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Laboratório Nacional de Computação Cient́ıfica, 25651-070 Petrópolis RJ, Brazil.
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Abstract

This work is based on the study of matching conditions for a collapsing anisotropic
cylindrical perfect fluid, in which I proved that its radial pressure is non null on the
surface of the cylinder and proportional to the gravitational radiation produced by
the collapsing fluid. This result resembles the one that arises from the radiation -
though non-gravitational - in the spherically symmetric collapsing dissipative fluid.

∗This paper is dedicated to Professor José Pĺınio Batista on the occasion of his 70th birthday.
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1 Introduction

Spherical gravitational collapse of a dissipative fluid produces outgoing radiation which
can be modeled with Vaidya spacetime. The pressure on the surface of the collapsing
sphere is non null due to the continuity of the radial flux of momentum [1].

It is generally accepted that gravitational waves carry energy, so a source radiating
them should lose mass. If one compares this physical situation to the spherical dissipative
collapse - non-gravitationally radiating - which radiates a null fluid, one might expect
that gravitational radiation would exert a non null pressure on its collapsing surface as
well.

To analyze this problem, I studied the collapse of a cylindrical anisotropic perfect
fluid source. In order to do that I firstly presented the scheme for studying the spherical
dissipative collapse [1, 2, 3] which is included in the next two sections. In sections 4 and
5, I considered the cylindrical perfect fluid collapse following similar steps [4]. Finally,
this article is concluded with a short conclusion.

2 Collapsing dissipative fluid sphere

To start with I assumed a sphere of collapsing perfect fluid with heat flow. Its spherical
surface Σ has centre 0 and it is filled with radially moving perfect fluid conducting heat
flow, so it has energy momentum tensor

T−
αβ = (µ + P )wαwβ + Pgαβ + qαwβ + wαqβ, (1)

where µ and P are the proper density and pressure of the fluid, wα its unit four-velocity,
qα the heat conduction satisfying qαw

α = 0 and gαβ is the metric tensor of spacetime.
I chose comoving coordinates within Σ and imposed shear-free fluid motion which

allows the metric to be written in the form

ds2
− = −A2dt2 + B2

[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (2)

where A and B are only functions of t and r. I numbered the coordinates x0 = t, x1 = r,
x2 = θ and x3 = φ and then I had the four-velocity given by

wα = −Aδ0
α, (3)

and the heat flows radially,
qα = qδα1 , (4)

where q is a function of t and r.
The collapsing fluid lies within a spherical surface Σ and it must be matched to a

suitable exterior. If heat leaves the fluid across Σ, the exterior will not be vacuum, but
the outgoing Vaidya spacetime which models the radiation and has metric

ds2
+ = −

[
1 − 2m(v)

ρ

]
dv2 − 2dvdρ + ρ2(dθ2 + sin2 θdφ2), (5)
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where m(v) is the total mass inside Σ and it is a function of the retarded time v. In (5)
ρ is a radial coordinate given in a non-comoving frame. Its energy momentum tensor T+

αβ

is given by

κT+
αβ = − 2

ρ2

dm

dv
δ0
αδ

0
β . (6)

3 Junction conditions for the collapsing dissipative

fluid sphere

In accordance with Darmois [5] junction conditions, I supposed that the first fundamental
form which Σ inherits from the interior metric (2) must be the same as the one it inherits
from the exterior metric (5); and similarly, the inherited second fundamental form must
be the same. The conditions are necessary and sufficient for a smooth matching without
a surface layer.

The equations of Σ may be written

f− = r − rΣ = 0, (7)

f+ = ρ− ρΣ(v) = 0, (8)

where f− refers to the spacetime interior of Σ and f+ to the spacetime exterior, and rΣ

is a constant because Σ is a comoving surface forming the boundary of the fluid. I took
the coordinates on Σ as ξ0 = τ , ξ2 = θ and ξ3 = φ.

The conditions on the interior and exterior metrics imposed by the continuity of the
first fundamental forms on Σ produced

(
1 − 2m

ρ
+ 2

dρ

dv

)1/2

dv
Σ
= Adt

Σ
= dτ, (9)

ρ
Σ
= Br, (10)

where
Σ
= means that both sides of the equation are evaluated on Σ and I assumed

1 − 2m

ρΣ
+ 2

dρΣ

dv
> 0, (11)

so that v is a timelike coordinate.
The second fundamental form of Σ is

Kabdξ
adξb, a, b = 0, 2, 3, (12)

where Kab is the extrinsic curvature given on the two sides by

K∓
ab = −n∓

α

(
∂2xα

∂ξa∂ξb
+ Γαβγ

∂xβ

∂ξa
∂xγ

∂ξb

)
. (13)

The Christoffel symbols are to be calculated from the appropriate exterior or interior
metric, (2) or (5), n∓

α are the outward unit normals to Σ in f∓, and xα refers to the



CBPF-NF-024/04 3

equation of Σ in f∓, namely (7) or (8). The non zero K∓
ab are as follows

K−
00

Σ
= −A,r

AB
, (14)

K−
22

Σ
=

1

sin2 θ
K−

33
Σ
= r(Br),r, (15)

K+
00

Σ
= ρ̇v̈ − v̇ρ̈− 3m

ρ2
ρ̇v̇2 +

v̇3

ρ

dm

dv
− m

ρ3
(ρ− 2m)v̇3, (16)

K+
22

Σ
=

1

sin2 θ
K+

33
Σ
= (ρ− 2m)v̇ + ρρ̇, (17)

where an overdot means d/dτ .
The complete junction conditions consist of (9) and (10) together with the continuity

of K∓
ab, namely

K−
00 = K+

00, (18)

K−
22 = K+

22, (19)

where the K∓
ab are given by (14)-(17). ¿From (18) and (19) I found

m(v)
Σ
=

Br3B2
,t

2A2
− r3B2

,r

2B
− r2B,r, (20)

which is the total gravitational mass inside Σ, and

P
Σ
= qB. (21)

Equation (21) shows that, if there is heat conduction in the spherically symmetric motion

of perfect fluid, the pressure on the surface of the sphere does not vanish unless q
Σ
= 0. If

q
Σ
= 0, there will be no dissipation of heat from the sphere and the exterior spacetime will

be that of Schwarzschild, not Vaidya.
A physical interpretation of (21) can be given as follows:
Consider the radial flux of momentum on both sides of Σ, given by

F∓ = e∓αn∓βT∓
αβ, (22)

where e∓α is a unit tangent vector in the τ direction of Σ, which implies in

F− Σ
= −qB, (23)

κF+ Σ
=

2

ρ2

dm

dv
v̇2. (24)

¿From the matching conditions and the field equations I could obtain

κP
Σ
= − 2

ρ2

dm

dv
v̇2, (25)
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so it is clear from (23)-(25) that (21) is equivalent to F− = F+, that is, to the continuity
of the radial flux of momentum across Σ.

It is believed that gravitational waves carry energy, so a source radiating them would lose
mass. So I suggested the following problem:

If we considered a collapsing fluid that might produce gravitational waves, would it
produce a similar result to (21)? In other words, would the gravitational radiation exert
a non null pressure on the collapsing surface? To try to answer this question I studied, in
the next sections, the cylindrical gravitational collapse of a perfect fluid, using a scheme
similar to the one presented above.

4 Collapsing perfect fluid cylinder

Some symbols used in the previous sections are repeated here and their meaning should
not be mixed up.

I considered a collapsing cylinder filled with anisotropic non-dissipative fluid bounded
by a cylindrical surface Σ and with energy momentum tensor given by

T−
αβ = (µ + Pr)VαVβ + Prgαβ + (Pφ − Pr)KαKβ + (Pz − Pr)SαSβ , (26)

where µ is the energy density, Pr, Pz and Pφ are the principal stresses and Vα, Kα and
Sα are vectors satisfying

V αVα = −1, KαKα = SαSα = 1, V αKα = V αSα = KαSα = 0. (27)

I then assumed the general time dependent cylindrically symmetric metric

ds2
− = −A2(dt2 − dr2) + B2dz2 + C2dφ2, (28)

where A, B and C are functions of t and r. To represent cylindrical symmetry, I imposed
the following ranges on the coordinates

−∞ ≤ t ≤ ∞, 0 ≤ r, −∞ < z < ∞, 0 ≤ φ ≤ 2π. (29)

I numbered the coordinates x0 = t, x1 = r, x2 = z and x3 = φ and chose the fluid to be
comoving in this coordinate system, hence from (27) and (28)

Vα = −Aδ0
α, Kα = Cδ3

α, Sα = Bδ2
α. (30)

For the exterior vacuum spacetime of the cylindrical surface Σ, I took the metric in
Einstein-Rosen coordinates,

ds2
+ = −e2(γ−ψ)(dT 2 − dR2) + e2ψdz2 + R2e−2ψdφ2, (31)

where γ and ψ are functions of T and R and for the fields equations Rαβ = 0 I had

ψ,TT − ψ,RR − ψ,R
R

= 0, (32)

γ,T = 2Rψ,Tψ,R, (33)

γ,R = R(ψ2
,T + ψ2

,R). (34)
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5 Junction conditions for the collapsing perfect fluid

cylinder

I took again the Darmois junction conditions [5] as in section 3 and considered the interior
metric to Σ given by (28) and the exterior (31). The equations of Σ may be written

g− = r − rΣ = 0 , (35)

g+ = R− RΣ(T ) = 0 , (36)

where g− refers to the spacetime interior of Σ and g+ to the spacetime exterior, and rΣ

is a constant since Σ is a comoving surface forming the boundary of the fluid. I took the
coordinates on Σ as ξ0 = τ , ξ2 = z and ξ3 = φ.

The conditions on the interior and exterior metrics imposed by the continuity of the
first fundamental forms on Σ produced

eγ−ψ

1 −

(
dR

dT

)2



1/2

dT
Σ
= Adt

Σ
= dτ, (37)

eψ
Σ
= B, (38)

e−ψR Σ
= C, (39)

where I assumed

1 −
(
dRΣ

dT

)2

> 0, (40)

so that T is a timelike coordinate.
For the continuity of the second fundamental form (12) I calculated the extrinsic cur-

vature (13) using the same procedure as in section 3 but with the interior (28) and exterior
(31) metrics. After a long calculation I obtained the following non zero components of
K∓
ab

K−
00

Σ
= −A,r

A2
, (41)

K−
22

Σ
=

BB,r

A
, (42)

K−
33

Σ
=

CC,r

A
, (43)

K+
00

Σ
= e2(γ−ψ)

{
T̈ Ṙ− R̈Ṫ

−(Ṫ 2 − Ṙ2)
[
Ṙ(γ,T − ψ,T ) + Ṫ (γ,R − ψ,R)

]}
, (44)

K+
22

Σ
= e2ψ(Ṙψ,T + Ṫ ψ,R), (45)

K+
33

Σ
= −e−2ψR2

(
Ṙψ,T + Ṫψ,R − Ṫ

R

)
. (46)

The complete junction conditions consist of (37-39) together with the continuity of
Kab, namely

K−
00

Σ
= K+

00, (47)
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K−
22

Σ
= K+

22, (48)

K−
33

Σ
= K+

33. (49)

¿From (47)-(49) with the field equations and the matching conditions (37)-(39) I found

κPr
Σ
= (Ṙψ,R)2 − Ṙ

Ṫ
(Ṫ 2 − Ṙ2)

γ,T
R

. (50)

The result (50) shows that the radial pressure Pr on the surface Σ of the collapsing
perfect fluid is non null due to momentum flux of the gravitational wave emerging from
the cylinder. If the cylindrical fluid source is static, then Ṙ = 0 and Pr = 0 on the surface
Σ as expected.

6 Conclusion

I first presented a review of the study of matching conditions for dissipative gravitational
spherical collapse. The main result of this study is that the pressure on the surface of the
collapsing surface is non null. Its physical interpretation is justified through the continuity
of the radial flux of momentum across this surface. Following this result, I inquired if
gravitational radiation might have a similar behaviour. In order to answer this question,
I studied the matching conditions of a collapsing anisotropic perfect fluid cylinder. I then
showed that, in fact, the radial pressure is not null on the matching cylindrical surface,
but proportional to the gravitational radiation. If the system is static I will reobtain the
usual result that the radial pressure is zero on the boundary surface.
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