

CBPF-CENTRO BRASILEIRO DE PESQUISAS FÍSICAS

Notas de Física

CBPF-NF-024/93

by

Leonardo Castellani and Marco A.R-Monteiro

CBPF-NF-024/93

A Note on Quantum Structure Constants

by

Leonardo Castellani* and Marco A.R.-Monteiro*

[†]Centro Brasileiro de Pesquisas Físicas — CBPF/CNPq Rua Dr. Xavier Sigaud, 150 22290-180 – Rio de Janeiro, RJ – Brasil

*Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica

Via P. Giuria 1, 10125 Torino, Italy

DFTT-18/93 April 1993

email addresses:

Decnet=31890::castellani Bitnet=castellani@to.infn.it

Abstract

The Cartan-Maurer equations for any q-group of the A_{n-1}, B_n, C_n, D_n series are given in a convenient form, which allows their direct computation and clarifies their connection with the q=1 case. These equations, defining the field strengths, are essential in the construction of q-deformed gauge theories. An explicit expression $\omega^i \wedge \omega^j = -Z^{ij}_{kl} \omega^k \wedge \omega^l$ for the q-commutations of left-invariant one-forms is found, with $Z^{ij}_{kl} \omega^k \wedge \omega^l \stackrel{q \to 1}{\longrightarrow} \omega^j \wedge \omega^i$.

Key-words: Quantum gravity; Differential geometry; Quantum algebras.

Quantum groups [1]-[4] appear as a natural and consistent algebraic structure behind continuously deformed physical theories. Thus, in recent times, there have been various proposals for deformed gauge theories and gravity-like theories [5] based on q-groups.

Such deformations are interesting from different points of view, depending also on which theory we are deforming. For example, in quantized q-gravity theories space-time becomes noncommutative, a fact that does not contradict (Gedanken) experiments under the Planck length, and that could possibly provide a regularization mechanism [7,8]. On the other hand, for the q-gauge theories constructed in [6] spacetime can be taken to be the ordinary Minkowski spacetime, the q-commutativity residing on the fiber itself. As shown in [6], one can construct a q-lagrangian invariant under q-gauge variations. This could suggest a way to break the classical symmetry via a q-deformation, rather than by introducing ad hoc scalar fields. Note also that, unlike the q=1 case, the q-group $U_q(N)$ is simple, thus providing a "quantum unification" of $SU(N) \otimes U(1)$.

In order to proceed from the algebraic q-structure to a dynamical q-field theory, it is essential to investigate the differential calculus on q-groups. Indeed this provides the q-analogues of the "classical" definitions of curvatures, field strengths, exterior products of forms, Bianchi identities, covariant and Lie derivatives and so on, see for ex. [9] for a review.

In this Letter we address and solve a specific problem: to find the Cartan-Maurer equations for any q-group of the A, B, C, D series in explicit form. These equations define the field strengths of the corresponding q-gauge theories [6]. The A_{n-1} case was already treated in [9], where the structure constants were given explicitly, and shown to have the correct classical limit.

To our knowledge, this problem has been tackled previously only in ref. [10]. There, however, the authors use (for the B, C, D q-groups) a definition for the exterior product different from the one introduced in ref.s [11], adopted in [12,13,9] and in the present Letter. As we will comment later, their choice leads to a more complicated scenario.

Quantum groups are characterized by their R-matrix, which controls the non-commutativity of the quantum group basic elements T^a_b (fundamental representation):

$$R^{ab}_{ef}T^{e}_{c}T^{f}_{d} = T^{b}_{f}T^{a}_{e}R^{ef}_{cd} \tag{1}$$

and satisfies the quantum Yang-Baxter equation

$$R^{a_1b_1}_{a_2b_2}R^{a_2c_1}_{a_3c_2}R^{b_2c_2}_{b_3c_3} = R^{b_1c_1}_{b_2c_2}R^{a_1c_2}_{a_2c_3}R^{a_2b_2}_{a_3b_3}, \tag{2}$$

a sufficient condition for the consistency of the "RTT" relations (1). Its elements depend continuously on a (in general complex) parameter q, or even on a set of parameters. For $q \to 1$ we have $R^{ab}_{cd} \stackrel{q \to 1}{\longrightarrow} \delta^a_c \delta^b_d$, i.e. the matrix entries T^a_b

commute and become the usual entries of the fundamental representation. The q-analogue of det T = 1, unitarity and orthogonality conditions can be imposed on the elements T^a_b , consistently with the RTT relations (1), see [3].

The (uniparametric) R-matrices for the q-groups of the A_{n-1}, B_n, C_n, D_n series can be found in ref. [3]. We recall the projector decomposition of the \hat{R} matrix defined by $\hat{R}^{ab}_{cd} \equiv R^{ba}_{cd}$, whose $q \to 1$ limit is the permutation operator $\delta^a_d \delta^b_c$:

 A_n series:

$$\hat{R} = qP_{+} - q^{-1}P_{-} \tag{3}$$

with

$$P_{+} = \frac{1}{q+q^{-1}}(\hat{R} + q^{-1}I)$$

$$P_{-} = \frac{1}{q+q^{-1}}(-\hat{R} + qI)$$

$$I = P_{+} + P_{-}$$
(4)

 B_n, C_n, D_n series:

$$\hat{R} = qP_{+} - q^{-1}P_{-} + \varepsilon q^{\varepsilon - N}P_{0} \tag{5}$$

with

$$P_{+} = \frac{1}{q+q^{-1}} [\hat{R} + q^{-1}I - (q^{-1} + \varepsilon q^{\varepsilon - N})P_{0}]$$

$$P_{-} = \frac{1}{q+q^{-1}} [-\hat{R} + qI - (q - \varepsilon q^{\varepsilon - N})P_{0}]$$

$$P_{0} = \frac{1-q^{2}}{(1-\varepsilon q^{N+1-\varepsilon})(1+\varepsilon q^{\varepsilon - N+1})}K$$

$$K^{ab}_{cd} = C^{ab}C_{cd}$$

$$I = P_{+} + P_{-} + P_{0}$$
(6)

where $\varepsilon = 1$ for B_n , D_n , $\varepsilon = -1$ for C_n , and N is the dimension of the fundamental representation T_b^a , i.e. N = 2n + 1 for B_n and N = 2n for C_n , D_n . C_{ab} is the q-metric, and C^{ab} its inverse (cf. ref. [3]).

From (3) and (5) we read off the eigenvalues of the \hat{R} matrix, and deduce the characteristic equations:

$$(\hat{R} - qI)(\hat{R} + q^{-1}) = 0 \quad for \quad A_{n-1} \quad (Hecke \ condition)$$
 (7)

$$(\hat{R} - qI)(\hat{R} + q^{-1})(\hat{R} - \varepsilon q^{\varepsilon - N}I) = 0, \quad \text{for } B_n, C_n, D_n$$
 (8)

The differential calculus on q-groups, initiated in ref.s [11], can be entirely formulated in terms of the R matrix. The general constructive procedure can be found in ref. [12], or, in the notations we adopt here, in ref. [9].

As discussed in [11] and [12], we can start by introducing the (quantum) left-invariant one-forms ω_a^b , whose exterior product

$$\omega_{a_1}^{a_2} \wedge \omega_{d_1}^{d_2} \equiv \omega_{a_1}^{a_2} \otimes \omega_{d_1}^{d_2} - \Lambda_{a_1}^{a_2} \frac{d_2}{d_1} |_{c_2}^{c_1} \frac{b_1}{b_2} \omega_{c_1}^{c_2} \otimes \omega_{b_1}^{b_2}$$
(9)

is defined by the braiding matrix Λ :

$$\Lambda_{a_1 \ d_1}^{a_2 \ d_2}|_{c_2 \ b_2}^{c_1 \ b_1} \equiv d^{f_2} d_{c_2}^{-1} \hat{R}^{b_1 f_2}_{c_2 g_1} (\hat{R}^{-1})^{c_1 g_1}_{a_1 e_1} (\hat{R}^{-1})^{a_2 e_1}_{d_1 g_2} \hat{R}^{d_2 g_2}_{b_2 f_2}$$
(10)

For $q \to 1$ the braiding matrix Λ becomes the usual permutation operator and one recovers the classical exterior product. Note that the "quantum cotangent space" Γ , i.e. the space spanned by the quantum one-forms ω_a^b , has dimension N^2 , in general bigger than its classical counterpart $(\dim \Gamma = N^2)$ only for the $U_q(N)$ groups). This is necessary in order to have a bicovariant bimodule structure for Γ (cf. ref. ([10].). The same phenomenon occurs for the q-Lie generators defined below. For these, however, one finds restrictions (induced by the conditions imposed on the T^a_b elements) that in general reduce the number of independent generators. Working with N^2 generators is more convenient, since the nice quadratic relations (16) of the q-Lie algebra become of higher order if one expresses them in terms of a reduced set of independent generators. For a discussion see [13].

The relations (7) and (8) satisfied by the \hat{R} matrices of the A and B, C, D series respectively reflect themselves in the relations for the matrix Λ :

$$(\Lambda + q^2 I)(\Lambda + q^{-2} I)(\Lambda - I) = 0 \tag{11}$$

for the A q-groups, and

$$(\Lambda + q^{2}I)(\Lambda + q^{-2}I)(\Lambda + \varepsilon q^{\varepsilon + 1 - N}I)(\Lambda + \varepsilon q^{N - \varepsilon - 1}I) \times (\Lambda - \varepsilon q^{N + 1 - \varepsilon}I)(\Lambda - \varepsilon q^{-N - 1 + \varepsilon}I)(\Lambda - I) = 0$$
(12)

for the B, C, D q-groups, with the same ε as in (8). We give later an easy proof of these two relations.

Besides defining the exterior product of forms, the matrix Λ contains all the the information about the quantum Lie algebra corresponding to the q-group.

The exterior differential of a quantum k-form θ is defined by means of the bi-invariant element $\tau = \sum_a \omega_a^{\ a}$ as follows:

$$d\theta \equiv \frac{1}{a - a^{-1}} [\tau \wedge \theta - (-1)^k \theta \wedge \tau], \tag{13}$$

The normalization $\frac{1}{q-q^{-1}}$ is necessary in order to obtain the correct classical limit (see for ex. [9]). This linear map satisfies $d^2 = 0$, the Leibniz rule and commutes with the left and right action of the q-group [12].

The exterior differentiation allows the definition of the "quantum Lie algebra generators" $\chi_{a_2}^{a_1}$, via the formula [11]

$$da = \frac{1}{q - q^{-1}} [\tau a - a\tau] = (\chi_{a_2}^{a_1} * a) \omega_{a_1}^{a_2}. \tag{14}$$

where

$$\chi * a \equiv (id \otimes \chi)\Delta(a), \quad \forall a \in G_a, \ \chi \in G'_a$$
 (15)

and Δ is the usual coproduct on the quantum group G_q , defined by $\Delta(T^a{}_b) \equiv T^a{}_c \otimes T^c{}_b$. The q-generators χ are linear functionals on G_q . By taking the exterior derivative of (14), using $d^2 = 0$ and the bi-invariance of $\tau = \omega_b{}^b$, we arrive at the q-Lie algebra relations [12], [9]:

$$\chi_{d_{2}}^{d_{1}}\chi_{c_{2}}^{c_{1}} - \Lambda_{e_{1}}^{e_{2}}{}_{f_{1}}^{f_{2}}|_{d_{2}}^{d_{1}}{}_{c_{2}}^{c_{1}}\chi_{e_{2}}^{e_{1}}\chi_{f_{2}}^{f_{1}} = \mathbf{C}_{d_{2}}^{d_{1}}{}_{c_{2}}^{c_{1}}|_{a_{1}}^{a_{2}}\chi_{a_{2}}^{a_{1}}$$

$$(16)$$

where the structure constants are explicitly given by:

$$\mathbf{C}_{a_{2}\ b_{2}}^{a_{1}\ b_{1}}|_{c_{1}}^{c_{2}} = \frac{1}{q - q^{-1}} \left[-\delta_{b_{2}}^{b_{1}} \delta_{c_{1}}^{a_{1}} \delta_{a_{2}}^{c_{2}} + \Lambda_{b\ c_{1}}^{b\ c_{2}}|_{a_{2}\ b_{2}}^{a_{1}\ b_{1}} \right]. \tag{17}$$

and $\chi_{d_2}^{d_1}\chi_{c_2}^{c_1} \equiv (\chi_{d_2}^{d_1} \otimes \chi_{c_2}^{c_1})\Delta$. Notice that

$$\Lambda_{a_1 \ d_1}^{a_2 \ d_2}|_{c_2 \ b_2}^{c_1 \ b_1} = \delta_{a_1}^{b_1} \delta_{b_2}^{a_2} \delta_{d_1}^{c_1} \delta_{c_2}^{d_2} + O(q - q^{-1})$$
 (18)

because the R matrix itself has the form $R = I + (q - q^{-1})U$, with U finite in the $q \to 1$ limit, see ref. [3]). Then it is easy to see that (17) has a finite $q \to 1$ limit, since the $\frac{1}{q-q^{-1}}$ terms cancel.

The Cartan-Maurer equations are found by applying to $\omega_{c_1}^{c_2}$ the exterior differential as defined in (13):

$$d\omega_{c_1}^{\ c_2} = \frac{1}{q - q^{-1}} (\omega_b^{\ b} \wedge \omega_{c_1}^{\ c_2} + \omega_{c_1}^{\ c_2} \wedge \omega_b^{\ b}). \tag{19}$$

Written as above, the Cartan-Maurer equations are not of much use for computations. The right-hand side has an undefined $\frac{0}{0}$ classical limit. We need a formula of the type $\omega_{c_1}^{c_2} \wedge \omega_b^{\ b} = -\omega_b^{\ b} \wedge \omega_{c_1}^{\ c_2} + O(q - q^{-1})$ that allows to eliminate in (19) the terms with the trace $\omega_b^{\ b}$ (which has no classical counterpart) and obtain an explicitly $q \to 1$ finite expression.

The desired " ω -permutator" can be found as follows. We first treat the case of the A_{n-1} series. We apply relation (7) to the tensor product $\omega \otimes \omega$, i.e.:

$$(\Lambda^{ij}_{kl} + q^2 \delta^i_k \delta^j_l)(\Lambda^{kl}_{mn} + q^{-2} \delta^k_m \delta^l_n)(\Lambda^{mn}_{r,s} - \delta^m_r \delta^n_s) \omega^m \otimes \omega^n = 0$$
 (20)

where we have used the adjoint indices $^{i}\leftrightarrow _{a}^{b},\ _{i}\leftrightarrow _{b}^{a}$. Inserting the definition of the exterior product $\omega^{n}\wedge\omega^{n}=\omega^{m}\otimes\omega^{n}-\Lambda^{m}_{r_{s}}\omega^{r}\otimes\omega^{s}$ yields

$$(\Lambda^{ij}_{kl} + q^2 \delta^i_k \delta^j_l)(\Lambda^{kl}_{mn} + q^{-2} \delta^k_m \delta^l_n) \ \omega^m \wedge \omega^n = 0$$
 (21)

Multiplying by Λ^{-1} gives $(\Lambda + (q^2 + q^{-2})I + \Lambda^{-1}) \omega \wedge \omega$, or equivalently

$$\omega^i \wedge \omega^j = -Z^{ij}_{kl} \omega^k \wedge \omega^l \qquad (22)$$

$$Z^{ij}_{kl} \equiv \frac{1}{a^2 + a^{-2}} [\Lambda^{ij}_{kl} + (\Lambda^{-1})^{ij}_{kl}]. \tag{23}$$

cf. ref. [9]. The ω -permutator Z^{ij}_{kl} has the expected $q \to 1$ limit, that is $\delta^i_l \delta^j_k$.

There is another way to deduce the permutator Z, based on projector methods, that we will use for the B, C, D series. We first illustrate it in the easier A-case. Define

$$(P_I, P_J)_{a_1 \ d_1}^{a_2 \ d_2}|_{c_2 \ b_2}^{c_1 \ b_1} \equiv d^{f_2} d_{c_2}^{-1} \hat{R}^{b_1 f_2}_{c_2 g_1} (P_I)^{c_1 g_1}_{a_1 e_1} (\hat{R}^{-1})^{a_2 e_1}_{d_1 g_2} (P_J)^{d_2 g_2}_{b_2 f_2}$$
(24)

with I,J=+,-, the projectors P_+,P_- being given in (4). The (P_I,P_J) are themselves projectors, i.e.:

$$(P_I, P_J)(P_K, P_L) = \delta_{IK}\delta_{JL}(P_I, P_J)$$
(25)

Moreover

$$(I,I) = I \tag{26}$$

so that

$$(I,I) = (P_{+} + P_{-}, P_{+} + P_{-}) = (P_{+}, P_{+}) + (P_{-}, P_{-}) + (P_{+}, P_{-}) + (P_{-}, P_{+}) = I$$
 (27)

Eq. (25) is easy to prove by using (24) and the relation, valid for all A, B, C, D q-groups:

$$d^{f}d_{c}^{-1}\hat{R}^{bf}_{ca}(\hat{R}^{-1})^{ce}_{ba} = \delta_{a}^{f}\delta_{a}^{e} \qquad (28)$$

From the definition of Λ (10), using (3) and (24) we can write

$$\Lambda = (P_+, P_+) + (P_-, P_-) - q^{-2}(P_+, P_-) - q^2(P_-, P_+)$$
(29)

This decomposition shows that Λ has eigenvalues $1, q^{\pm 2}$, and proves therefore eq. (11). From the definition of the exterior product $\omega \wedge \omega = \omega \otimes \omega - \Lambda \omega \otimes \omega$ we find the action of the projectors (P_I, P_J) on $\omega \wedge \omega$:

$$(P_+, P_+)\omega \wedge \omega = (P_-, P_-)\omega \wedge \omega = 0 \tag{30}$$

$$(P_{+}, P_{-})\omega \wedge \omega = (1 + q^{-2})(P_{+}, P_{-})\omega \otimes \omega, \quad (P_{-}, P_{+})\omega \wedge \omega = (1 + q^{2})(P_{-}, P_{+})\omega \otimes \omega$$
(31)

Using (27) and (30) we find:

$$\omega \wedge \omega = [(P_+, P_+) + (P_-, P_+) + (P_+, P_-) + (P_-, P_+)] \omega \wedge \omega = [(P_+, P_-) + (P_-, P_+)] \omega \wedge \omega$$
(32)

The ω -permutator is therefore $Z = -(P_+, P_-) - (P_-, P_+)$. We can express it in terms of the Λ matrix by observing that

$$(P_+, P_-) + (P_-, P_+) = -\frac{1}{\sigma^2 + \sigma^{-2}} (\Lambda + \Lambda^{-1}) + \frac{2}{\sigma^2 + \sigma^{-2}} ((P_+, P_+) + (P_-, P_-))$$
(33)

as one deduces from (29). Note that Λ^{-1} is given in terms of projectors by the same expression as in (29), with $q \to q^{-1}$. When acting on $\omega \wedge \omega$ the $(P_+, P_+), (P_-, P_-)$ terms in (33) can be dropped because of (30), so that finally we arrive at eq. (23).

Because of the expansion (18) and a similar one for Λ^{-1} we easily see that the ω -permutator (23) can be expanded as

$$Z_{c_1 d_1}^{c_2 d_2}|_{a_2 b_2}^{a_1 b_1} \omega_{a_1}^{a_2} \wedge \omega_{b_1}^{b_2} = \omega_{d_1}^{d_2} \wedge \omega_{c_1}^{c_2} + (q - q^{-1}) W_{c_1 d_1}^{c_2 d_2}|_{a_2 b_2}^{a_1 b_1} \omega_{a_1}^{a_2} \wedge \omega_{b_1}^{b_2}$$
(34)

where W is a finite matrix in the limit $q \to 1$.

Let us return to the Cartan-Maurer eqs. (19). Using (22) we can write:

$$d\omega_{c_1}^{c_2} = \frac{1}{a - a^{-1}} (\omega_b^{\ b} \wedge \omega_{c_1}^{\ c_2} - Z_{c_1}^{\ c_2}{}_b^{\ b}|_{a_2\ b_2}^{a_1\ b_1} \omega_{a_1}^{\ a_2} \wedge \omega_{b_1}^{\ b_2})$$
(35)

where Z is given by $(\Lambda + \Lambda^{-1})/(q^2 + q^{-2})$, cf. (23). Because of (34) we see that the ω_b^b terms disappear, and (35) has a finite $q \to 1$ limit.

We now repeat the above construction for the case of q-groups belonging to the B, C, D series.

Using (5) and (24) we find the following projector decomposition for the Λ matrix:

$$\Lambda = (P_{+}, P_{+}) + (P_{-}, P_{-}) + (P_{0}, P_{0}) + \varepsilon q^{\varepsilon - 1 - N} (P_{+}, P_{0}) + \varepsilon q^{-(\varepsilon - 1 - N)} (P_{0}, P_{+})
- q^{-2} (P_{+}, P_{-}) - q^{2} (P_{-}, P_{+}) - \varepsilon q^{N - \varepsilon - 1} (P_{0}, P_{-}) - \varepsilon q^{-(N - \varepsilon - 1)} (P_{-}, P_{0})$$
(36)

from which we read off the eigenvalues of Λ , and prove eq. (12). Proceeding as in the A case, we find the action of the projectors on $\omega \wedge \omega$:

$$(P_+, P_+)\omega \wedge \omega = (P_-, P_-)\omega \wedge \omega = (P_0, P_0)\omega \wedge \omega = 0$$
 (37)

$$(P_+, P_-)\omega \wedge \omega = (1 + q^{-2})(P_+, P_-)\omega \otimes \omega,$$

$$(P_-, P_+)\omega \wedge \omega = (1 + q^2)(P_-, P_+)\omega \otimes \omega$$
(38)

$$(P_{-}, P_{0})\omega \wedge \omega = (1 + \varepsilon q^{-(N-\varepsilon-1)})(P_{-}, P_{0})\omega \otimes \omega,$$

$$(P_{0}, P_{-})\omega \wedge \omega = (1 + \varepsilon q^{N-\varepsilon-1})(P_{0}, P_{-})\omega \otimes \omega$$
(39)

$$(P_{+}, P_{0})\omega \wedge \omega = (1 - \varepsilon q^{\varepsilon - 1 - N})(P_{+}, P_{0})\omega \otimes \omega,$$

$$(P_{0}, P_{+})\omega \wedge \omega = (1 - \varepsilon q^{-(\varepsilon - 1 - N)})(P_{0}, P_{+})\omega \otimes \omega$$
(40)

Again the sum of the projectors (P_I, P_J) yields the identity, so that we can write:

$$\omega \wedge \omega = [(P_+, P_-) + (P_-, P_+) + (P_-, P_0) + (P_0, P_-) + (P_+, P_0) + (P_0, P_+)]\omega \wedge \omega$$
 (41)

where we have taken (37) into account. The ω -permutator Z is therefore given by

$$Z = -[(P_+, P_-) + (P_-, P_+) + (P_-, P_0) + (P_0, P_-) + (P_+, P_0) + (P_0, P_+)]$$
(42)

Can we express it in terms of odd powers of the Λ matrix, as in the case of the A groups? The answer is: only partially. In fact, by elementary algebra we find that

$$Z = -\alpha(\Lambda + \Lambda^{-1}) - \beta(\Lambda^{3} + \Lambda^{-3}) - (1 - \alpha q_{-\epsilon N} - \beta q_{-3\epsilon N})[(P_{\sigma}, P_{0}) + (P_{0}, P_{\sigma})]$$
(43)

with $\sigma \equiv sgn(\varepsilon)$ and

$$\alpha = -\frac{1 + \beta q_6}{q_2} \tag{44}$$

$$\beta = \frac{q_2 - q_{eN-2}}{q_6 q_{eN-2} - q_2 q_{3(eN-2)}} \tag{45}$$

$$q_n \equiv q^n + q^{-n} \tag{46}$$

Note: Λ^{τ} is given by

$$\Lambda^{r} = (P_{+}, P_{+}) + (P_{-}, P_{-}) + (P_{0}, P_{0}) + \varepsilon^{r} [q^{r(e-1-N)}(P_{+}, P_{0}) + q^{-r(e-1-N)}(P_{0}, P_{+})]
+ (-1)^{r} [q^{-2r}(P_{+}, P_{-}) + q^{2r}(P_{-}, P_{+})]
+ (-\varepsilon)^{r} [q^{r(N-e-1)}(P_{0}, P_{-}) + q^{-r(N-e-1)}(P_{-}, P_{0})]$$
(47)

Let us check that Z in (43) has a correct classical limit. We have $\alpha \xrightarrow{q \to 1} -\frac{9}{16}$ and $\beta \xrightarrow{q \to 1} \frac{1}{16}$; taking into account that the $(P_{\sigma}, P_0), (P_0, P_{\sigma})$ terms disappear in the classical limit (cf. eq. (39), (40)) when applied to $\omega \wedge \omega$, we find the expected limit Z^{ij} $_{kl} \xrightarrow{q \to 1} \delta^i_l \delta^j_k$.

The Cartan-Maurer equations are deduced as before, and are given by (35) where now Z is the ω permutator of eq. (43) (Note: for explicit calculations the expression (42) is more convenient). Again the ω_b^b terms drop out since Z admits the expansion $Z_{c_1}^{c_2}^{d_2}|_{a_2}^{a_1}|_{b_2}^{a_1}\omega_{a_1}^{a_2}\wedge\omega_{b_1}^{b_2}=-\omega_{d_1}^{d_2}\wedge\omega_{c_1}^{c_2}+O(q-q^{-1})$.

In conclusion: we have found an explicit (and computable) expression for the Cartan-Maurer equations of the B_n, C_n, D_n q-groups. This opens the possibility of constructing gauge theories of these q-groups, following the procedure used in [6] for the A_{n-1} q-groups.

Finally, let us comment on the differential calculus presented by the authors of ref. [10]. Their definition of exterior product in the B,C,D case differs from ours (and from the one adopted in [11,12,13]), and essentially amounts to require that $(P_{\sigma}, P_0)\omega \wedge \omega = 0$, $(P_0, P_{\sigma})\omega \wedge \omega = 0$, besides (37). This has one advantage: the term $(P_{\sigma}, P_0) + (P_0, P_{\sigma})$ disappears in the expression (43). The disadvantage is that the defining formula $\omega \wedge \omega = (I - \Lambda)\omega \otimes \omega$ does not hold any more for the B,C,D series, so that the general treatment of ref. [11] and the constructive procedure of ref.s [12] do not apply.

References

- [1] V. Drinfeld, Sov. Math. Dokl. 32 (1985) 254.
- [2] M. Jimbo, Lett. Math. Phys. 10 (1985) 63; 11 (1986) 247.
- [3] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra and Analysis, 1 (1987) 178.
- [4] S. Majid, Int. J. Mod. Phys. A5 (1990) 1.
- [5] A.P. Isaev and Z. Popowicz, q-Trace for the Quantum Groups and q-deformed Yang-Mills Theory, Wroclaw preprint ITP UWr 786-91; I.Y. Aref'eva and I.V. Volovich, Mod. Phys. Lett A6 (1991) 893; Phys. Lett. B264 (1991) 62; L. Castellani, Phys. Lett. B279 (1992) 291 and Phys. Lett. B292 (1992) 93; S. Meljanac and S. Pallua, Classical field lagrangian and deformed algebras, DFPF/92/TH/15; A. Dimakis and F. Müller-Hoissen, Noncommutative differential calculus, gauge theory and gravitation, GOET-TP-33/92; K. Wu and R.-J. Zhang, Commun. Theor. Phys. 17 (1992) 175; T. Brzeziński and S. Majid, Quantum group gauge theory on quantum spaces, DAMTP/92-27 and Quantum group gauge theory on classical spaces, DAMTP/92-51.
- [6] L. Castellani, $U_q(N)$ gauge theories, Torino preprint DFTT 74/92.
- [7] A. Connes, Publ. Math. IHES Vol. 62 (1986) 41; Géométrie non commutative (Inter Editions, Paris, 1990).
- [8] S. Majid, Classs. Quantum Grav. 5 (1988) 1587; Int. J. Mod. Phys. A5 (1990) 4689.
- [9] P. Aschieri and L. Castellani, An introduction to non-commutative differential geometry on quantum groups, preprint CERN-TH.6565/92, DFTT-22/92 (1992), to be publ. in Int. J. Mod. Phys. A.
- [10] U. Carow-Watamura, M. Schlieker, S. Watamura and W. Weich, Commun. Math. Phys. 142 (1991) 605.
- [11] S.L. Woronowicz, Publ. RIMS, Kyoto Univ., Vol. 23, 1 (1987) 117; Commun.
 Math. Phys. 111 (1987) 613 and Commun. Math. Phys. 122, (1989) 125.
- [12] B. Jurčo, Lett. Math. Phys. 22 (1991) 177.
- [13] B. Zumino, Introduction to the Differential Geometry of Quantum Groups, LBL-31432 and UCB-PTH-62/91, notes of a plenary talk given at the 10-th IAMP Conf., Leipzig (1991); P. Schupp, P. Watts and B. Zumino, Bicovariant quantum algebras and quantum Lie algebras, LBL-32315, UCB-PTH-92/14.