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The canonical and functional integral quantization
of Yang-Mills theory is discussed. The gauge-fixing'weak'
conditions A:;:O, Aic:O over phase space are found to be
very convenient for any gauge group and in the presence
of interactions. These conditions fix the gauge for
arbitrary strong field and we obtain a description of

Yang-Mills field in terms of physical degrees of freedom

only.,



I - INTRODUCTION:

The Lagrangians of gauge theories in local form are usually
written in singular form. Dirac's method 1 for handling
constrained dynamical systems may be used to construct the
corresponding Hamiltonian formulation which leads to the
canonical quantization of the theory. An alternative procedure
for quantization is by the functional integral of Feynman 2 with
appropriate modifications in the measure as suggested by
Faddeev and Popov 3 to take care of the constraints already
present in the theory and the additional constraints which
must be imposed to fix uniquely a representative in each class
of gauge-equivalent fields. In this connection Gribov 4
discovered recently the ambiguity of the Coulomb gauge > ’
V.R-= 0, in Yang-Mills theory. This gauge fixing condition
may become singular for sufficiently strong fields and there
is a non-trivial residual gauge freedom. It is thus important
to look for other gauge-fixing conditions which avoid such
ambiguities to be able to define functional integral. The temporal
gauge is a convenient choice to start with. Here the Dirac brackets
coincide with canonical brackets. The search for suitable
additional constraints or canonical transformations
to fix the gauge is greatly simplified. This was done
systematically for electromagnetic field interacting with a
Dirac field and an external chargéS.We also showed there that

it was not necessary to remove the residual gauge invariance

if we understand that the corresponding functional integral acts



over the corresponding covariant states. We also pointed out
the simple gauge-fixing conditions AO: 0, A3: 0 over the
phase-space which was shown to be equivalent to the commonly
used Coulomb gauge condition AO o V.AZo.

We discuss in this paper the corresponding ghost-free
gauge-fixing conditions Ag <0, Ai 2 0 for the Yang-Mills
theory for any gauge group 7. We show that these additional
constraints do allow us to fix the gauge even for arbitrary
strong gauge fields and we obtain a description of the
Yang-Mills fields in terms of physical degrees of freedom only.
This is done both in the context of canonical quantization as
well as in that of functional integral quantization. The
generating functional in the latter case may be integrated
over canonical momenta to obtain a convenient representation
for the same (Eq.(4.8)). This may then be used to go over to
other convenient gauge conditions.

We must mention here the recent attempts to impose gauge-
fixing conditions on canonical momenta. Goldstone and Jackiw8
solved the Gauss' Law constraint equation in temporal gauge
(Agi 0) for the wave functional for the SU(2) gauge group in
momentum represenation and obtained a description of the Yang-
Mills theory without any non-physical degrees of freedom. Faddeev,
Izergin, Korepin and Semenov-—Tiam-Shansky9 showed that the
same results are obtained in the context of functional integral
quantization if we impose gauge-fixing conditions on the
canonical momenta but not on the vector potential'Ka. These
authors could also generalize their method for an arbitrary
gauge group as well. It is, however, clear from the equations
of motion (Eqg.(2.25)) for canonical momenta and the requirement
that the additional constraints must hold for all times that

such conditions involving canonical momenta would bring in



difficult ? constraint relatiéns to be dealt with.

In Sec. II we briefly review the Dirac's methodl’10
and establish the form of general Hamiltonian in the Yang-
Mills theory interacting with a complex spinor field for any
gauge group. Temporal gauge is introduced in Sec. III. The
additional constraints Agi 0 are shown to be very convenient
ones and an expression of the Hamiltonian is obtained
involving physical degrees of freedom only, The functional
integral quantization is exposed in SeC. IV and a representation

of the generating functional in terms of physical degrees of

freedom is obtained 1in our gauge.



II. HAMILTONIAN DYNAMICS OF NON-ABELIAN GAUGE THEORY.

CANONICAL QUANTIZATION.

The action functional for the Yang-Mills theory with

self-interacting spinor source fields is written as

S = J L(t) dt = f dt jf ax £ (2.1)
where
L - - —%— Fiv sz + V¥ (ivy.9-m)¥Y + g ¥ v.2%%? v (2.2)

Here the underlying gauge group has n Hermitian generators

satisfying

[Ta,TbJ =if T (2.3)

where fabc is real, and completely antisymmetric in a,b,c.

The indices assume the values a=1,2,...,n and yu=0,1,2,3;k=1,2,3, in the

metric goo = - gll=— g22=— g33= 1.



The field strenghts are defined by

A% A%

WV oM AV u u
FYo=3%" ] 3V Al + g £ AL Aj (2.4)

where g is a coupling constant. The complex spinor field V¥

is an m-component field carrying a (mxm) matrix representation
of the gauge group. The corresponding generators are denoted

by (mxm) Hermitian matrices ty which may be reducible. The
generators in adjoint representation are (mxm) matrices

(La)bc=-i f . The covariant derivative is defined as

abc

. a
D (A) = - T A ’ .
u( ) Bu 19T, A (2.5a)

so that in the adjoint representation, for example,

DU (p) = aab Su - g fabc A (2.5Db)

Its space part is



(2.5c)

[
I
O
<
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ot

abc "¢

The theory is invariant under the following local

gauge transformation

AV (x) — U A (x) UThx) 4 = uex) o vt (x)
(2.6a)
and
Y(x) — e & wa(x) ta ¥ (x) (2.6Db)
Here wa(x) is any real space-time function, at = Ag and
a
U(x) = exp {-i wa(x) Ta} is an element of the gauge group
at the space-time point x". It follows that
FYV (x) — U(x) V(%) Ut (2.6c)



where Fuv = Ta sz . The infinitesimal transformations read as
§¥(x) = -i ty wa(x) Y (x)
u = Wiy - 1w
éAa(x) = fabc wb(x) Ac(x) 3 ) wa(x)
- _ 1
- g Dab wb(x)
uv _ TRV
GFa (x) = fabc wb(x) FC (x)
s(DM¥(x)) = -i £, W, (x) (D" ¥ (x)) (2.7)
The Euler-Lagrange equations are
ab _uv_ = Vv a
D" F_ '=-g Vy t7 oy (2.8a)

U b

(i @ - mV¥ =-g ta Y . Aa Y (2.8b)



We may rewrite Eq.(2.8a) as

v v

Bu Fy gz,
\)___—\)a _ Cc LBV 2.8
Z, =¥y vV - f Ap Fy (2.8c)

where Zg is the conserved Noether's current corresponding
to invariance of the theory under global (wa=const.) gauge

transformations. As a side remark, we may easily show from

Eg.(2.8b) that

ab u A
Du (¥ v t ¥) =0 (2.9)
and the identity 11
ca ab v
Dv Du Fb =0 (2.10)

then follows. It is interesting to note that



the self-current of the gauge field does not have vanishing

covariant derivative.
The Hamiltonian dynamics for the singular Lagrangian of

10
Eg.(2.2) may be constructed by the Dirac's method L . We

define the dynamics on t=const. hyperplanes and all the

variations are taken at fixed time. The canonical momenta are

I = 6]3' =l\P+
5%
nd - 8L _ . gOu (2.11)
u A a
a

We rewrite for the gauge fields

T =2 +p2 Ag - (2.12)

a~
I~ 0 (2.13)

2 ~ . ,
,A3)and,v1ndlcates that the

>
Here ﬁ = (Hl,HZ,H3), A = (Al, A
primary constraints in Eg.(2.13) are "weak" relations in the

sense of Dirac.
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We define canonical equal time Poisson brackets for

any two functionals f and g by

(£,9) = | a’x {—5F o3 -
saP (%,t)  smY(X,t)
a H
_ S f 59 . ___8f 89
a,> U, . > -
Gmi(x,t) aAa(x,t) awi(x,t) sné(x,t)
£
_ 8 89 (2.14)

> >
dﬂé(x,t) GWE(x,t)

The standard non-vanishing brackets are

Wz b > _ U 3, >
{ Aa (Xrt) ’ H\)(yrt)} = Gab 5\) ) (X—Y)

Il

Ly, (X0, (7,8 )

3
8, 6 (X - 3) (2.15)
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where a indicates a component of the complex spinor field.

We take as our preliminary Hamiltonian

where HC is the canonical Hamiltonian

_ 2 N T
H, = J ( ﬁa.Aa + T V) d’x - L
B ( 3 1 2> = 1 _k2 _a
= J d~x {—5— m .0, + =~ F.7 Fp,
+ . >
+ ¥ [Ll a.(V+igt A) + Bm] Y+ ox, A
Here
_ =zab +
Xq = - A

(2.16)

(2.17)
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=V 1 - g Z (2.19)

and v is an arbitrary functional. The equations of motion

are given by

T=1{f,H" + égti—

where the second term on the right hand side is evaluated at

constant v, H,HQ,AU , X. For the constraints ng 0 to hold
for all times, we reaquire
« (0 1 -
Hg = {ng H'} = - (SHO ~ 0
SA
This leads to the secondary constraints
Xg~ © (2.20)

This is the Gauss' Law for the non-abelian gauge theory
already contained in Lagrange equation. We also verify that

the remaining equations of motion are consistent with Egs.
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(2.8) and

S~ 0 (2.21)

~

0
Thus the set of 2n constraints in our theory are I, -~ 0

and Xa 2 0. They are in fact first class 1 since they have

vanishing Poisson brackets, { Hg, Hg}i 0 ,{Hg, Xb}: 0 and

- > > 3,> >
{Xa(xlt)l Xb(Yrt)} = - 9g fabc Xc(xlt) § (,X_Y)

22
o

(2.22)

They are, in fact, generators of infinitesimal local gauge

12
transformations . FromGAg(§,t) = {A2(§,t), EG(t)} etc.

and Eq.(2.7) we readily obtain

_ + _ 1 a _u 1 3
eG(t) = J[@a Y ta ¥y E HU Dab wa d'x (2.23)

If we may neglect a surface term arising on integration by

parts we may rewrite the second term inside the bracket as



1 0 ab .
-5 {wb X1 + Ha D0 (AO) wb} . Global gauge transformations

of gauge fields are generated by (Zg + £ 2

c
abe Lo AO) and on

canonical cquantization the corresponding integrated "charges"
satisfys the commutation relations of the algebra of the
group in Eq.(2.3).

A more general Hamiltonian may now be taken to be

HY = H' o+ | ou (F,B) y (B dx (2.24)

We find among other equations of motion

A) = v,

ﬁa =7, - Sab(,Ag +u)

ﬁi = Dic FE2+ g fabc(Ag +‘JG)H£ - g yt akta Y
]![S1 = Xz ~ 0

Qf<.
14K
o

iv= [—i 3. (V + ig taZa) + 5m]w

0
- gt (A +u )y (2.25)



7 ~
IIT - TEMPORAL GAUGE, Aiﬁ: 0. GAUGE-FIXING CONDITIONS Ag ~ 0,
a -~
50 ~ 0.
The 2n first class constraint equations ng ~ 0 .,
Xg 20 show that the dynamics over phase space is constrained.
We may exclude some or all of the redundant variables using

1, 10 We dintroduce suitable supplementary

Dirac's suggestion
constraints so that a first class constraint becomes a
second class , that is, it does not have vanishing Poisson
bracket with all the constraints. We may then define modified
Poisson brackets - Dirac brackets - with respect to the set
of now second class constraint. The initial first class
constraint relations together with the other second class
weak relations may now be set as strong (equality) relations
inside the Dirac brackets. The Hamiltonian dynamics built
over Dirac brackets automatically takes care of the constraints
without requiring to solve the constraint relationsexplicitly.
The choice of supplementary constraints {x} is rather
arbitrary. We may set down some necessary conditions. It is
clear that we also require x = 0 . The set {yx} should be
such that we are able to solve for the arbitrary functionals
Uy and Vg appearing in Eq.(2.24). This in turn implies that
det.||{ x , ¢}|| , where {¢} is the set of surviving first
class constraints, should be nonvanishing and well defined.
The same determinant appears also in thé prescription 3 of
quantization by functional integral over phase space of
constrained systems. We will look for additional constraints

such that the determinant be a constant so that it effectivaly

drops out of functional integral and Gribov type ambiguities
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are avoided.
Temporal gauge, Ag ~ 0, is a simple choice to start. The set

Hg ~ 0 is now second class and det,|| {Ag , Hg} || = const.
For these constraints to hold for all times we require

Ag ~ 0 which fixes v_ =0 in view of Eq.(2.25). The constraints
Xg continue to be first class corresponding to the residual
gauge invariance, in the temporal gauge, with respect to time

independent gauge transofrmations. Defining Dirac brackets

(£, = (£,g) + | a2 [te,23(3,0)) (m5(z,t),9} - (] ++ng)]
. J b

(3.1)
e a,* 0, *
we find that {f, HO} = {f,Aa} =0 and the equations of
motion are now given by
df vk Of
5 = {f,5} + — (3.2)

so that Hg = 0,’Ag = 0 hold effectivelly as strong relations.

Here H is obtained from H" by putting Ag = 0 and va=0.
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We remark that if we had set Ag = 0 naively at the very

begining we would have missed the Gauss' Law constraints

Xa 2 0. We do, however, obtain ia ~ 0 instead. From Eq. (3.1)
we conclude that {f,g}* may be written in the form of
Eg.(2.14) by just dropping the terms involving functional

derivatives with respect to Ag. The non-vanishing standard

brackets are now

k b *
Al (K, 8), T, (¥,t)} S ab

53 (2-3) (3.3)

I
>

*
{w§(§,t1 , H9(§’t)}

The redundant variables Ag (and Hg) drop out as well as no
time dependent gauge transformations are permitted any more.
The independent canonical variables in the temporal gauge have
canonical brackets equal to their Dirac brackets and are very
simple to work with. Unlike in the case of Coulomb gauge no
fields appear on the right hand side of the above Dirac
brackets. The ghost loops in the Feynmann rules are thus
avoided in guantized theory. This gauge is also a very
convenient starting point to look for additional

constraints to fix the gauge completely. We may, for example,
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take the additional n constraints to be X'agE(Aa— ca(tD =0
where 3Aa is the longitudinal component of Ka and
ca=ca(t) are space-independent functions. Such a choice was

. . 6
shown to be very convenient for the abelian case. However,

for the non-abelian case we run into trouble. We have now

*
X', Fot) x (F,8) 3= =i 5 87 (F-9)+

. *
+g A xR E g Kd - T (3.4a)

— * 3 , *
X'p~ 3% + {Ab’ Hc} + J d x u, {x b Xa}~ 0 (3.4b)

*
Since det.| ! {y',, }|! now depends on the gauge potentials
P IX T pr Xgt i

it may for sufficiently strong fields become singular and
we are unable to solve Eq.(3.4b) for functionals u, - The
same ambiguity makes this gauge rather inconvenient for
functional integral quantization.

The Eq.(3.2) results in Egs.(2.25) with Ag set to zero.
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We notice, for example, that

_ _ 3
AL = T, (33 u, tg fabc A ub) (3.5)

It is thus suggested in view of the discussion above that a

convenient choice for an additional set of constraints in the

temporal gauge would be simply A? < 0. Eg.(3.5) then implies

H? :83 u since we must require A? 2 0 for Agi 0 to hold for

all times. The iterative property of Dirac brackets is

. . 0 3 ,* 0 3,%.
assured 1in view of {Ha, Ab } = {Aa, Ab} 0. Moreover, we

find
{Ai, Aﬁ 1Yz o ,
Cp D=y G0, BE,0 1" = - Esab 0% 2 E-9) o+
+ g fabcAz 63(§—§XJ
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*
o (Xo8), xp (¥o8)) = -9 £, x Gt s

(3.6)

The constraints {Ag} ’ {Xa} are now second class and

* B
det o |l{x,- Ag} || = det.|[- 6,y 35|| does not depend

on the gauge field. It will be absorbed as a constant in the
normalization factor on quantization by functional integral(Sec.IV).
Since no more first class constraints are left the gauge

gets essentially fixed. We may define the new Dirac brackets

by

* - ! - >
01" = s @l [P (e G T g

3,»> *
. {Ab(z',t), g}l )

=  {f,9} © + J a3z f asz F(%,Z')[{f,xa(z,t)}* )

L AGE Y, o 15,802, 01

c Xy (20, q}*) (3.7)



Here, defining the notation x = (xl,xz), \ =(81,82) etc.,
-> —_
F(z,;') = g(z ,z2'") 52(2-2')
K(%,2') = G(z3,2'2) §2(z-2") (3.8)

and g(7,T') is the Green's function satisfying

3.9(t,t")==-13_, 9lr,t") = sk- ") (3.9)
T T

FPor discussion below we also need the Green's function

G(t,t") satisfying

(3.10)

We may make the explicit choice g = —%— E(T = T') and

.21
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3 * % * %
. We verify {f,Aa } = [f, Xa } = 0 and

G = —%—!T - 1!

that the equations of motion are now given by

of
ot

A s, m s (3.11)

where H is the canonical Hamiltonian of Eg.(2.18) with Ag

and A§ put to zero. Inside the new Dirac brackets

A = 0 ’
a
and
_ a —ab - +
Xg = 33 I; +D -y -9 Y ta ¥y =0 (3.12)
—ab _ = = .
where D = Gab V+g fabc AC, are now strong relations

and we have incorporated in the final Hamiltonian formulation
all the constraints. From Egs.(3.12) and (3.9) we may express
H? variables as dependent solely on ﬁg and Xa' Thus the final

Hamiltonian involves only the two physical degrees of freedom,

for each 'a' corresponding to a massless gauge field.
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It is now given by

H=Jd3x {—%—ﬁ LT o+ —1 g2 pX2

p - + ™ =ad
—%— ! d3x J d3y (bab. Hb(?,t) -g v taw_]K(§,§ . p°

)‘_D

L Tt gy ey v

(3.13)

where we have used Ha = 9

3 3 U, and K(§,§) is defined in Eq.

(3.8). The last term contains a sort of Coulomb :self-energy term.

In abelian case D° gets replaced by V and ta is absent. We

n
will elaborate on it in Sec. IV. The stagard brackets are also

simple

->

* k s
v, 80} =8 s§ 3%,9

i, >
{Aa(xrt), 1 ab S (le) 7

oo
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: % :
al, A Y =y, MY =0 7
= § 63(§—§) etc.

ah

- —

{WE(?c,t), H9(§’t) }

(3.14)

where 1i,j=1,2. We also list some other ones

* % >
mE,e, B0 = -g fabc@;’(z,t) —ﬂ§(§,t).]F(x,§I

a,~> b,> * % c,> > >
{H3(xlt)l Hl(y,t)} =4g fabc Hl(y’t) F(le) 2

. ** ‘ .
(M3(x,t), A (¥,%)) {sab 7 + g £y Acl:@,t)]F(;g,g

1
Yﬁga F(%,9) ,
{9, n?(,?c,t),., Ai(iz,t) e -Yﬁga 53 (%-9) »
(3, T56,0), ¥F, 0 =alv'e v, ¥g,01 " =

- ig ¥ 53 (2-3) i (3.15)



.25

We confirm that the correct equations of motion given in

Eg.(2.25) are generated by Eq.(3.11l) for the independent

2
variables. We remark also that in our gauge F§3= + 83 Aa =
_ /a2 T3 3 T2 31 _ _ 1 _ 3 71 _ 1 .73
=(3” A a 3”7 A a) and F 3 = 83 A= (37 A a 37 A a )
where Kg are tranverse components of Ka satisfying v . Zg =0.

The canonical quantization is performed as usual by
replacing the new Dirac brackets by commutator or
anticommutator between corresponding operators in a self

consistent manner. Appealing to the quantization of free fields,

say, we are led to

~ e , 3, >
{Wé(x,t), Wb(y,t} = h 622 §7 (x-y) (3.16)

We have no ghost loops in the Feynman rules in our gauge.
We will forego the discussion of Poincaré covariance and
study the quantization by Feynman functional integral.
We remark before leaving this section that any supplementary
condition involving canonical momenta is bound to bring in

difficult constraint equations especially when we are

dealing with arbitrary gauge group and interactions are present.



This is evident from Eq. (2.25)and the imposition that the

additional constraints must hold for all times.

.26
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IV - FUNCTIONAL INTEGRAL QUANTIZATION IN Ag ~ 0 A3 ~ 0

~ [

GAUGE :

The quantization of constrained Hamiltonian systems
may also be done by expressing formally the generating

functional for the evolution operator {S-matrix) by means of

. In our AO -0

the phase space functional integral3 a ’

Aa 0 gauge it is given by

- a 1
Z =N }f[d T[u] fa a_] i

0 0 3
e S(Aa(x)) G(Ha(x) G(Aa(x))é(xa(x)).

0 0 3 is
det |[{ag, To}||. det [[{a2, x }|| ™

(4.1)

where N is a normalization factor and

0 &
- v, ]d X (4.2)
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L. A )

3 _ 3 a - =
and  §(AJ) 80 x ) = &8(A)) &8(35 My + V. T, + g £, c

C

For simplicity in writing are ignore the fermion field. The
determinants above are constant and may be absorbed in the
normalization factor and we integrate over Ag, Hg and Ag
using delta functionals. It amounts to putting these

variables to zero in Eq.(4.2). We make use of the exponential

representation

—ijw X at« n —= (4.3)
S(x) = e X 2T

so that the action in the functional integral takes the form

- S — _ 1l -a a _ 1 = = _ 1 _a_k& _
S J Lf Ha'Aa 2~ T3 H3 2~ Ta-Ta 4 Fnga
a =—ab - ,1.4
W, (83 H3+ D . Hb)Jd X
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b

Here D°° =( 8, V + g £ Kc) and an over bar , defined

ab abc

in SeCJII)Lcha&s the component (1,2) of a 3-vector. The

a
3

coefficient of quadratic term is constant. It is readily

functional integration over I, variables is Gaussian and the

calculated and H? are simply replaced by ( 83 wa). The

integration over W, is then calculated by the shift
transformation Wy, + mg as usual . The wg are chosen
so as to remove the linear term ma(ﬁ . ﬁ)a. We drop out a
factor corresponding to a path integral over Wy with free

action J d4x(a3 wa)2d4x. This may be absorved in the

normalization. Thus we finally get

. Jf o1 )], ws

-

where

. D%, ﬁb(§,t)1<(§,§)‘ﬁad. ﬁdb?,t)} (4.6)
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The corresponding Hamiltonian, as expected, is the same

as in Eq.(3.13)for canonical quantization case. In the presence

of spinor field source (B.ﬁ)a is replaced by (ﬁ.ﬁ)a - gW+taW

in Eq«.(4.6). For the abelian case it reduces

to (V.1 - g y*y). In this case the Hamiltonian can be rewritten
o7 ﬁT of the gauge

field and T, = X,. The kinetic terms like vt oid. (T4 g BT

R >
in terms only of transverse components A

are handled by a unitary transformation6 which, for example,

takes the present term to yt - iz (V+1ig KT)lw

while unaffecting the gauge field part already rewritten in
terms of transverse components. The Coulomb self-energy
interaction term is separted out.

The gauge-fixing conditions Ag < 0, Ag

thus fix the the gauge even for arbitrary strong gauge fields

2 0 over phase space

and we obtain a description of the Yang-Mills field for any gauge
group in terms of physical degrees of freedom only. The last

term in Eq.(4.6) contains cubic and quartic terms. We may,however,

integrate Eqg.(4.1) over Ag, Hg, use the Eg.(4.3) and integrate

over ﬁa using the shift transformations/

= = - —a
I, =1 + (Aa + D wb) (4.7)
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A Gaussian functional integral involving solely the variables
ﬁa may be absorbed in the normalization factor to obtain the

following expression for the generating functional

Z =N J [d A];h@ pf_ﬂ sl 0) S (4.8)
X,a
where
s=__L(|:;“A“-aVA“ + g f uoaV12 g4y (4.9)
4 ;L a a abc Pp cJ
0

and we have formally rewritten waE A This representation may

2
then be wused as a starting point to go over to other

. 13 . .
convenient gauge conditions where Feynman rules are given in

manisfestly covariant form. It is also clear that for an arbitrary

3.

constant unit vector n , AL~ 0 is replaced by (K.Ka)Z 0 and Ka

represents a vector tranverse to the direction n. The delta

functional in Eq.(4.8) gets substituted by S(K.Ka).
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