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Abstract

Here we study some general properties of spherical shear-free collapse. Its general

solution when imposing conformal flatness is reobtained [1, 2] and matched to the

outgoing Vaidya spacetime. We propose a simple model satisfying these conditions

and study its physical consequences. Special attention deserve, the role played by

relaxational processes and the conspicuous link betweeen dissipation and density

inhomogeneity.
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1 Introduction

Gravitational collapse of stars is an important problem of astrophysics and building re-

alistic models of collapse remains a formidable task. One interesting problem is to add

heat flow to spherically symmetric models.

Indeed, dissipation due to the emission of massless particles (photons and/or neutri-

nos) is a characteristic process in the evolution of massive stars. In fact, it seems that the

only plausible mechanism to carry away the bulk of the binding energy of the collapsing

star, leading to a neutron star or black hole is neutrino emission [3].

In the diffusion approximation, it is assumed that the energy flux of radiation (as

that of thermal conduction) is proportional to the gradient of temperature. This assump-

tion is in general very sensible, since the mean free path of particles responsible for the

propagation of energy in stellar interiors is in general very small as compared with the

typical length of the object. Thus, for a main sequence star as the sun, the mean free

path of photons at the centre, is of the order of 2 cm. Also, the mean free path of trapped

neutrinos in compact cores of densities about 1012 g.cm.−3 becomes smaller than the size

of the stellar core [4, 5].

Furthermore, the observational data collected from supernovae 1987A indicates that

the regime of radiation transport prevailing during the emission process, is closer to the

diffusion approximation than to the streaming out limit [6].

Many solutions of Einstein’s field equations with dissipative fluids carrying heat flow

have been studied (see [7] for references up to 1989 and [8, 10, 9] for more recent ones).

In this vein here we study dissipative spherical collapse with shear-free motion. Spher-

ical conformally flat fluids undergoing dissipation in the form of radial heat flow where

first considered in [1] and generalized in [2]. Here we reobtain the general conformally

flat solution in a slightly different way. We match this spacetime to a radiating null field

described by the outgoing Vaidya spacetime. A simple model is considered satisfying

these conditions.

The paper is organized as follows. In section 2 the field equations are presented; in

section 3 we reobtain the general solution by considering conformal flatness of spacetime;

in section 4 we state the junction conditions to the external outgoing Vaidya null radiating

field; section 5 presents a simple collapsing dissipative model and we finish with a brief

conclusion.
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2 Field equations

We assume a sphere of collapsing perfect fluid with heat flow. Its spherical surface Σ has

center 0 and is filled with radially moving perfect fluid conducting heat flow, so having

energy momentum tensor

Tαβ = (µ+ p)wαwβ + pgαβ + qαwβ + wαqβ , (1)

where µ and p are the proper density and pressure of the fluid, wα its unit four-velocity,

qα the heat conduction satisfying qαw
α = 0 and gαβ is the metric tensor of spacetime.

We choose comoving coordinates within Σ and impose shear-free fluid motion which

allows the metric be written in the form [11]

ds2 = −A2dt2 +B2
[
dr2 + r2

(
dθ2 + sin2 θdφ2

)]
, (2)

where A and B are only functions of r and t. We number the coordinates x0 = t, x1 = r,

x2 = θ and x3 = φ and then we have the four-velocity given by

wα = −Aδ0α, (3)

and the heat flows radially,

qα = qδα
1 , (4)

where q is a function of r and t.

The rate of collapse Θ = wα
;α of the fluid sphere is given, from (2) and (3), by

Θ = 3
Ḃ

AB
, (5)

where the dot stands for differentiation with respect to t.

The spacetime described by (2) has the following non-null components of the Weyl

tensor Cαβγδ,

C2323 =
r3B2

3
sin2 θ

[(
A′

A
− B′

B

)(
1 + 2r

B′

B

)
− r

(
A′′

A
− B′′

B

)]
, (6)

and

C2323 = −r
4B2

A2
sin2 θC0101 =

2r2B2

A2
sin2 θC0202

= 2r2A2B2C0303 = −2r2 sin2 θC1212 = −2r2C1313, (7)

where the primes stand for differentiation with respect to r.
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The non null components of Einstein’s field equations Gαβ = κTαβ , where Gαβ is the

Einstein tensor and Tαβ is given by (1), with metric (2) are

G00 = −A
2

B2


2
B′′

B
−
(
B′

B

)2

+
4

r

B′

B


+ 3

(
Ḃ

B

)2

= κµA2, (8)

G11 =

(
B′

B

)2

+
2

r

B′

B
+ 2

A′

A

B′

B
+

2

r

A′

A

+
B2

A2


−2

B̈

B
−
(
Ḃ

B

)2

+ 2
Ȧ

A

Ḃ

B


 = κpB2, (9)

G22 =
G33

sin2 θ
= r2


A′′

A
+

1

r

A′

A
+
B′′

B
−
(
B′

B

)2

+
1

r

B′

B




+r2
B2

A2


−2

B̈

B
−
(
Ḃ

B

)2

+ 2
Ȧ

A

Ḃ

B


 = κpr2B2, (10)

G01 = −2

(
Ḃ

AB

)′
A = −κqAB2. (11)

¿From (11) with (5) we obtain

κqB2 =
2

3
Θ′, (12)

which shows that the outflow of heat, q > 0, imposes Θ′ > 0, meaning that, if Θ < 0,

dissipation diminishes the rate of collapse towards the outer layers of matter. If q = 0

then from (12) Θ′ = 0 which means that collapse is homogeneous [10].

The mass function m(r, t) of Cahill and McVittie [12] is obtained from the Riemann

tensor component R23
23 and it is for metric (2)

m(r, t) =
(rB)3

2
R23

23 =
r3B

2


(Ḃ
A

)2

−
(
B′

B

)2

− r2B′. (13)

Differentiating m(r, t) with respect to r and t and considering the field equations (8-11)

we obtain

m′ =
κ

2

[
µ(rB)2(rB)′ + qr3B4 Ḃ

A

]
, (14)

ṁ = −κ
2

[
pr3B2Ḃ + q(rB)2(rB)′A

]
. (15)

¿From (14) and (15) we have that the heat flow diminishes the gradient and the time

derivative of m(r, t). This agrees with the discussion concerning (12), since dissipation

diminishes the total amount of matter, it is expected that the rate of collapse slows down.

Furthermore, this agrees too with the results obtained for the dynamical instability of
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nonadiabatical spherical collapse [18, 7] where it is proved that relativistically dissipation

diminishes instability due to the decrease of matter content inside a collapsing sphere.

The Riemann curvature tensor can be split into the Weyl tensor and parts which

involve only the Ricci tensor and the curvature scalar. This allows to say that the Weyl

part is constructed only by the gravitational field. Considering the scalar of the Weyl

tensor

C2 = CαβγδC
αβγδ, (16)

with (6), (8) and (13) we obtain after a long calculation

C2 = 48

[
m

(rB)3 − κµ

6

]2

= 48
m2

C
(rB)3

, (17)

where mC is defined as the pure gravitational mass,

mC = m− κ

6
µ(rB)3. (18)

3 Conformally flat solution

Here we impose conformal flatness to the spacetime given by (2), i.e. all its Weyl tensor

components must be zero valued. From (6) and (7) we see that if C2323 = 0 this condition

is fulfilled, hence we have

r

(
A′′

A
− B′′

B

)
−
(
A′

A
− B′

B

)(
1 + 2r

B′

B

)
= 0. (19)

We can integrate (19) and after reparametrizing t we obtain

A =
[
C1 (t) r2 + 1

]
B, (20)

where C1 is an arbitrary function of t. ¿From the isotropy of pressure, (9) and (10),

equating r−2G22 −G11 to zero and using (20) we find

B′′

B′ − 2
B′

B
− 1

r
= 0, (21)

which is easily integrated,

B =
1

C2(t)r2 + C3(t)
, (22)

where C2 and C3 are arbitrary functions of t. The solution found in [1] is a particular

case of (20) and (22) with C1 = 0. All conformally flat perfect fluid solutions with q = 0

have been obtained by Stephani [13, 14]
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Conformal flatness imposes C = 0 and from (17) we have that the pure gravitational

mass mC = 0 and

m =
κ

6
µ (rB)3 , (23)

which is similar to the result obtained in [15] with q = 0. ¿From (14) with (23) we have

µ′ = qB2Θ, (24)

which shows that for q > 0 and Θ < 0 then µ′ < 0 implying that the density diminishes

with increasing r. While from (5) with (12) we obtain

κµ′ =
1

3
(Θ2)′, (25)

which can be integrated, giving

κµ =
Θ2

3
+ g(t), (26)

where g is a function only of t.

Substituting solution (20) and (22) into (9), (10) and (13) we obtain,

κµ = 3

(
Ċ2r

2 + Ċ3

C1r2 + 1

)2

+ 12C2C3, (27)

κp =
1

(C1r2 + 1)2

[
2(C̈2r

2 + C̈3)(C2r
2 + C3) − 3(Ċ2r

2 + Ċ3)
2

−2
Ċ1

C1r2 + 1
(Ċ2r

2 + Ċ3)(C2r
2 + C3)r

2

]

+
4

C1r2 + 1

[
C2(C2 − 2C1C3)r

2 + C3(C1C3 − 2C2)
]
, (28)

κq = 4(Ċ3C1 − Ċ2)

(
C2r

2 + C3

C1r2 + 1

)2

r. (29)

The expansion Θ of the fluid sphere given by (5) with (20), (22) and (29), is

Θ = −3
Ċ2r

2 + Ċ3

C1r2 + 1
= −3

[
Ċ3 − κq

4

C1r
2 + 1

(C2r2 + C3)2r

]
. (30)

We see from (30) that if q = 0 the contraction is homogeneous, however if q �= 0, dissipa-

tion produces inhomogeneous collapse, which has already been remarked in (12).

The density µ in (27) confirms the result (26) with g(t) = 12C2C3.

It is possible to prove, after a long calculation, that the fluid (27-29) does not satisfy

an equation of state of the form p = cµ, where c is a constant, with q �= 0. A family of

solutions with heat flux satisfying an equation of state is given in [16].

In the next section we consider the junction conditions of the collapsing dissipative

fluid to a radiating field.
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4 Junction conditions

If the collapsing fluid lies within a spherical surface Σ it must be matched to a suitable

exterior. Since heat will be leaving the fluid across Σ the exterior is not vacuum, but the

outgoing Vaidya spacetime which models the radiation and has metric

ds2 = −
[
1 − 2m(v)

ρ

]
dv2 − 2dvdρ+ ρ2(dθ2 + sin2 θdφ2), (31)

where m(v) is the total mass inside Σ and is a function of the retarded time v. In (31) ρ is

a radial coordinate given in a non-comoving frame. The matching of these two spacetimes

(2) and (31), using the field equations (9-11) and the mass function (13) satisfies [17, 7]

(rB)Σ = ρΣ, (32)

pΣ = (qB)Σ, (33)

m(v) =

{
r3

2

[
Ḃ2B

A2
− (B′)2

B

]
− r2B′

}
Σ

. (34)

¿From (28), (29) and (33) we have{
C̈2r

2 + C̈3 − 3

2

(Ċ2r
2 + Ċ3)

2

C2r2 + C3

− Ċ1r
2(Ċ2r

2 + Ċ3)

C1r2 + 1
− 2(Ċ3C1 − Ċ2)r

+2
(C1r

2 + 1)

C2r2 + C3

[
C2(C2 − C1C3)r

2 + C3(C1C3 − 2C2)
]}

Σ

= 0. (35)

5 A simple model

A simple approximate solution for the functions C1(t), C2(t) and C3(t) satisfying the

junction condition (35) is

C1 = εc1(t), C2 = 0, C3 =
a

t2
, (36)

where 0 < ε � 1 and a > 0 a constant. When c1 = 0 then (36) describes a collapsing

Friedmann dust sphere, with k = 0, whose radius diminishes from arbitrarily large values

until, at t = 0, a singularity is formed. The time t runs from −∞ to 0 and the constant a

is proportional to the total mass inside the radius r. Substituting (36) into (35) we obtain

up to O(ε),

ċ1 +

(
t

r2Σ
+

2

rΣ

)
c1 ≈ 0, (37)

which after integration yields,

c1 ≈ c1(0) exp

(
− t2

2r2Σ
− 2t

rΣ

)
. (38)
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Substituting the solution (36,38) into (27-29) we obtain

κµ ≈ 12a2

t6

(
1 − ε2c1r2

)
, (39)

κp ≈ ε4a
2c1
t4

[
1 −

(
1 +

2rΣ
t

)
r2

r2Σ

]
, (40)

κq ≈ −ε8a
3c1r

t7
, (41)

which satisfy plausible physical conditions. It should be observed, however, that in the

general case ε �= 0, the range of t is restricted by physical considerations. Thus for example

if we want the the central pressure not to exceed the value of the central energy density,

then we should have,
3

t2
> εc1. (42)

We see from (39) that the energy density diminishes to the outer regions due to

dissipation; from (40) we have that pressure diminishes too towards the outer regions

while from (41) we have that the heat flow increases in that same direction.

The mass function (13) inside a radius r with (36) and (38) becomes,

m(r, t) ≈ 2r2

a

(
1 − ε2c1r2

)
, (43)

showing that dissipation diminishes the mass inside r. Now calculating the rate of collapse

(5) with (36) and (38) we obtain

Θ ≈ 6a

t3

(
1 − εc1r2

)
, (44)

implying that dissipation slows down collapse. This result agrees with the fact thatm(r, t)

is diminished by dissipation.

The effective adiabatic index

Γ =
d ln p

d lnµ
, (45)

gives a measure of the dynamical instability of the body at given instant of time. Cal-

culating (45) for r = 0 and r = rΣ with (36) and (38) up to the order O(ε) in p we

obtain,

Γr=0 ≈ 2

3
+
t2

6r2Σ
+

t

3rΣ
, (46)

Γr=rΣ
≈ 5

6
+
t2

6r2Σ
+

t

3rΣ
. (47)

We see from (46) and (47) that Γr=0 < Γr=rΣ
which shows that the centre is more unstable

than the surface region of the collapsing body. This conclusion too agrees with our

previous analysis.



CBPF-NF-024/03 8

5.1 Calculation of the temperature

Finally it is worth calculating the temperature distribution, T (r, t), for our model, through

the Maxwell-Cattaneo heat transport equation [19, 20, 21, 22, 23],

τhαβwγqβ;γ + qα = −Khαβ(T,β + Taβ), (48)

where τ is the relaxation time, K the thermal conductivity and hαβ = gαβ + wαwβ the

projector orthogonal to wα. Considering (2-4) then (48) becomes

τ(qB)̇B + qAB2 = −K(TA)′. (49)

Substituting (20), (22) and (29) into (49) and considering C2 = 0 we obtain, up to

order ε

τ(C1C3Ċ3)̇r + C1Ċ3r = −κK
4

[
T (C1r

2 + 1)
]′
, (50)

Now, in the non–dissipative case ( C1 = εc1 = 0) it follows at once from (50) that

T = T0(t), implying that in that case the temperature is homogeneous within the fluid

distribution. Therefore, in the general dissipative case C1 �= 0, we shall have

T = T0(t) + εTε(r, t), (51)

Then introducing (51) into (50) we obtain up to O(ε)

T ≈ Tc + εc1

(
4a

κKt3
− T0

)
r2 − ε4a

2τc1
κKt5

(
t

r2Σ
+

2

rΣ
+

5

t

)
r2. (52)

where we have assumed for simplicity K =constant and Tc(t) denotes the central temper-

ature. The second term on the right hand side of expression (52) exhibits the influence of

dissipation on the decreasing of temperature (remember that t < 0 ) with respect to the

non–dissipative case, as calculated from the non–causal (Landau–Eckart) [24, 25] trans-

port equation, whereas the last term describes the contribution of relaxational effects.

The relevance of such effects have been brought out in recent works (see [16, 26] and

references therein). In particular it is worth noticing the increasing of the spatial inho-

mogeneity of temperature produced by the relaxational term, an effect which has been

established before [27].
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6 Conclusion

We have presented the general field equations for a spherical dissipative shear-free collapse.

Some general properties concerning the effects of dissipation on the collapsing body and

its mass were discussed. By imposing conformal flatness we showed that the system is

completely soluble in its radial part and producing three arbitrary time functions. Then

we matched this solution to the outgoing Vaidya radiating spacetime. A simple model

with a Friedmann limit is constructed satisfying the junction conditions.

Besides its simplicity, the merit of the model resides in the fact that it exhibits in a

very clear way the influence of relaxational effects on the temperature, and thereby on

the evolution of the system.

It is also worth noticing the appearance of density inhomogeneities directly related to

dissipation, even though the space–time remains conformally flat. This reinforces doubts

[28] on the proposal that the Weyl tensor [29] or some functions of it [30], could provide

a gravitational arrow of time. The rationale behind this idea being that tidal forces tend

to make the gravitating fluid more inhomogeneous as the evolution proceeds, thereby

indicating the sense of time.
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