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ABSTRACT

By generalizing recently introduced quantities
(referred to as "thermal transmissivities"), we recover the
usual duality results concerning the pure Z(N) spin systems
(including the standard Ising and Potts models) as well as
generalized gauge systems (plaquettes or more complex sim-
plex) in d- dimensional hypercubic lattices. The essential
relationship between duality and simple series- parallel
transformation becomes evident. The simplicity of the equa-
tions enables conjectures on the approximate critical fron-
tier of the diluted version of the above systems, including
some particular asymptotic behaviours which we believe
exact. As an illustration the d =2 diluted Z(4) spin system
is discussed in some detail: for those regions where exact

results are available the agreement is satisfactory.



I - INTRODUCTION

Since the Kramers and Wannier 1941 discussion of
the Ising model, duality arguments have been a powerfull tool
for discussing the location of critical frontiers (CF) in va-
rious statistical systems such as bond percolation (Sykes and
Essam 1963) and the N- states Potts model (Potts 1952, Kim and
Joseph 1974). Quite general results (concerning in particular
the Z (N) models) have been obtained by Wu and Wang 1976,

Alcaraz and Kdberle 1980, 1981 and Savit 1980.

On different grounds Nelson and Fisher 1975 and
Yeomans and Stinchcombe 1979 (among others) have introduced,
in the discussion of Ising models, a convenient variable, na-
mely t =th J/kBT (J is the exchange coupling constant and T
the temperature), referred hereafter to as thermal transmisst
vity (Tsallis and Levy 1980 a, Levy at al 1980). This quan-
tity can be extended (Tsallis and Levy 1980 b, Tsallis 1981 )
to cover the N- states Potts model; its expression is given by

~ =NJ/k_T
£z Li=8 ? (1)

—NJ/kBT

1+ (N-1) e

—J/kBT
Remark that in the limit N+ 1 t equals l-e thus repro-
ducing the variable which establishes the isomorphism with

the bond percolation problem (Kasteleyn and Fortuin 1969).

The main advantage of the t- variable is to pro-
vide a probability - like algorithm to calculate the equiva-

lent transmissivity tS of a series array of two bonds whose



transmissivities are t, and t namely

1 27

t =¢t, t (2)

If the array is a parallel one the equivalent transmissivity

tp satisfies

D D D
- 3
tp tl t, (3)
where
1-t,
D i .
ti = (i=1,2,p) (4)
l-i-(N—l)ti

The super-script D holds for dual (we refer here tothe standard
duality: see Section II); let us stress that through transfor
mation (4), the series and parallel composition algorithms

(respectively Egs. (2) and (3)) become one and the same.

In the present paper (Section II) we extend the
transmissivity to cover spin and generalized gauge Z(N) sys-
tems which contain several coupling constants and we exhibit
that the standard dual transformation can be very simply ex-

pressed as a series- parallel transformation.

The simplicity of Egs. (2) and (3) has enabled
guite satisfactory conjectures (Tsallis and Levy 1980 a, Levy
et al 1980 and Tsallis 1981) about the CF of the . bond-dilute
(or even bond-mixed) Ising and Potts models. It seems there-
fore quite natural to propose (Section III) analogous con-
jectures for the CF of diluted versions of general Z(N) sys-
tems (only d- dimensional hypercubic lattices are considered).

The particular case of the d=2 Z2(4) spin system is treated in



detail: some already known numerical results are exactly or
approximatively recovered and a few predictions are pro-

posed.

II - TRANSMISSIVITY AND DUALITY IN PURE Z (N) MODELS

Let us consider a site (0- simplex) to which we
2mn

associate a Z(N) random variable S Ee‘ N where n =0,1,2,
cee,N—1, Then we construct a bond (1 - simplex) by joining
two such sites (noted 1 and 2) and we associate to it the

Z (N) random variable A, (the subindex 1 refers to 1 - simplex)

1
defined by
* i 2ﬂ(n2—nl)/N ()
Al = Sl 82 = e . Let p be the probabili-
ty that this variable takes the value et 2ma/N . We define
—+

the N~ dimensional vector transmissivity t through its com-

ponents given by

N-1 i %?as
£y o) (0=0,1,2,...,N-1) (5)
B=0
hence
N-1 —i%aB
p(B) =.f\]]: 2 t(a) e (g=0,1,2,...,N-1) (5")
a=0
Remark that
£© _ (6)

and

L (N-a) _ [t(a)J* 7



Remark also that in the case of a Potts bond  we have that
-NJ/k_.T -NJ/k T
o
pl® -1/ EL+ (N-1) e B ] and, for 8 #0, p®) =e By
-NJ/k_T (8)

B

] therefore t for B # 0 reduces to

[l+ (N=1) e

expression (1).

Let us now calculate the equivalent transmissi-

.
vity tS of a series array of two Z(N) bonds whose : trans-
>

—)
missivities are tl and t2. If we take into account - that

the equivalent probabilities are given by

N-1

() _ (8) _(a=B)

P = L1 Py P (8)
8=0

we immediately obtain that

(o) _ () _(a) _ _
tS = tl t2 (a =0,1,2,...,N-1) (9)

If we have instead a parallel array, the equi-

valent probabilities are given by

(a) (o)
(o) Py p2
o (@) (10)
’ e @
I P P
Rg=0

which provides the following relations:

() D _ ,(a) D () D — —
tp = tl t2 (a=0,1,2,...,N=-1) (11)
where
Ngl £ (B) -1 2maB/N
* J
(t§a) D] - _B=0 (5=1,2,p) (12)
N=-1
7ooelB)



Let us stress that through transformation (12) the series and
parallel algorithms (Egs. (9) and (11)) become one and the same,
The complex conjugation in Eg. (12) ensures that the dual of

the dual is the identity.

It is interesting to remark that the real cuantity

N-1

o = +l~ 2 t(u) = /ﬁ-p(o)
VYN

a=0

transforms under duality similarly to a resistance (or a con-

ductance), i.e.

b _ 1
=%

Furthermore the quantity

E/T\I-D‘l : (13)
N -1

T

transforms under duality like the transmissivity of a Potts
model (see Eq. (4)), i.e.
D 1-1

T = — (14)
1+ (N-1)T

Finally we may define another interesting guantity (used in

Section III) namely

_ (N p)_ en [1+ (8-1)7]
in N ¢n N

(15)

We immediately verify that under duality o transforms like a
probability, i.e.

PP=1-g (16)



This variable generalizes the s- variable introduced in Levy

et al 1980 and extended by Tsallis 1981 (see also Tsallis and de Maga-
lhdes 1981).

We shall now restate on more general grounds
what we have said until now (and by the way clarify the no-
menclature introduced in Eq. (12)). Let us consider a square
plaquette (hypercubic s- simplex); its border is constituted

by 4 bonds (2s (s-1)-simplex). To the i-th bond ((s-1)-sim-

1.2ﬂni/N

plex) we associate a Z(N) random variable Si==e and

to the plaquette (s- simplex) we associate another Z(N) va-

* %
i i = Iiv = =
riable noted AZ(AS) defined by A2 {;} Si_SlSZS3S4 (AS

R * % *
I's.= 8.8 S

* o o S
(i3 12 s

s+l...52s) where the prime stands for
oriented product. To anon elementary plaquette (s- simplex)
we shall associate the Z(N) variable A, = II' S, (A_= II' s,)
2 iy Y8 gyt
where the oriented product runs over all the bordering bonds
((s=1)- simplex). The plaquette (s- simplex) will be said

L2ma/N ith o = 0,1,2,...,

o~ frustrated when A2(AS) equals e
N-1; it is clear that 0- frustrated corresponds to not frus-
trated. Let p(a) be the probability that the plaquette (s=-
simplex) is a- frustrated. Through Eq. (5) we define the trans-

-
missivity t associated to the plaquette (s~ simplex).

Two plaquettes (s~ simplex) noted 1 and 2 will
be said to be in series if they share one and only one bor-
dering bond ((s-1)- simplex); the Z(N) random variable asso-
ciated to this array is obtained by the product (Az)1 (A2)2
((As)l(As)Z)’ therefore Egs. (8) and (9) still hold in the
present general picture. Two plaquettes will be said to be

in parallel if they share the whole border; the probability

of this array being a- frustrated is still given by Egq. (10)



which implies Egs. (11) and (12).

It is well known (Yoneya 1978 and Savit 1980) that
through duality transformation a s- simplex in a d- dimension-
al original lattice goes to a (d-s)- simplex in the dual
lattice. Consequently the transmissivity E of that s- simplex
in the original lattice is related to the transmissivity (no-

+ D
ted t ) of the (d-s)- simplex in the dual lattice through Eq.

(12).

Let us now perform an application of the present
formalism. We shall consider the general ferromagnetic z (N)
bond system in square lattice; its Hamiltonian J*F(or action)

is given (Alcaraz and Koberle 1980,1981) by

—_—= ) h(n;-n,) (17)

B <i, 3>

with

h(ni—nj) = K, -

(18)

-.

=K, - )2K, cos 2718 (n,-n,)

B w T
B=1

the sum of Eq.(17) runs over all the nearest- neighbours and N is

the integer part of N/2 if N> 2; in the limit N»1 N equals

one. The probability that n;-N, =0 (mod. N) is given by

-h (o)
p(a) _ e (19)

N-1

o-h ()

o~

g=0

1l



which, through Eq. (5), leads, for N3>2, to

N-1
z e-h(B)el 2maB /N
t(oc) - B=0 ’ (20)
N-1
y e‘h(B)
B=0
*
Remark that t(u) = t(N_u)= (t(a)) . If we consider the par-
ticular case of the Potts model (for N>2,K, =K, =...=K_ =
N-1
N
3+ (=1) K_ hence £ (1) = (2 = .. = t(N_l)) we immediately
2 N

verify that Eq. (20) recovers Eq.(1l).

If we substitute now Eq.(20) into Eq.(12) we
obtain
-h(a)
t(OL)D _ e (21)
~h (o)
e

If we invert finally Eq.(20) and replace into Eqg. (21) we obtain

N-1

) t(B) e—i 2raB/N
(o) D _ B=0
N-1
) t(B)

8=0

(22)

which, through notation changes, precisely corresponds to the
exact dual transformation (Cardy 1980, Alcaraz and Koberle

1980,1981). In the particular case of the Potts model we imme-
diately verify that Eq. (22) recovers Eq.(4). If we take into
account the self-duality of the square lattice and the fact we

are considering bonds (whose transformed simplex are still

bonds) we have that the general self-dual frontier (which



contains all the self-dual points and only them) is given by

-> -+ D
t = t (23)

This equation univoquely determines the location of the cri-
tical frontier in the region of the parameter-space where it

is unique (Cardy 1980, Alcaraz and KO8berle 1980,81).

For the general four-dimensional Z(N) hypercubic
lattice gauge model (whose Hamiltonian — invariant  through
local gauge Z(N) transformation — is analogous to that of
Eg.(17)) as well as for the general three-dimensional Z (N)
cubic lattice gauge model including Higgs fields it is straight
forward to verify that Eg.(12) precisely corresponds to the

exact dual transformation (Alcaraz and Koberle 1981).

IIT - DILUTED Z(N) MODELS

We shall now consider a bond-diluted version of
the model described by Hamiltonian (17-18); in other words
its coupling constants will be now random variables whose

probability distribution is

N

_ _ _ @
P (R /KypeeeyK ) = (1-p) )+p I 8(Rg-Kg) (24)

N B

S (K

[ =

where {Kg} are known constants. This distribution immediately

leads to the distribution Pt for the transmissivities:

N

= N
p e e ™y oaepy 1os®) ep n s BB
(25)
where the‘{tés)} are related to'{Kg} through Eq. (20) with

{Kg} playing the role of {KB}° The probability distribution



- 10 -

: >D
of the dual variable t is given by

= N N ¢
PS [t(l)D,t(Z)D,...,t(N)D) = (1-p) I a[t(B)D-1J4-p:H alt(B)D—t(B)Ej (26)
B =] 6 =1 ©

(R)D

o} is related to {tég)} through Eg. (22). The proba-

where {t
bility distributions PT(T) and P?(TD) of the variables T and

TD respectively defined by Egs. (13) and (14) are given by

PT(T) = (I-p) & (1) + pd(t-1 ) (27)

and
l-'ro
P?(TD) = (1-p)é (tP-1) + ps§|t° - ————— (28)
1+ (N-1)7
0
where T, is related to {tés)} through Eq. (13) substituting t(a)
(o)

by tO .

Following along the lines of Tsallis and Ievy 1980 a,
Levy et al 1980 and Tsallis 1981 we can .now conjecture three
slightly different approximations of the CF in the region of
the parameter-space (whose dimensionality is N+1) where the tran

sition is unique. Our three present proposals are

P52 )y (29)
P, pD
t t
<T>p, = <T> 4 (30)
T P
T
and
<g> = <g> (31)
PT P?

which, through use of definitions (13) and (15), respectively

lead to



- 11 -

p ) = 1pap P (29")
o] o]
l1-7
pt =1l-p+p 0 (30")
° 1+ (N-1)T
(0]
and
1+ (N—l)'ro = Nl/ZP (31")

We remark that in the particular case p=1 (pure model) all three
Egs.(29'), (30') and (31') are contained in the exact Eqg. (23)
(as a matter of fact it is known that for the pure case these
Egs. provide the same information if N<6 (Cardy 1980, Alcaraz
and Koberle 1980); if N> 6 Eq. (29') or Eq. (30') or Eq.(31') can
not univoquely determine the self-dual frontier but only a hy-
persurface that contains it). In the limit N~>1 all three

Egs. lead to one and the same result namely
pPT, = 1/2 (32)

which is known to be exact (Southern and Thorpe 1979, Turban 1980
and Tsallis 1981); we recall that, in the limit N-1, t(l) =

o)
él)D==TO. Furthermore we verify that all three Egs. provide

1-t
To=l for p=1/2 (pure bond percolation limit) and that no solution
exists for p<1/2: this result is commonly believed to be exact
(Southern and Thorpe 1979, Turban 1980 and Tsallis 1981 among
others) for the Potts model and we conjecture here that it re-
mains true for the more general model presently discussed. The
conjectures (29), (30) and (31) recover, for the Potts model,
completely analogous conjectures included in Tsallis and Levy

1980 a, Levy et al 1980 and Tsallis 1981 (it is convenient to re-

call at this point that the present model extends the Potts one
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only if N 24). In these references it is shown that, for | the
Potts model, the o- conjecture (Eq.(31)) is numerically more
satisfactory than the others (Eq.(29) and (30)); it 1is there-
fore natural to expect that this is still true in the present

generalized picture.

From the very beginning we have considered ig80-
tropic ferromagnetic models but no major difficulty exists
if crystalline anisotropy is included. In the particular case
of the square lattice we can follow along the lines of Tsallis

1981 and propose for the approximate CF the following equation:

<05+ <o>P,D=1 (33)

where P(P') is a general probability distribution for the "hori

zontal" ("vertical") coupling constants.

We shall now use the Egs. (29), (30) and (31) to
discuss the critical frontier of the Z(4) isotropic bond-dilute
model in square lattice. By associating to each site two Ising
variables My and vi (ui,v.= * 1) we can write the Z (4) Si va-

1

riable as follows:

s, = 1 [“i e~im/4 v, ei'”/4] (34)
V2

Consequently the Hamiltonian (17) can be rewritten

ét{- LV, ULV 1 (35)
kBT

= 2 [Kl—Kl(uiuj + \)i\)j) - 2K2ul iM%y j_l

<i,j>

The relevant transmissivities of this random model are given

(through Eqg. (20)) by
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-4Ki
(1) o 1l - e .
t = S (36)
° -2 (Ki + ZKZ) -4K]
l1+2 e + e
- 0 o -2 ©
- Lo e 2.(Kl.+ 2K.2.)' ‘e 4,K1
tO = - (36")
-2 (K% + 2K9) -4K 9
1+2e 1+ 2 4 1
and
-1 (1) (2)
T 3 {Zto + tO ] (37)
The t—-, T- and o- conjectures respectively provide
(1) (2)
: 1+ 2t +t
p = o 9 (38)

(1) (1) (2) (1) (2)
t, (14-2t0 + ] ) +2 [to +tg }

3 P+2t” +twq
A o . 0O
p = (39)

[Zt(l)-+t(2)] [5-+2t(1)-+t(2)]
o 0 o 0

and

. 4n 2
p = (40)

n 1+ 2t(1) +'t(2)]
o} 0

All three Egs. provide qualitatively the same surface (ABCDE in

Fig.l) in the (p, tél), téz)) -space. This surface is expected
to be a good approximation of the para-ferromagnetic CF in the

region where the transition is unique. Let us now consider some
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(1) _g (i.e. k°=0 and té” =

limiting cases. In the plane tO 1

-2K9 -2K9
(l-e 2) /(L+e 2)) we have a bond-dilute Ising model CF . (the
associated Ising variable being uivi) which corresponds to the
line 11(3 of Fig.l. We remark that in this case the ' Hamiltonian

(35) is local gauge invariant therefore, in  accordance with

Elitzur 1975 theorem, <ui>==<vi>==0 (see also Alcaraz and KGberle
(2) _4

1980, 1981) on both sides of the CF. In the plane to (i.e.
0 (l) "4KO -4KO .
K, »® and t57' = (1-e l)/(L+e 1)) we have two CF. The first

of them (line I, D of Fig.l) corresponds to a bond-dilute _Ising

2
model (whose coupling constant equals 2Ki) associated to the vari-
able My Oor v.. The second CF (straight line GD in Fig.l) ~ corre-
sponds to the limit of a thermal problem (whose random = variable
is uivi) which can be considered as a pure bond percolation one.

It is then clear that, if the CF is continuous, the surface ABCDE

must bifurcate on some line. It is well known that, on the plane
p=1, this bifurcation occurs on the Potts model (tél)=té2)=l/3 H

point B in Fig.l); it seems plausible that this is still true on
the bond-dilute problem (line BD of Figs. land 2). As a direct
consequence of the preceeding considerations only the surface

ABDE is concerned by Egs.(38-40). In what concerns the line AED

of Fig.l we have not succeeded in formulating a clear interpreta-

(1)

o =1/2 for the

tion (one plausible equation for that CF is pt
line AE, the line ED being a straight one). To summarize the pre-

ceding analysis let us say that in the unitary cube of the (p,t%l{

téz)) -space three phases exist, namely the paramagnetic ( noted
P; z(4) symmetry), the ferromagnetic (noted F; completely broken
symmetry) and the "intermediate" (noted I; Z(2) symmetry) ones,

characterized by:
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<ui> = <vi>==<uivi> =0 (phase P)
<ui> # 0; <vi> # 0; <uivi> #Z 0 (phase F)
<ui> = <vi> = 0; <uivi> #0 (phase I)

We can verify directly in the Hamiltonian (35)

_2KO —2KO
that K;==0 (hence tél)= /'téz) = (l-e l)/(l+e l)) corre-

sponds to the bond-dilute Ising model. In this case Egs.(38)
and (40) recover previous results (Nishimori 1979, Tsallis and

Levy 1980(a), Levy et al 1980 and Tsallis 1981).

In Table 1 the most relevant numerical results
are presented; we remark that the o-conjecture is globally rather
better than the t- one which in turn is better than the T- one.
In Fig.3 we have presented the critical frontiers _associated

(o) . (o),

to different ratios K2 /Kl ; the errors are expected to be

not bigger than the graphical widths.

The o- conjecture seems to be (see Table 1)
asymptotically exact in the limit p - 1/2 (neighbourhood of

point D of Fig.l); it provides

=16 ¢no (41)
p=1/2 3

— =1
3
dp |p=1/2 d

dTO d Ztél) +t0(2))
p

which recovers the exact answers for the Potts (K%/Ki==l/2) and

Ising (K;/Ki==0) models. Eq. (41) leads to an interesting con-

o
1

(dt,/dp) __ equals -44n 2 for fixed ratio KO/KO, whereas for
1 p=1/2 2771

sequence: for all ferromagnetic models satisfying KS/K < 1/2,

0 ,,0 _ 16
Ky/Ky = 1/2'(dtl/dp)p=l/2 equals - >y 2n 2.
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IV - CONCLUSION

We have herein introduced, for the general Z(N)
s— simplex d- dimensional lattice model, convenient variables
(transmissivities) which in series composition = behave like
probabilities. In what concerns parallel arrays it is possible,
through a convenient transformation, to put the parallel com-
position algorithm in the same form as that of the ' series
case. We have exhibited herein that this transformation is

precisely the well known duality transformation.

The simplicity of the present algorithms enables
quite plausible approximate conjectures for the critical fron-
tiers for random Z(N) models. In order to illustrate this type
of conjecture, the square lattice Z(4) bond-dilute ferromagnet
ic model has been discussed in detail. The phase diagram (see
Fig.l) exhibits, besides the usual para- and ‘ferromagnetic
phases, an intermediate one which is characterized by a par-
tial breakdown of the Z(4) summetry. A numerically interesting
result is the p=1/2 limiting slope (Eq.(41l)) which, within the

present context, is expected to be exact.

We have seen in Section II that ' the functional
form of the relevant transformations does not depend on s
(order of the s- simplex). Consequently the conjectural pic-
ture presented in Section III should hold for general Z(N).%——
simplex- random ferromagnetic models in d- dimensional hyper-
cubic lattices, thus reinforcing the common belief that the

gauge four- dimensional systems are very similar to the bond

two- dimensional ones. In particular for the % - simplex-dZlute
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model the ferromagnetic phase disappears at a probability p=1/2.
This remark suggests the possibility for defining a generalized
s— simplex percolation whose critical probability is expected
to be 1/2 for s=d/2 and 1 for s=d, and which possibly corresponds

to a generalization of the Kasteleyn and Fortuin 1969 N-+1 limit.

One of us (FCA) acknowledges hospitality he re-
ceived at the Centro Brasileiro de Pesquisas Fisicas/CNPq during

the visit when this work was done.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 Phase diagram of the bond-dilute Z(4) model in square
lattice (the point E is here located according to the
results obtained through the present approximations; it
is however possible that the exact P, equals 1/2).

B (Il, I, and I3) is (are) the pure Potts (Ising) cri-

2
tical point(s); the line BD (IlG and IZD) corresponds
to bond-dilute Potts (Ising) model(s). P, F and I de-

note the para-, ferromagnetic and intermediate phases.

Fig. 2 Fixed p sections of the phase diagram of Fig. 1. (a)p=1;
(b) p=0.8; (c) p=0.7; (d) p=0.6; (e) p =0.53. The line

BD corresponds to the bond-dilute Potts model.

Fig. 3 Fixed K;/Ki ratio sections of the phase diagram of the
bond-dilute Z(4) model in square lattice. (a) K;/Ki=0.5
0 ,,0_ . 0 ,.0_ . 0 ,0_
(Potts); (b) K2/Kl—0.3, (c) K2/Kl 0.25; (4) K2/Kl 0
(Ising); (e) K;/Ki=—0.3,P and F denote the para- and

ferromagnetic phases.

Table 1 Relevant quantities (calculated through the t-, T - and
o— conjectures) associated to the phase diagram re-
presented in Fig. 1 (where the point E is located at

p = po). See the text for the wvalues followed by (?).

(a) Wwu and Lin 1974; (b) Sykes and Essam 1963; (c)
Baxter 1973; (d) Southern and Thorpe 1979; (e) Kramers

and Wannier 1941; (f) Domany 1978; (g) Harris 1974.
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TABLE 1

CONJECTURES t(Bq. (38)) | T(Bqg.(39)) | o(Eq. (40)) EXACT
3 = iNo .&.11% ~e l i
P g =6 7 =64 s =63 5 (2)
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Pl dt
e 1LT0 |2 16 B -9.6 | 16m2+11.1 @ (?)
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