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Abstract :

We have investigated the reaction of a homogeneous sphere of neutron matter set in
rotational motion under the influence of an external torque acting on its surface .

For neutron matter with a typical neutron star dénsify of lolsgcm-3 and a temperature
varying between ]06- and 109 K originally in uniform rotation a time dependent
differential motion sets in which lasts a time scale of hours to some decades resulting
finally in corotation . During these times the braking index of a magnetic neutron

sphere very sensitively depends on time .



Introduction

It is generally accepted that pulsars are rotating neutron stars . As a rule the interior

of such a neutron star contains a liquid phase which mainly consists of neutrons and

~ also contains protons, electrons and negative muons . In more massive neutron stars

with a central de.nsify of 8. > 1015 gcm“3 also hyperons become important constituents
(Ruderman [ 1] , Baym and Pethick [ 2] ) . However, we are interested in that part of

a neutron star which contains normal (i.e. nonsuperfluid) neutron matter . Between |

1 14

densities of about 5- 10] gcm’3 and 2 + 10 gcm-3' the neutrons are superfluid

because of the ]SO - attraction ( Krotscheck [3] , Chao et al. [4] ) . The neutrons

are supposed to be svuperfluid again at densities which exceed the nuclear &ensities
becaus:e of the 3P2 - neutron pairing ( Tamagaki [ 5] , Tamagaki and Takatsuka [ 6] ).

It should be pointed out, however, that all these calculations concerning the ]So -

" pairing as well as the anisotropic 3P2 - superfluidity should be regarded as first
estimates ; since the energy gaps very sensitively depend on the nuclear potential used ..
Detailed calculations performed by Takatsuka [ 6] confirm that the onset of anisotropic
superfluidity is a delicate function of the neutron effective mass . Moreover it has been
investigated by Weyer [ 7,8] that ir; the regime of high densities in neutron matter
( > 5 10]4 gcm_3) a certain pairing correlation of neuirons in relative singlet
states mcy' occur . This pairing is due to the asymmetry of nuclear forces between even
and odd states which suggests the prefereﬁce of singlet states for neutrons with equal
momentum quantum numbers . These correlations build up so called dineutron clusters,

“analogously to the o - particle picture . The decision whether the dineutron
correlation or the anisotropic superfluidity prevails in neutron matter still remains unsettled.
Therefore we assume [9] - even inthe presence of the 3P2 - superfluidity - at least
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~a normal component between ~ 2 « 10 and 4+ 10  gcm = .

Our following model calculation which refers to a normal neutron fluid may be applied

to the normal component in the interior of a neutron star .

The question we would like to answer is how the surface c;mgulqr velocity QC(’H and
‘ N

the braking index n  defined by

L R A2y . (1)
Ny : = Q,S(t) &Ls(t) ﬂs (£) |

(4



are modified by the existence of viscous normal matter in the interior of a neutron star .

This analysis is useful, since the experimentally found values of n are about 2.5
and special and general relativistic effects have been proven to be too small to give

a correction of the desired order (Pfarr [ 11] ) .

In the first section we give a short epitome as to the calculation of the first viscosity
which we need in the second section for an approximate solution of the Navier-Stokes

equation .

| Viscosity of Normal Neutron Matter

In this section we briefly review the essential steps for the evaluation of the first
viscosity in neutron matter in the framework of the Landau theory (Nitsch [ 12] ,
Heintzmann and Nitsch [ 9] and the. litercture cited there ) . In doing so we derive
in a first step a simple representation of Landau’s interaction function of the quasi-
particles which we need as the most important ingredient in the Boltzmann-transport
equation to approximate the collision integral . There this function is related to the
forward scattering amplitude of two quasiparticles [ 13] . The second step only gives

a rough sketch of the general assumptions for the evaluation of the first viscosity .

The total energy E of an mferccfmg system is a functional of the distribution function
n (p) of the quasiparticles . If the function n,. (p) is sufficiently close to the
ground state distribution function ng_, (p) we carry out an expansion of E [ n]

(Pines and Nozieres [ 13] )

EE'n]—E L € (p)Jﬂ (P) + ; -Fc,c,(P) S’ﬂ (p)cg’n (p)(2)

)))

where the quasiparticle energy €4 (p) isthe first and the interaction function between

the quasiparticles fg .t (p,p’) is the second variational derivative of the total energy
E[n], i.e.



éc.(p):ngC'ﬁJ/é'fnc_(p) (3)

and

foorlPp):i= 5 E[“]/cgﬂc-([?)gﬂo,n(?) . (4)

The deviation cfno_ (p) from ng.. (p) is defined by

S (py:i= (P =T (P) . (%)

A simple approximation of the quantities €4 (p) and -Fo,o,:(p,-p’) we get
by means of fhe Harrree-Fock theory : '

E L= Z P (2m) "n (PH-(z') Z <pcrpcrt\/|p<rpo->nq>m ')
T
(6)

‘with

€. (p)= p’r(zm)'1 +5  <pepelVipepe'y 1P ()
o p' - ' |

and
"Fa,a,.(P;P‘):.—.. < PO'P'U"]\/LPUP'G‘-' PN (8)

" We describe the inferocfing forces between the neutrons using the unitarily transformed

( Mittelstaedt et al ] ) Gammel- C‘mshan Thaler potential (Gammel et al. [ 15] ) .

In the considerations above we dealt with stable, homogeneous distributions for which the
function ng. (p) neither depended on time nor on the relative position of the quasi-

particles . In a more general case, however, we consider a weak time dependent



inhomogeneous perturbation of the ground state of our system . As a consequence
the distribution function of the quasiparticles (in the classical limit) explicitly

becomes time and position dependenf : ng =ng(p,rt) .

We determine ng (p,r,t) by solving the Boltzmann equation
onfot +{n,g}. =l | (9)

where | (n) is the collision integral of the quasiparticles which we approximate in

the case of binary collisions , specified by

/ ! (10
in terms of Born collision cross sections using the interaction function of Equation(8) .

The local excitation energy of a quasiparticle is equal to

()

E"'(P'ﬂz P+ %{;, {VV'(P’PI) ana—:(P')T') .
Once the collision integral is known we can study the transport properties of the system
such as the viscosity, thermal conductivity or the spin diffusion . f we impose an

' inhomogene.ous static perturbation containing a velocity gradient to the s;'sfem, this
gradient induces a flow of momentum which is only limited by the collisions between
quasiparticles , .and which is - in the comoving coordinate system -~ proportional to

the imposed velocity gradient . Thus the first viscosity 'rl is defined as the proportionality

coefficient between the momentum flux density tensor -Tri-k and the expression
. v S 12
{ OVvi[Ix. 1+ v [dx. —2-(3) ov/Ix, O, (12)
'k i t L ik .
Since the calculation of '72 is somewhat lengthy and cumbersome we here only quote

the final result [ 16]

(13)

,Y _ w(?)‘._r'-z



The density dependent function w(§) contains mainly all those quantities which arise
from the interaction of the neutrons such as forward scattering amplitudes and the
effective mass m™  of the quasiparticles . The explicit expression for w () as well

as a table for some ’Yl - values are given in the work by Heintzmann and Nitsch [9] .
However, the result (13) can ecsily be eludicated by some qualitative arguments :

since the neutron-neutron scattering is restricted to lie within-a layer of width ( KBT)
around the Fermi surface (i.e. all elementary excitations of interest are to be found

in this layer) the transition probobility for the process (10) in the "thermal limit" [13]
is of order (kBT )L . This leads to a qucsipcrficle]ifefi_me Te proportional to T—2 .
Moreover To represents a qualitative measure for the collision time of quasiparticles
which is proportional to the first viscosity n according to the elementary kinetic theory
of gosés . We shall see in the next section that the temperature dependence of q'l

very sensitively effects the duration of differential rotation in neutron maiter .

i, Differentially Rotating Neutron Fluid .

First we want fo describe our mode! : We consider a uniformly rotating sphere of heutron
fluid with a solid outer layer . At a certain time t, we apply a torque from outside

to the surface of the sphere by switching ona homogeneous magnetic field in its interfor .
This torque causes a braking at fhe surface and thereby produces - because of the
viscosity 'rl - avelocity grodlenf within the star’s matter (cf. Fig. 1 ) Ve determine

th:s velocity field solving the "special® Navier-Stokes equation
: dv/dt aV/a{‘."i‘(VVv .——g VP V§+? ,,ZVV (14)

where we have already assumed that the density ¢ os well as the viscosity i depend
neither on the position nor on time . For v = 0 (14) reduces to the well-known

condition for the hydrostatic equilibrium

(15)

Vp=-3V¢



where p is the pressure of the neutron matter and § is the Newtonian gravitational
potential . From the form of (14) we get a rough estimate of the dissipation time of
the viscous forces :

, |
T.: ==3:~L'rz"1 (16)

Vis
where L is the characteristic length scale of the velocity field . This time T,
is independent of the initial condition of the differential equation (14) .

For L~ R, where R is the radius of the neutron star and for a density ¢ = ]0]5 gc:m_:3

and a temperature T = 108 K we get for tVis'N" -108 sec, == 3 years . Afterwards

the matter is rigidly corotating again .

‘We simplify (14) using the following ansatz (cf. Heintzmann et al. [ 17] ) for the .
velocity field v (r,t) '

Vimt) = Qint) v sin o - (17)

In spherical coordinates we obtain from (14) the following partial differential equation

for QLiwt):

E)ﬂ(r,t)/at =57 {;mmu/ ar* + v amga/ ar} _(18)

Here we have alréeady assumed Vp= -3 V§ - According to the results of

Heintzmann et dl. '[ 17])[ 18] this assumption is justified .

For the complete solution of (18) we need initial and bounaory conditions, which we

define as follows :

Initial condition :

’-;Q(’T',O+)::ﬂo



boundary condition :

x) The solution has to be regular at the origin r=0 .

ﬁ) 0, (R, t) = -O-S(f) is a function of fim.e vﬁth ﬂ5(0+)= ‘-Q'o

which will be specified by the torque equilibrium condition below

(Eq. (24) ) .

R means the radial ccordinate at the star’s surface . The solution of the Laplace-trans-

formed differential equation (18) reads

‘ . w3 3 U3
A / 4 _R_i sinh (+{slo)?) — 1 (slv) 2cashlelslo)®)  (19)
‘Q.L(T;SL-S (Lot (8- ‘0'0) (‘r sinh(R(sIo)if") — RM% cosh(R(s]9%)

wifi'x
Wy(s):= 0\8 { .Q.S(‘U} y

and the quantity V= ?-1,7‘ is the kinematic viscosity . The torque at the surface of the
sphere induced by the velocity field of the viscous fluid (19) can easily be given by
(cf. Landau and Lifschitz [19] ) '

D “5"(R (3%, ns)]ar)l R Rsind 27 Rsiry dv'=3"g7 R" 1 aadar-
(20)

Using (19) we explicitly get for D, (s)

o 1 =R
Dls)=3" 81 (RO ECHAY) : —-3} (21)
L Kty °)i1 R(slv)’zcoi:h(R ) .
As already mentioned in the introduction we are interested in the influence of the viscous
forces on the braking index n (t) . Using the balance condition for the torques we

evaluate ._O.,S(‘t) in the following way : The function D, (s) in(21) con not be



transformed analytically into the original space of the Laplace-transform ., Therefore

we give the representation of D (t) in the two limiting cases :

o d.«R and  b) & WR " (22)

here Jt means the depth of penetration of the velocity field at the time t
(cf. Landau and Lifschitz [ 19] ) .

For é’t«R we get from (21)
4w PIRL ¢ b, (23)
Dit)=3"g R (r'ns) jafc(a,gs(r)/clt).(_t -e)

0

which, iikewise , represents the solution of the analogous "plane problem [ 19] .
In Table 1 we give some values of times when the relation a) “is valid. If we assume
now that at the time f the braking at the surface of our fluid sphere is caused by the

torque of a magnetic dipole field , i.e.

Dt (g) =~ (2[3) o Z:_S‘“"X =Dyisl2g) | (24)

we get the following integro-differential equation for ._(ls(r) :

14

-(2/33)57?5 /*LSMZX=3'18WR( "Z?) icl’t’ (dQ.de) {t- )b“ (25)

Here X means the angle between the axis of rotation and the magnetic dipole axis,
3 . ' .. ‘ '
M= BoR is the magnetic dipole moment and ¢ the velocity of light . Two-fold

iterative integration of (25) with the starting ansatz ._()1)( )= LQ. +const. (JC)

leads to the approximate solution for small values of t :

) s - 43
gt =0 = (Lofeqm)t™ (1 -7 0 e £*) )



with : o
-1 ¢ 2 3 2
Chp:=3 8TR (1\' 1«1@) (3c/2.4“~)
M ,
Hence follows the braking index n in the limit t-0

n) = cqr L1 (27)

Obviously the braking index n diverges to+ o0 ast goesto 0 . And putting

. '%LQ.C " =(R‘3GM)%' ~ 0.8 104 secq (Heintzmann et al. [ 18] ) we see
. Q i .

that n decreases from + oo to values of about 100 to 10 ‘within the allowed time

scales (cf. Table 1) .

In the case b) the final state of a rotating viscous sphere of neutron star matter has
already been studied by Heintzmann et al. [ 17] . We, however, are interested in

a dynamical pl;ocess which corresponds to this final state .

For. cft > R the expansion of (21) and the following transformation into the original

space leads to the result : |
Dit)= (8]15)T RS { Q40 +35) R"ﬁ"g Q.qt)] (28)

In the limit «l-—;oo we get the torque of a rigidly rotating sphere with the moment

of inertia

. .
I:=(g}15)rR's : (29)
Using the torque equilibrium condition D; (£} = De.Lm("QS) we now obtain
an ordinary differential equation of the second order for ,ﬂs(t) :

: . 3 30
I{Q.m+ ou,lf_ls(t)} = - o L) (t) (30)
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where

L
a=GsT R s ond o= (382X L @)

Those times for which (30) is a valid approximation can be taken from Table 1 . It is
useful to write (30) in terms of dimensionless parameters and variables . For that

purpose we define the following quantities

o=t

=dmty j bi=(agT) « (tA‘Q‘A)

The constant time fA défines the onset of the validity for the limiting case b) . ‘
(30) now reads
2 V 3 : A
dyldxz' +0.d)/ldx +by =0 ' » (33)
The coefficients a and b are of the same order of magnitude, but both are very large
compared to 1 (see Table 2) . For that reason we interpret the contribution due to the

second derivative in (33) as a perturbation of the differential equation

o dy[dx + by‘a =0 (33)

Its solution corresponds to. the slow down law of the rigidly rotating magnetic dipole
and leads to the braking index n=3 .
The approximate solution of (33) is ( ylz -CL_“ b )’3 )

fo Q

(34)

Vw1t )
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whence we derive the braking index

n)=3 (1+ (357 2T’ RS au) (35)

Since we can not give the complete solution “Q".S(ﬂ for all values of t, we are not
able to give the exact initial value ‘Q'A . If we assume the period of the crab pulsar
to have the value .Q_S('h) the additive term in (35) is of the order of ]O_‘2 to ]0—4 .
It only gives a positive contribution of the order of percents to the braking index of

the magnetic dipole .
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Results and Discussion

As we have seen in the first section the first viscosity of neutron matter depends
on the nuclear forces and on the density of the matter . It is proportional to T-2 .
Especially the'temperature influences the duration of viscous forces in the case of
differential rotation of the neutron matter . Within a more detailed investigation
in the second section we come to know that viscous forces can not be regarded as

:/nic;x =~ 100 years) . From table 2

acting during astronomical time scales ( T
we see that the coupling of the differential rotation to the rigid rotation takes time
scales of years to decades . However, in our above treaiment we did not consider
turbulences as a possible mechanism to destroy the velocity field [ 17] .

In section Il we answered the quesfion of how far the presence of differentially
rotating viscous matter influences the slow down law of a pulsar . The resulting
fact that the bral.dng index n (t) is always larger than 3 is a consequence of

our model calculation : While the surface of the star is already braked by the
dipole radiation, the interior maintains its original angular velocity and therefore
hurries on in advance of the surface ( Fig. 1b) . As a consequence angular
momentum is transported from the inside to the surface due to collisions of the
particles within the viscous fluid . This transported angular momentum leads to a

braking index larger than 3 .

The interaction of the magnetic field in the interior of the star with the neutrons may
be neglected because of the large Fermi energy of the neutrons in comparison to ([08 )
(cf. Pfarr [ 20] ) . A more detciléd discussion would have to include ihe existence
of electrons, protons and negative myons as constituents of a neutron star together

with their interactions with the magnetic field .
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Table 1

17
TLK] ml10" poise] t. Comlk)
w00 1.6 108 1/2 hour 3 . 100
107 1.6 « 10* 2 days 3 10*
108 1.6 + 10 1/2 year 3 - 10°
9 ‘ |
10 1.6 50 years 3
Table 2
TLK] tA[Séc] ' QA[SQC'1J a bla :
, 0 10% 6+ 10° 1.5
10 | ‘
3.10'° 2.1 2-10® 18-
10° 10* 6+10 . 1.5
108 .

3. 10° 2 - 102 2+ 10 1.8+ 10°
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Table captions :

Table 1

All values in Table 1 are given for constant density g = ]0]5 gcm-3 . The time parameter
4\
te is calculated by equating the radius R and the depth of penetration cft:= 2 (Tlg 1t) 12, :

t. = '~F1 '\'(1 1 R . The two.cases @) and b) in the text
refer to t<< tc and t 5> tc , respectively . .

Table 2

"

" The coefficients a and b of the differential equation (33) are given for some special

temperatures and initial data A and "Q"A .



Fig. 1: Velocity fields ; before (a) and after (b) switching on the magnetic
dipole field .



