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Abstract

The Cartan-Maurer equations for any g-group of the An-1, Bn,Cr, Dy
series are given in a convenient form, which allows their direct computation
and clarifies their connection with the ¢ = 1 case. These equations, defining
the field strengths, are essential in the com_;tructlon of g-deformed gauge the-
ories. An explicit expression w'Awd = —Z¥ wkAwt for the q-cormnuta.tlons

of left-invariant one-forms is found, with 27 jw* A o* L= it R A wh
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Quantum groups [1]-[4] appear as a natural and consistent algebraic structure
behind continuously deformed physical theories. Thus, in recent times, there have
been various proposals for deformed gauge theories and gravity-like theories [5]
based on g¢-groups.

Such deformations are interesting from different points of view, depending
also on which theory we are deforming. For example, in quantized g-gravity
theories space-time becomes noncommutative, a fact that does not contradict
(Gedanken) experiments under the Planck length, and that could possibly provide
a regularization mechanism {7,8]. On the other hand, for the g-gauge theories
constructed in [6] spacetime can be taken to be the ordinary Minkowski spacetime,
the g-commutativity residing on the fiber itself. As shownin [6], one can construct
a g-lagrangian invariant under g-gauge variations. This could suggest a way to
break the classical symmetry via a g-deformation, rather than by introducing ad
hoc scalar fields. Note also that, unlike the ¢ = 1 case, the g-group U (N) is
simple, thus providing a “quantum unification” of SU(N) ® U(1).

In order to proceed from the algebraic g-structure to a dynamical g-field theory,
it is essential to investigate the differential calculus on g¢-groups. Indeed this
provides the g-analogues of the “classical” definitions of curvatures, field strengths,
exterior products of forms, Bianchi identities, covariant and L1e derivatives and
so0 on, see for ex. [9] for a review.

In this Letter we address and solve a specific problem: to find the Cartan-
Maurer equations for any g-group of the A, B,C, D} series in explicit form. These
equations define the field strengths of the corresponding ¢-gauge theories [6]. The
A, ., case was already treated in [9], where the structure constants were given
explicitly, and shown to have the correct classical limit.

To our knowledge, this problem has been tackled previously only in ref. [10].
There, however, the authors use (for the B,C, D g-groups) a definition for the
exterior product different from the one introduced in ref.s [11], adopted in [12,13,9]
and in the present Letter. As we will comment later, their choice leads to a more
complicated scenario.

Quantum groups are characterized by their R-matrix, which controls the non-
commutativity of the quantum group basic elements T°, (fundamental represen-
tation):

Rab efTechd=T'baneR¢fcd (1)

and satisfies the quantum Yang-Baxter equation

Rdxbzthﬂz . f-‘ab:ca — Rblcl Ralcn Rﬂs 2 b (2)

a3c)
a sufficient condition for the consistency of the “RTT” relations (1). Its elements

depend continuously on a (in general complex) parameter ¢, or even on a set
of parameters. For ¢ — 1 we have R L 6263, i.e. the matrix entries T¢,
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commute and become the usual entries of the fundamental representation. The
g-analogue of det T = 1, unitarity and orthogonality conditions can be imposed
on the elements T, consistently with the RT'T relations (1), see [3].

The (uniparametric) R-matrices for the ¢-groups of the A,_;, B, C,, D,, series
can be found in ref. [3]. We recall the projector decomposition of the R matrix
defined by R, = R _,, whose ¢ — 1 limit is the permutation operator §36° :

A, series: )
R=gP, -¢q'P_ (3)
with
P == L (R+¢710)
P.—ﬁrd ~R+ql) (4)
I = P+ + P_
By, Cn, D, series: X
R=gP, - q'P_+e¢ VPR ()
with
Py = ir[R+ g7 — (¢ +eq V)P
P.=_[-R ;l; ¢l — (g — ¢ V)PRy]
P - eqﬂ+=-=)(1+=q--N+T K (6)
=C%C.q

I=&+R+R

where € = 1 for B,,, D,,, ¢ = —1 for C,,, and NN is the dimension of the fundamental
representation I'%,, i.e. N = 2n + 1 for B, and N = 2n for C,,,D,. C, is the
g-metric, and C® its inverse (cf. ref. [3]).

From (3) and (5) we read off the eigenvalues of the R matrix, and deduce the
characteristic equations:

(R—glY(R+ ¢V ) =0 for A,.. (Hecke condition) (N
(ﬂ - qI)(R + "'z'ﬂl)(}‘é - eq‘-NI) =0, for Bn,Cs,Dn (8)
The differential calculus on g¢-groups, initiated in ref.s [11], can be entirely

formulated in terms of the R matrix. The general constructive procedure can be
found in ref. [12], or, in the notations we adopt here, in ref. [9].

As discussed in [11] and [12], we can start by introducing the (quantum) left-
invariant one-forms w,’, whose exterior product

wa;l: Awd:fz = n ® wy dz —A® dzlcl bizwc:‘a ® wb:'z (9)

ay dy
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is defined by the braiding matrix A:

Aa?dfale:::hb: = dhdf-'_zl'éhf:m1(‘&_l)qg:u¢1 (R_l G“llﬁm'ﬁd”ng: (10)
For ¢ — 1 the braiding matrix A becomes the usual permutation operator and
one recovers the classical exterior product. Note that the “quantum cotangent
space” T', i.e. the space spanned by the quantum one-forms w_?, has dimension NZ,
in general bigger than its classical counterpart (dimI' = N? only for the U (N)
groups). This is necessary in order to have a bicovariant bimodule structure for I'
(cf. ref. ([10].). The same phenomenon occurs for the g-Lie generators defined be-
low. For these, however, one finds restrictions (induced by the conditions imposed
on the 7%, elements) that in general reduce the number of independent genera-
tors. Working with N? generators is more convenient, since the nice quadratic
relations (16} of the ¢-Lie algebra become of higher order if one expresses them
in terms of a reduced set of independent generators. For a discussion see [13].

The relations (7) and (8) satisfied by the R matrices of the A and B,C,D

series respectively reflect themselves in the relations for the matrix A:
A+¢DA+q ) A-T)=0 (11)
for the A g-groups, and |

(A+ @A+ g2 I)A+ e "NINA + gV )

x (A — eg"1-I)(A — e N1+ A —) =0 (12

for the B,C, D g-groups, with the same ¢ as in (8). We give later an easy proof
of these two relations.

Besides defining the exterior product of forms, the matrix A contains all the
the information about the quantum Lie algebra corresponding to the ¢-group.

The exterior differential of a quantum k-form 8 is defined by means of the
bi-invariant element 7 = 3>, w ® as follows:

=1 TA0—(~1)0AT
= ——lr A0~ (-1)'9A7], (13)

The normalization #; is necessary in order to obtain the correct classical limit

(see for ex. [9]). This linear map satisfies d* = 0, the Leibniz rule and commutes
with the left and right action of the ¢-group [12].

The exterior differentiation allows the definition of the “quantum Lie algebra

generators” x°i , via the formula [11]

da =

= [ra —ar] = (x°}, * a)w, . (14)
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where

x*a=(idQx)A(a), VYaeG, x€G, ' (15)

and A is the usual coproduct on the quantum group G, defined by A(T?,) =
T°.,T°,. The g-generators x are linear functionals on G,. By taking the exterior
derivative of (14), using d*> = 0 and the bi-invariance of T = w,”, we arrive at the
g-Lie algebra relations [12], [9]:

ez faidy o dy ¢1 | a

d
X 06X — Al L1007 Xux = C4 e, (16)
where the structure constants are explicitly given by:

1

CLhl = (858060 + A1) - (17)

and xd}i, X%, = (x"},2 ® x°L,)A. Notice that
A1, = 88565 + 0(g—a7') (18)
because the R matrix itself has the form R = I + (¢ — ¢~ )V, with U finite in the

g — 1 limit, see ref. [3]). Then it is easy to see that (17) has a finite ¢ — 1 limit,

since the q_:_, terms cancel.

The Cartan-Maurer equations are found by applying to w,,.fl"‘ the exterior dif-
ferential as defined in (13):

- .

dw,? = (W Aw,? + w2 Aw). (19)

9—q
Written as above, the Cartan-Maurer equations are not of much use for computa-
tions. The right-hand side has an undefined  classical limit. We need a formula
of the type w2 Aw® = —0,? Aw,® + O(g — ¢~?) that allows to eliminate in (19)
the terms with the trace w,? (which has no classical counterpart) and obtain an
explicitly ¢ — 1 finite expression,

The desired “w -permutator” can be found as follows. We first treat the case
of the A, series. We apply relation (7) to the tensor product w ® w, i.e.:

(A% s+ PEEAY o+ BN A™, — PE) 0™ B =0 (20)

where we have used the adjoint indices * « 0, ; & 4. Inserting the definition of

the exterior product w” Aw™ = w™ @ w" — A™_ w" ® w’ yields
(A7 i+ o)A L+ g ) W™ AWt =0 (21)
Multiplying by A~! gives (A + (¢° + ¢7?)I + A™!) w A w, or equivalently

WA = -2 AW (22)
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1
¢ +q?
of. ref. [9]. The w-permutator Z* ,; has the expected ¢ — 1 limit, that is §}].

Zv =

[Aij wt (A N e _ (23)

There is another way to deduce the permutator Z, based on projector methods,
that we will use for the B,(, D series. We first illustrate it in the easier A-case.
Define )

(PI':-PJ) az d’lc::gblbg = d‘f‘d::ft'b‘h (P;)"“” (ﬁ—l aze, (PJ)""’:,;, (24) _

ay di cag G101 diga

with I,J=+, —, the projectors P, P_ being given in (4). The (P;, Ps) are them-
selves projectors, i.e.:

(Pr, Ps)(Px, Pr) = b1k b5 (Pr, Pr) (25)

Moreover

(I,n=1I | (26)
so that

(I1) = (P + P, Py P.) = (Pr, P) +(Po, P)+(Py, L)+ (P, Py) = T (21)

Eq. (25) is easy to prove by using (24) and the relation, valid 'for all A B,C,D
g-groups: ) .
dd1RY (R, =616 . (28)

From the definition of A (10), using (3) and (24) we can write
A:(P+3P+)+(P—!P—)_q_z(P+!P—)"qz(P—sP+) (29)

This decomposition shows that A has eigenvalues 1,¢*?, and proves therefore eq.
(11). From the definition of the exterior product w Aw = w @ w — Aw @ w we find
the action of the projectors (Pr, P;) on w A w:

(Pr,Pi)wAw=(P.,P)wAw=0 (30)

(Pry P YwoAw=(14¢*) Py, P-Jw®w, (P-,PiJwAw={1 +qz)(P—,P+)w(®“;
31
Using (27) and (30) we find :

whw = [(P+sP+)+(P—!P—)+(P+!P-)+(P—:P+)]wAw = [(P+,P_)+(P_,P+)]wf\w

(32)
The w-permutator is therefore Z = —(P,,P_) — (P-,P,). We can express it in
terms of the A matrix by observing that

(A+ A7)+ g (Pro Py) + (P, P-) (39)

(P+,P_)+(P_,P+)=— +q3

¢+q?



CBPF-NF-024/93

as one deduces from (29). Note that A~ is given in terms of projectors by the same
expression as in (29), with ¢ — ¢~!. When acting on w A w the (P;, P,),(P-,P.)
terms in (33) can be dropped because of (30), so that finally we arrive at eq. (23).

Because of the expansion {18) and a similar one for A~ we easily see that the
w-permutator (23) can be expanded as

22BN 02 A2 =wP A0 + (g - g WP w2 Aw? (34)

c1 d1 1

where W is a finite matrix in the limit ¢ — 1.

Let us return to the Cartan-Maurer eqs. (19). Using (22) we can write:

W =

where Z is given by (A + A™Y)/(¢* + ¢7?), cf. (23). Because of (34) we see that
the w,® terms disappear, and (35) has a finite ¢ — 1 limit.

hija; b a
(@ Aw? — Z,70% % w0, Aw?) (35)

We now repeat the above construction for the case of ¢g-groups belonging to
the B, (, D series.

Using (5) and (24) we find the following projector decomp;psition for the A
matrix :

A= (Py,Pr)+(P-,P.)+(Po,Po) +eq" ' "N(Py, Po) + eq 3Ny, P)
—q"}(Py,P.) - ¢*(P_,Py) — eq" " (P, P.) — e W —")(P_, Ry)
(36)
from which we read off the eigenvalues of A, and prove eq. (12). Proceeding as in
the A case, we find the action of the projectors on w A w :

(Py, PR lw Aw=(P_,PlwAhw=(FPo,PB)wAw=0 (37)

(Py, P-)wAw=(14¢7%)(Ps,P-Jw ®w,
(P-,Py)oAw=(1+¢)P-,Ps)w@w (38)

(P..,Po)w Aw= (1 + eq‘(N“'l))(P_,Po)w ® w,
(Poy P )w Aw=(14eq"* )P, P-)w Qw (39)

(P, Polw Aw = (1 — eg* N (P}, B)w @ w,
(Po, Py)w Aw = (1 —eq~ = =M)(Po, P Jw ®w (40)
Again the sum of the projectors (Pr, Py) yields the identity, so that we can write:
wAw = [(Py, P-)+(P-, Py )+(P-, Po)+(Po, P-)+(Ps, Po)+(Fo, Py )JwAw (41)
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where we have taken (37) into account. The w-permutator Z is therefore given by
Z= _[(P+aP-) + (P—1P+) + (P—s-PO) + (PO&P—) + (P+1P0) + (PO}P+)] (42)

Can we express it in terms of odd powers of the A matrix, as in the case of the
A groups 7 The answer is: only partially. In fact, by elementary algebra we find
that

Z=—aA+A)-B(A+ A% — (1 —ag-on — Be-sen)[(Pry Po) + (Po, Py )] k43)

with & = sgn(e) and

o=— 1+ Age (44)
q2

d69eN-2 — q293(eN-2)

tw=q"+q" ~ (46)

Note: A" is given by

AT = (P, Py) + (P-, P_) + (Po, Po) + " (g NPy, Po) + g~ 1-M)(Ry, P, )
+(-1Y(g~*(P+, P-) + ¢*"(P_, P,)]
+(—e) [g™ NPy, P_) + ¢ I(P_, By)] (47)

Let us check that Z in {43) has a correct classical limit. We have o ¥23 — o and

g3 ; taking into account that the (P, Ry),(Py, P,) terms disappear in the
classical limit (cf. eq. (39), (40)) when applied to w A w, we firid the expected
limit Z9 ,, ©3 6.

The Cartan-Maurer equations are deduced as before, and are given by (35)
where now Z is the w permutator of eq. (43) (Note: for explicit calculations the
expression (42) is more convenient). Again the w,® terms drop out since Z admits
the expansion Ze:’df’ |“;zb},:wa:" Awy? = —wdf’ Aw 4+ O(g—gq71).

In conclusion: we have found an explicit (and computable) expression for the
Cartan-Maurer equations of the B,,,C,, D, g-groups. This opens the possibility
of constructing gauge theories of these g-groups, following the procedure used in
[6] for the A,_, g-groups.

Finally, let us comment on the differential calculus presented by the authors
of ref. [10]. Their definition of exterior product in the B,C, D case differs from
ours (and from the one adopted in [11,12,13]), and essentially amounts to require
that (P, Po)w Aw = 0, (P, P, )w A w = 0, besides (37). This has one advantage:
the term (FP,, Py) + ( Py, P,) disappears in the expression {43). The disadvantage
is that the defining formula w A w = (I — A)w ® w does not hold any more for
the B, C, D series, so that the general treatment of ref. [11] and the constructive
procedure of ref.s [12] do not apply.
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