the tensionless limit of superstring theory, corresponding to a tower of higher helicity massless
particles (see e.g. [21]).

In a somehow “orthogonal” direction, a class of theories which can be investigated in the
present framework is the class of supersymmetric extensions of Chern-Simon supergravities in
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higher dimensions, requiring as a basic ingredient a Lie superalgebra admitting a Casimir of
appropriate order, see e.g. [22].
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