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ABSTRACT

Within an effective field framework which improves
the Molecular Field Approximation, we calculate the phase diagram,
magnetization, specific heat and susceptibility associated with
the quenched bond-dilute Ising ferromagnet in square lattice.
The results are qualitatively (and within certain extent quan-
titatively) satisfactory; in particular the effects, on the spe
cific heat and susceptibility, of the (eventually) coexisting

finite and infinite clusters are exhibited.



I - INTRODUCTION

During recent years much effort has been dedicated to
quenched (and annealed) bond-dilute magnetic systems. Because
of its relative simplicity the square lattice spin - % Ising
ferromagnetic is of course one of the most intensively studied.
Nevertheless, even its (exact) phase diagram is still wunknown
(excepting the terminal critical points and derivatives; see,
for example, Ref. [1,2] and references therein for details on
the available approaches). The situation is even worse in what
concerns the thermodynamical properties. Some approximate calcu
lations of the specific heat [3,4] andrsponunwousnwgnetiuﬂioﬂj]
are already available, but to the best of our knowledge no at-
tempts have been published concerning the magnetic susceptibility.

Recently Honmura and ﬁmnwyoﬂﬁﬁs] have introduced, for
the spin - % pure Ising model, a new type of effective field
approximation (based in the use of a convenient differential
operator into the first Callen spin correlation i&aujty“ﬂ)whhjg
within a mathematically simple framework, substantially improves
the standard Molecular Field Approximation (MFA) results (this
point will be exhibited herein and is extensively commented
in Ref.[2]). This approach shares with the MFA a great versatility
and has already  been applied to a variety of interesting

(71 [8]

situations such as pure sytems , Site-random
[2,9] [10]

and bond—rag

[11,12]

dom magnets including spin-glass and amorphous

1[13] [14]

systems, transverse Ising mode and surface problems

Most of these works have been devoted to the analysis of the
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phase diagram and the spontaneous magnetization; the specific

heat (and eventually the short range order parameter) has been
[5] [15]

focused 1n  pure isotropic , pure anisotropic and
bond-dilute isotropic[g] systems; the zero field isothermal
magnetic susceptibility has been focused only once [15] (pure

anisotropic system).

In the present work we study the quenched bond-dilute spin
- % Ising ferromagnet in square lattice, and calculate the most
relevant thermodynamical quantities (phase diagram, spontaneous
magnetization, short range order parameter, specific heat and
zero field magnetic susceptibility) within an wunified approxi
mation framework; in particular the present approach for the
specific heat is different (and more satisfactory 1in the sense
that it decouples the bond concentration from the lattice co-
ordination number) from that appearing in Ref. [9]. By following
along the lines of Ref. [15] we ‘treat the magnetic susceptibili
ty by two slightly different procedures (more or less adapted

to the low and high temperature.regions).

IT - MODEL AND FORMALISM

IT.1 - Spontaneous magnetization

Let us consider the Hamiltonian

é‘\'g = - Z JijOiO'j (oi,cjzil) ()

<i,j>



where <i,j> run over all the couples of nearest-neighbouring
sites of a square lattice, and Jij is a random variable associ

ated with the following probability distribution law:

P(Jij) = (1_p)5(Jij) + pG(Jij—J) (0£p<1;J>0) (2)

The starting point for the thermal treatment of the
[6]

present Ising system 1s the following first Callen identity -:

<o;> = <tanhBZj Jij 957 (821/kpT) (3)
where <...> denotes the canonical thermal average for a given
configuration of the {Jij} and j runs over the 4 nearest-neigh
bours of site i. By following Ref. [5] we introduce now the

differential operator D = 3/3x into Eq. (3) and obtain.

ij0j> tanh x

L BDLI
L x=0

<g.> =
1

= <[I(cosh BJ..D + o, sinh BRJ..D) > tanh x (4)
j 1) J 1] x=0

The performance of the configurational average (noted <...> )
J

yields

<<g.>»> = << .. .S1 . .
93>3 g(cosh BJlJp + 0J51nh BJlJD)>3_tanh X o (5)



This equation is untractable as it holds, therefore we shall
decouple[z] next-nearest-neighbour spin correlations; Eq. (5)

becomes

4
- D . D
<<0;>>5 m = {[p cosh ¥+C1-p)] + M p sinh %;} taﬂ1xlx=0

Am + Bm3 (6)

Hl

where t kBT/J and

A= %; (tanh + 2tanh-) + 3p%(1-p) (tanh + tanh —-)

+ 6p?(1-p)? tanh £ + 4p(1-p)° tanh I (7)
I
B = %T (tanh ~ 2tanh —)
+ p¥(1-p) (tanh % - 3tanh %—) (8)

Eq. (6) admits two solutions, namely the paramagnetic one (m=0)

and the ferromagnetic one

1
m = l:éf>2 (see Fig. 1) (9)
B

The critical line is given by A = 1 (see Fig. 2) and its termi

nal points are t_(p=1) x 3.0898 and p_ % 0.4284 '(tcexaCt v 2.2692110]

(171, tCMFA _ 4 and pCMFA _ 0.

exact

and P. = 1/2



II.2 - Short range order parameter and specific heat

The internal energy <<E>>J per site is given by
1
<<E>>J = -3 << %:Jikoiok>>J (10)

where <i,k> are nearest-neighbours. By using the two-site Callen

identity[6] we rewrite this equation as follows:

<<E>>

1 BD) J..o.
- 7<<§Jik0k e ; ij"j>>; tanh x'

eBDnJ.

1joj>> (11)

le

o
- 78D B §<<

where we have introduced the D-operator and decoupled[z] the
next-nearest-neighbour spin correlations. By performing the

derivative with respect to n and applying the D-operator we

obtain
<<E>>; = - 2Jpt (12)

where the short range order parameter T = <<cigk>>J is given

by

T = V. + 3v2m2 +v,m (13)
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with

ot 0o
N
+
ENEN

v, = % pl (tanh % + 2tanh p2(1-p) x

0

A

X (tanh + tanh ) + % p(1-p)? tanh %

o+

3
T

+ (1-p)? tamh 1 (14)

v, = % p® tanh % + % pz(l-p)( 3tanh % - tanh % )

+ 2 p(l-p)*tanh % (15)
and

v, = % p3 (tanh % - 2tanh % ) (16)

The thermal behaviour of t is depicted in Fig. 1. The specific
heat per site is given by

8<<E>>J
Cz ———— = - ZkBp = (17)

oT
and its thermal behaviour is shown in Fig. 3 for selected wvalues
of p. As it is usual in effective-field theories the well known
logarithmic (at least for p=1) singularity is not Trecovered;
nevertheless an improvement is obtained with respect to the
MFA results, as a paramagnetic tail (proportional to 1/T?) is
present. In spite of the fact that the singularity which ap-

pears is of an incorrect type, an essential phenomenon is
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clearly exhibited; we refer to the fact that, for pc<p<1, two
different contributions to the specific heat are present (the
singular one coming from the unique infinite cluster, and the
regular one coming from the isolated finite clusters), whereas,
for 0<p<p_, the singularity disappears and the specific heat
is due exclusively to the finite clusters (see also Ref. [3] and

[4] where indications in the same sense are presented).

IT.3 - Susceptibility

Let us now add to the Hamiltonian (1) the term
-g“BH‘;G’i (g = Landé factor; Mg = Bohr magneton; H = external

magnetic field); consequently identity (4) is generalized into

<0;> = <§(cosh BJijD + oj51nh BJijD)> tanh(x + BguBH) .

(18)
The zero field isothermal magnetic susceptibility per site Xo

is given by

g’ug®
Xo = X (19)
3
— om
where X = 3 he0 (20)

1t

By taking on both sides of Eq. (18) the configurational aver-

age and derivating with respect to h at the point h =0 we obtain



_ 1o : 3 2
X =z <<II (cosh BDJij + 0j51nh BDJij)>> sech xl

] x=0

3 .
* 3q <<IIcosh BDJi- + oj51nh BDJij>>

3 tanh xl (21)
J

h=0 X=0

By decoupling now [15] the next-nearest-neighbour spin correla

tions we straightforwardly obtain our first approximation for

the susceptibility:

x=0 (22)

where

L = [(1—p) + p<cosh % + m sinh %) ]I+ (23)

By evaluating Eq. (22) we finally arrive to

. _F (24)

X
I " t(1 - A - 3Bm?)

where A,B and m are repectively given by Eqgs. (7), (8) and (9)

and where

[% p“(sech2 4, dsech? % + 3 >+ ps(l-p)(sech2 %

i
]

t

+

3sech? %:>+ 3p?(1l-p)?isech? %- + 1q)+ 4p (1-p) ® sech? %

+ -

(1-p)* ]



cont [Ee(een & 1) e bram (et

1 -1
- sech? f')+ > pz(l_p)2<sech2 = - 1ﬂ
1 4| 2 4 2 2
+Fm {sech T - 4sech . 3 } (25)

The temperature dependence of XI shown in Fig. 4 for selected
values of p; remark that, in the limit t » «, y ~ 1/t. The low
temperature region is an extremely interesting one. We observe
that only for p = 1, x vanishes in the limit t » 0 as only 1in
this case no finite clusters of spins exist; for pc<p<1, x di-
verges twice, one at the critical point (infinite cluster con
tribution) and another one at t = 0 (finite clusters contribu-
tion), 1in other words, we observe the coexistence of a Curie-Weiss-
type law with a Curie-type one; finally for P<p. only the t =0
divergence remains. Although these effects were expected, this
is the first time as far as we know, that they are exhibited.

Let us now focuse another type of approximation which
will yield our second proposal for the reduced susceptibility
denotedby xyg-

Both single-site (Eq. (3)) and two-site Callen identi

(6) (18)

ty can be generalized into

<f-qi> = <f'tanh BE;Jijoj + guBH] > (26)

where f' denotes an arbitrary spin function not including the

i~th spin. Now, 1let wus take f' as follows:
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fr = £41 + tanh[B %bijcj ] tanh (BguBH% (27)

with another arbitrary spin function f which also does not in-

‘clude the i-th spin. Then equation (26) may be rewritten as

gJ

<g.> + <0.1l e
1 1.

tanh BguBH
J

ijGjD> tanh x'
x=0

o8B

= <I + tanh BguBH (28)
J

ijGjD> tanh X|
x=0

where we introduced the differential operator D and we choosed
f =1.
By decoupling the nearest -neighbour spin term, and by further

decoupling the next-nearest-neighbour spin correlations, equation

(28) can be rewritten as

8J D

<g.> + <0.:><I e ijoj > tanh x’ tanh BguyH
1 1 B
J x=0
= H<eBJij0jD> tanh xl + tanh BgugH (29)
J x=0

By taking on both sides of eq. (29) the configurational average

and derivating with repect to h(h = guBH/J) at the point h = 0

we obtain the following approximate zero field reduced suscepti-

bility:

I 2 1 - n? (30)
t(l - A - 3Bm?)
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We remark that the present denominator coincides with that of

Eq. (24); consequently XI and XIIdiverge at one and the same

II

critical point. The temperature dependence of ¥ is illustrated

in Fig. 4 for selected values of p; we remark that in the high

IT

temperature region XI is a better approximation than yx ', whereas

at low temperature XIItends to be better than XI.

IIT - CONCLUSION

We discuss the quenched bond-diluted spin - 1 Ising

2
ferromagnet in square lattice. Within an effective field uni
fied framework which extends the one recently introduced by

[5]

Honmura and Kaneyoshi ,

we calculate the most relevant thermo
dynamical quantities, namely the phase diagram in the (bond)
concentration-temperature space, spontaneous magnetization, short
range order parameter, specific heat and zero field isother-
mal magnetic susceptibility. The latter has been computes within
two slightly different approaches which extend those ap-
pearing in Ref.[15]: they are expected to provide approximations
which fit better the unknown exact results in the low and high
temperature regions. Interesting effects (see Fig. 3 and 4) come
up in the thermal behaviours of both specific heat andsusceptibility
due to the eventual coexistence, in the system, of an infinite
cluster with finite ones (whose respective weighs depend on the
bond concentration).

The present framework shares with the Mean Field Ap-

proximation the fact that the critical exponents are classical



(Landau-type); on the other hand substantial improvements are
exhibited in several senses which can be of qualitative (para-
magnetic tail in the specific heat, non vanishing bond perco-
lation critical probability) or even quantitative (numerical
value of the pure case critical temperature) nature. Furthermore
let us conclude by saying that the present theory, with no
mathematical complexities, «can be suitable for analyzing complex
Ising systems.

One of us (E.F.S.) is gratefull for hospitality re-
ceived at the Centro Brasileiro de Pesquisas Fisicas where part
of this work was done; another one (C.T.) acknowledges a

Guggenheim Fellowship.
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CAPTION FOR FIGURES

FIG.

FIG.

FIG.

FIG.

1

3

Thermal dependence of the reduced spontaneous magnet
ization (continuous lines) and square root of the
short range order parameter (dashed lines) for typi-

cal values of the bond concentration p.

Critical temperature as a function of bond concentra
tion ((P) and (F) respectively denote para- and fer-

romagnetic phases)

Thermal dependence of the specific heat per site for

typical values of the bond concentration p.

Thermal dependence of the reduced inverse magnetic

susceptibility (continuous: xil; dashed: Xi;; dot-
-1 .. . .

dashed: unknown Xexact (indicative)) for typical val

ues of the bond concentration p.
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