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Abstract

Fully relativistic and non-relativistic molecular orbital calculations were performed for the
covalent paramagnetic complex [Ir(CN);}>~, employing the self-consistent Discrete Vari-
ational method, in the framework of density functional theory. Relativistic effects on the
electronic structure and chemical bonding are discussed by comparison of relativistic and
non-relativistic one-electron energy levels, populations and bond orders. The influence of
relativistic effects on calculated absorption energies of the electronic spectrum is briefly
assessed.
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I Introduction

In heavy transition metal atoms, such as Ir, relativistic effects have a significant influence
on the energy and shape of the orbitals. Among the best known effects are the contraction
of the 8,/; and py; orbitals, that penetrate the nucleus, the consequent expansion of the d
and f orbitals, due to increased nuclear shielding, and the relativistic (spin-orbit) splitting
of orbitals with £ > 0. Asthe atom forms chemical bonds, such effects will affect the charge
distribution and stability of the molecules, and therefore may not be disregarded [1].

The ligand CN forms bonds with transition metal atoms that are very covalent in
nature, resulting in strong electronic delocalization. Added to this, the presence of a rela-
tivistic atom induces complex and interesting effects. Here we report a comparative study
of non-relativistic and relativistic molecular-orbital calculations for the square-pyramidal
covalent paramagnetic complex [[r(CN)s[®~, in which Ir is in the unusual formal oxidation
state +2. Such species has been obtained by irradiation of the hexacoordinated diamag-
netic (Ir +3) complex with electrons or X-rays in solid alkali halide matrices. [Ir(CN)g)*~
is a low-spin complex with one unpaired electron occupying the HOMO (highest occupied
molecular orbital); its electronic structure has been investigated by EPR spectroscopy [2].

Relativistic effects in molecules are usually treated in two ways. In semi-relativistic
methods, direct relativistic terms such as the mass-velocity correction and the Darwin
term are included in the hamiltonian and treated self-consistently, whereas the spin-orbit
interaction is initially neglected and, in some cases, treated later as a perturbation [3, 4].

These methods utilize one-component wave functions, which corresponds to ignoring
the small-components, and collapsing the large-component solutions of the Dirac equation
into one. In such a framework, indirect nuclear shielding effects are difficult to assess [1].
On the other hand, methods in which the full Dirac equation is solved treat the spin-
orbit interaction self-consistently, inasmuch as 4-component wave functions are employed
[5, 6]. Among these, the fully relativistic Discrete Variational Method (RDVM) [6], based
on density functional theory [7], allows the treatment of both direct and indirect effects
without any approximations other than the local potential.

The non-relativistic Discrete Variational Method (DVM) and its relativistic extension
were employed here to investigate the electronic structure and bonding in [Ir(CN}s]*~. In
Section II we describe briefly the methods and give some details of the calculations; in
Section III we present and discuss the results, including relativistic effects in electronic
transitions. In Section IV we summarize our conclusions.

II Theoretical Method

IL.a Non-relativistic
In the DVM method [8], the set of one-electron Kohn-Sham equations [7] are solved
for the complex (in hartrees):

[=1/2V% + Vi(7) + Vael P i(F) = €i(7) (1)

where the Coulomb potential V.(F) includes both the electron-nucleus attraction and
electron-electron repulsion, and V() is the local exchange-correlation potential, which
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we have chosen in the form derived by Hedin and Lundqvist {9]. V() is a functional of
the electronic density p(7), which is taken as a sum over the molecular orbitals ¢;{r) with

occupation numbers n;:
p(7) = Zmlsﬁe("')l"- (2)

The molecular orbitals ¢;(F) are expanded on a basis of numerical symmetrized atomic
orbitals x,,

AGED IS AGION (3)
o
The discrete variational method leads to the secular equations, solved self-consistently:

([H] - [E}[SPIC] =0, 4)

where the matrix elements of the Hamiltonian matrix [H] and overlap matrix [$] are
summations over a three-dimensional grid of points, with weights defined as the volume
per point. The three-dimensional grid is chosen to be regular inside a sphere of radius
equal to 2.5 a.u. around the transition element Ir, where a precise polynomial numeri-
cal integration is performed [10]; outside this sphere and around all the other atoms, a
pseudorandom Diophantine point generator is used to provide the points [8]. The total
number of points employed here was of the order of 13,000.

In order to facilitate the calculation of the electron-electron repulsion integral, a model
potential is defined [11] by replacing the exact electronic charge density p(7) by a model
charge density pa(7), which is represented by a multicenter overlapping multipolar ex-

pansion
p(7) & pue(7) = 3 dipi(7), (5)

with

I
pi(F) =" CoaRu(r,)Yem(#.). (6)

The index j = (I,£, A, N) denotes a symmetry-equivalent set of atoms (I), a particular
partial wave character (£), a given independent basis function () associated to a particular
¢ (if necessary) and a particular radial degree of freedom (N). The » summation (3') runs
only over the atoms equivalent by symmetry to the atom ». The symmetry coefficients
C¥2 are chosen to produce functions which belong to the totally symmetric representation
of the molecular point group (since p(¥) is a scalar), Yem are the usual real spherical
harmonics and r, is the radial coordinate relative to site v. Ry(r,) are piecewise parabolic
radial functions localized inside a radial range ry < r < ry41, which allow a convenient
analytical integration. In the calculations reported here, terms up to £ = 2 centered on
Ir, C and N were included; for each center, five radial functions were considered.

The coefficients d; are obtained variationally by a least-squares fit to the “true” density
p(7), subject to the condition that the model density integrates to the total number of
electrons. For the present calculations, the least-squares error was of the order of 0.03,
for both relativistic and non-relativistic calculations.
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Atomic basis functions in equation (3) were obtained from numerical self-consistent
atomic density-functional calculations. For Ir, the basis functions included in the vari-
ational space were 41, 5s, 5p, 5d, 6s and 6p. For C and N, all orbitals were included.
All core orbitals not included in the variational space were orthogonalized to the valence
basis functions in the first iteration and kept “frozen” subsequently. In order to reduce
spurious effects of basis truncation the following procedure was adopted: to start the self-
consistent procedure, the atoms are considered neutral and basis functions are generated
for neutral atoms. After self-consistency is achieved for the complex, a Mulliken-type {12}
population analysis is performed and the populations obtained are used to define new
charges and configurations for the atoms. These populations are defined by dividing the
overlap population with weights proportional to the coeflicients [12]. New basis functions
are generated for the atoms with the charges and configurations obtained. This procedure
is repeated until the charges and configurations of the complex atoms are similar to those
of the atoms generating the basis.

IL.b Relativistic _
The starting point of the relativistic DVM [6, 13] is the one-electron Dirac hamiltonian
(in hartrees, ¢ = 137.037):

hp = ci[f— (1/c)A] + (B — 1) + Ao, (7)

where & and # are the 4 x 4 Dirac matrices, § the momentum operator, and (g, Ao)
a four-component vector potential describing external fields. By setting A =0 and
Ap = V.(7) + Vio(7), where V,(F) is the Coulomb potential and V,.(¥) the local exchange-
correlation potential as in equation (1), one gets the relativistic extension of the one-
electron Kohn-Sham equations

(hp — &)¢i(7,5) = 0, (8)

where ¢;(7, s) is a four-component Dirac spinor.
As in the non-relativistic case, the molecular orbitals ¢;(7, s} are expanded on a basis
of numerical symmetrized atomic orbitals x;(7, s),

$i(7,8) = ) X.(F, 9)C}. 9)

The symmetrized orbitals x%(F, s) are taken to be linear combinations of atomic fourth-
order central-field Dirac spinors xnim(7,8) given by

2y | T Pa(r) Vi (0, ¢, 8)
Xnkm(ra 8) - [ ir_lQ:k(r);’Tm(ga ¢, 3) ]

and are constructed by using the projection operator technique as applied to the point
double groups [6, 13]. In equation (10}, Pyx(r) and Qu(r) are, respectively, the “large”
and “small” components of the Dirac spinor and ), is a vector-coupled function of a
spherical harmonic Y;"(9, ¢) and a spin function {,(s) [14). The orbitals X.im(F,s) are

(10)
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eigenfunctions of the total angular momentum squared j? and of its projection j, with
eigenvalues j(j + 1) and m, respectively, and are of given parity. The relativistic quantum

number k is defined by

[t if j=t-1)2 -
k_{—(£+1) if j=t+1/2, (1)

which includes both j and the parity.

Once we have obtained a basis of relativistic symmetrized atomic orbitals, the RDVM
method leads to secular equations exactly analogous to the non-relativistic expressions,
Eq. (4). Atomic relativistic basis functions (Eq. (10)) were obtained from numerical self-
consistent relativistic atomic density functional calculations. The basis functions used for
Ir were 4f5,~’2a 4f'r;‘2s 551,!2, 5p1/3, 5P3f2a 5d3f2, 5dsf2, 681;2: 6P1f2 and 6].33;2- For C and N,
all orbitals were kept in the variational space.

The numerical integration methods and the model potential used in the molecular
relativistic calculations, as well as all the details of computations, are fully analogous to
the non-relativistic case described in section Il.a. The relativistic DVM employs non-
relativistic Coulomb and exchange-correlation potentials, which do not include quantum-
electrodynamical corrections. Relativistic effects, however, do not change significantly the
structure of the potential and most of these effects can be identified with modifications
in the kinetic part of the hamiltonian, spin-orbit splitting and mass-velocity correction
term.

The relativistic symmetrized basis functions were obtained with the codes of Good-
man and Ellis [13], based on an automatic procedure that necessitates as input only the
molecular geometry.

IIT Results and Discussion

In order to investigate the relativistic effects in the electronic structure and chemical
bonding of [Ir(CN)s}]*~, we have performed relativistic and non-relativistic molecular or-
bital calculations. The interatomic distances, estimated by extrapolation of values known
for other transition metal hexacyano complexes [15] taking into account the respective
covalent radii, were taken as: Ir-C=2.004, C-N=1.154. The [Ir(CN)s]*~ complex ion is
expected to have the square-pyramidal structure (symmetry point group Cg,) depicted
in Figure 1. The Ir ion is expected to lie out of the plane of the equatorial ligands (see
Fig. 1), as evidenced by EPR measurements of the superhyperfine interaction with the
four equivalent equatorial nitrogens [16]. The angle CN(ax)-Ir-CN(eq.) was taken to be
97.7%, which is the equilibrium value according to semi-empirical calculations [17]. Non-
relativistic wave functions of [Ir(CN)s]*~ have been also employed in the investigation of
EPR parameters [18].

In Table I are given the energies €; (of Eqs. (1) and (8)) of the deeper molecular orbitals
derived from the 4f, 5s and 5p orbitals of Ir. Comparison of non-relativistic and relativistic
energies shows clearly the relativistic contraction of the 5s and 5p, /; orbitals, which results
in considerably lower energies, as compared to non-relativistic. In contrast, the relativistic
molecular orbitals derived from 4f expand due to increased nuclear shielding, and thus



-5- CBPF-NF-023/94

the energies are higher. These core orbitals, which in the non-relativistic calculation
constitute a very narrow band of only 0.2¢V width, in the relativistic calculation form
a much broader band of width 4.4eV, due mainly to spin-orbit splitting. One may also
observe that the 5p,; level lies ~9¢V deeper than 5ps/,, merging with the 4f band.

In Fig. 2 are shown the valence orbital energies £; for the non-relativistic and rela-
tivistic calculations, as defined in Eq. (1) and Eq. (8). The lowest-energy group of levels
below -15eV correspond to orbitals localized on the C and N atoms; since relativistic
effects for these atoms are not significant, there is practicaly no difference for these levels
in the two calculations. This is true for all other levels localized mainly on the ligands.

The second group of levels correspond to occupied C-N orbitals showing significant
mixture with Ir, as may be observed in detail in Table II; this is evidence of the strongly
covalent nature of the Ir-CN bond. On top of these levels are the occupied antibonding
levels (or “crystal field” levels) pertaining mainly to Ir 5d. The main differences between
non-relativistic and relativistic calculations in this region are as follows. First, the rela-
tivistic calculation results in a larger number of levels, due to the change to double-group
symmetry. Second, the bottom level 10a; is pushed down in the relativistic calculation.
As seen in Table II, 10a; has a non-negligible 58 participation; in the corresponding rel-
ativistic orbital 16e’ this is decreased, since the 58 energy is much lower (see Table I).
The 5d participation is decreased significantly, due to the higher energy of the atomic
5d orbital; in contrast, there is a significant (8%) 6s,/, participation. Since the atomic
6312 level is much deeper than its non-relativistic counterpart, this and the smaller 5d
participation results in the stabilization of 16€’ relative to 10a;.

On the other hand, the occupied antibonding “crystal field” group of levels, 27¢’, 21e”
and 22e”, are placed at higher energies than the corresponding non-relativistic 3b; and
12e. This is due to the destabilization of the 5d3/; and 5ds;2 atomic orbitals.

The last occupied orbital with one unpaired electron 15a; has almost the same energy
as its relativistic counterpart 28e’. In Table III are given in detail the Mulliken-type
populations of these orbitals. It is seen that the unpaired electron is strongly delocalized
towards the ligands; this delocalization, however, is smaller in the relativistic calculation,
in which the 5d population is increased.

The group of lowest energy virtual levels in both non-relativistic and relativistic cal-
culations show strong mixture between Ir and CN levels. Although one level may be
identified as the “crystal field” level (9b; or 28e”) due to a very high 5d population, most
of the other levels have significant Ir participation. This again is evidence of the complex-
ity of the bond between a 5d metal and a covalent ligand. The 5d population in 28e” is
much higher than in 9b;, again a consequence of the higher energy of the relativistic 5d
orbitals.

In Table IV are given the Mulliken-type total populations. The charge on Ir is some-
what decreased in the relativistic calculation. The 6s population is significantly increased
in the latter; the 6p is also increased, and the 5d is decreased. As the 6s energy is lowered
in the relativistic calculation, its population in the complex may increase without loss of
stability. The reverse is true in the case of 5d.

In Table V are shown the values of the bond orders (defined as the total overlap
populations) for the Ir-C and C-N bonds. It is interesting to observe that there is a
noticeable increase in the Ir-C bond order due to relativistic effects; the increase in the d-



-6 - CBPF-NF-023/94

- 8-p hybridization of Ir, dicussed above, is probably an important factor in this stabilization
of the Ir-CN bond. As for the C-N bond order, it does not change by relativistic effects,
in conformity with the small atomic numbers of these atoms.

According to Density Functional theory, many-electron effects are expected to be in-
corporated in the electronic structure, although a one-particle picture is maintained. In
addition, the electronic relaxation that occurs when an electron changes orbital in an
electronic transition may be taken into account by a transition state calculation [19)].
However, here we will concern ourselves only with the lowest-energy “crystal field” d — d
transitions, between levels with strong Ir 5d components; since these transitions involve
orbitals with similar compositions, relaxation effects may be expected to be of less impor-
tance. In fact, test calculations have shown that the difference between transition energies
calculated with a transition state and those obtained by merely calculating the energy
difference between the one-electron levels may be expected to be of the order of 10% [18];
accordingly, the latter procedure was adopted.

In Table VI are given the calculated electronic transition energies for the lowest d — d
transitions. No account is taken here of the transition intensities, and only doublet excited
states are considered. To our knowledge, the optical spectrum of [Ir(CN)s]?>~ has not been
reported; however, the spectrum of the analogous complex [Co(CN)s]*~ has been measured
in solution [20], and the bands observed have been interpreted with the aid of theoretical
calculations [21].

According to the present non-relativistic calculations, the lowest-energy electronic
transitions of [[f{CN)s]*~ are expected to lie at somewhat higher energies than those
observed for [Co(CN)s]3~. The lowest-energy transition (19.6 x 10°cm=1) is predicted
to be 24; —2F, the same as for the Co complex, where it is seen at 10.4 x 103cm™!
[20, 21]. However, relativistic effects decrease the energy of the corresponding transition
of [Irf(CN)5]*~ to 16.0 x 1073em ™! (see Table VI). The other d — d transition to the or-
bital of the unpaired electron (3b; —+15a,) is also shifted to lower energies (27¢’—28e’and
21e”—28¢’). On the other hand, the transition from the level of the unpaired electron
15a, to 9b; has its energy increased in its relativistic counterpart (28e’—28e”).

It should be kept in mind that the naive “crystal field” picture of d — d transitions
are only a simplification useful in analysing the spectra. As may be seen in Table II,
the bands of highest-energy occupied levels and lowest-energy virtual levels contain many
orbitals with significant 5d components, other than the levels considered in Table V1. Thus
the classification in “crystal field” or charge-transfer (metal—ligand and ligand —metal)
transitions is not very realistic, and a detailed investigation of the optical spectrum of
[Ir(CN)5]3~ would involve considerable complexity.

IV Conclusions

The non-relativistic and relativistic Density Functional molecular-orbital calculations for
[Ir(CN)s]2~ reveal relativistic effects in the electronic structure and bonding of this com-
plex. Among these, we observed the increase of Ir 6s and 6p populations, and decrease
of 5d, in the relativistic calculation. In the latter, the unpaired electron in the HOMO
orbital is somewhat less delocalized to the ligands, and the bond-order of the Ir-CN bond
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is increased, indicating that relativistic effects contribute to stabilize the metal-ligand
bond. The lowest-energy d — d transitions are shifted relativistically to lower energies.
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Figure Captions

Figure 1 - The square-pyramidal complex [Ir(CN)s]*>~. Ir is at the center; the darker
ligand atoms are C.

Figure 2 — Non-relativistic and relativistic molecular-orbital energies of [Ir(CN)s[3~.

Table Captions

Table I — Shallow core molecular-orbital energies of [Ir(CN)s}*~.

Table II - Mulliken-type population analysis of the valence molecular orbitals of [Ir{(CN)s)3~.
Only values for Ir atomic orbitals are given. In % of one electron.
a) Last occupied orbital, with one electron.

Table III - Population analysis (in % of one electron) of the orbital of the unpaired
electron (HOMO) of [Ir(CN)s]*~. C,. stands for axial C, C,, for equatorial.

Table IV - Total populations and charges of [Ir{CN)s]*~.
Table V - Bond orders of [Ir(CN)s}J*~.

Table VI - Calculated energies of d — d electronic transitions of [Ir(CN)s]*~.
a) 1.eV=8.0655x L03cm™.
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Table 1
Non-relativistic Relativistic
Orbital Enegy (eV) Ir atomic character | Orbital Energy (e¢V) Ir atomic character
Bay -67.7 5s 7€’ -88.3 58179
3e -62.5 8¢’ -55.3
3b; -62.4 . 5e” -54.1
lbg -62.4 4f 6e” -54.1 4.{5!2,
de -62.4 ) 98} -54.0 4f7,‘g
6a, -62.3 10¢’ -51.0
: Te” -50.9
8e” - -50.9
Be -40.1 5p 11¢e’ -50.9 5p1/2
Tay -39.8 9e” -41.8 5ps/a
12¢’ -41.5
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Table I

Non-relativistic Relativistic Relativistic {cont.)
Orbital Composition Orbital Compoasition Orbital Composition
10, 3.9(%), 11.3(5d) 16e’ 1.3(581/2),7.5(681/2),1.6(5d5/3), 1.6{5d5/z) | 29¢'  1.5(6py;3),1.0(6psy2)
5by 44.8(5d) 12" 20.5(5d3/),19.4(5ds/3) 23e”  2.1(6pssa)
11a, 1.2(58),1.7(5p),16.0(5d) | 17e’ 1.0(5p3/2),10.8(5d3;3),12.4(5d3) AUe"  2.2(5dys5),1.4(5dy)
Te 2.5(5p),4.8(5d) 18¢’ 4.0{5d3/3),1.2(8p1/2),1.0(5p3/2) 30e'  1.2(68y4),8.4(5da/2),2.8(5ds/2)
2b, 23.2(5d) 13¢” 2.0(5p/3),1.0(5ds/2),2.5(5ds/2) 25"  (CN) '
Se 16.1(5d) 14¢” 9.7(5dy/2),11.9(5d5/2) 31¢'  1.1{6sy/5),4.5(5d5/2),3.8(5dss2)
.......................................... 19¢' 11.0(5da/2),5.2(5ds/3) 2" 13.3(5dy/),3.8(5d5s)
1234 to 10e- - (C,N) 15¢” 1.4(5d372),11.2(5ds /1) 33" 1.0(6812),4.1{5da/2),11.7(5ds2)
.................................................................................................. 33’  (CN)
by 4.6(5d) 20e’ to 18e”. --(C,N) 27¢"  1.4(5dys),18.0(5ds/;)
134, - ) T %e”  12.5(5dy2),40.5(5dss)
Ma, 3.3(6s),1.1(5d) 19¢” 2.0(5d3/2),2.7(5ds2)
le 1.3(5p).4.9(6p),4.6(5d) | 24¢’ 2.2(5ds;2),2.7(5d512)
3b, 59.2(5d) 25’ 2.5(66112),1.2(5d3/2),1.2(5d5/2)
12¢ 3.9(6p),57.0(5d) 26e’ 5.4(6p1;2),1.2(6p3sa),
15a(" 3.1(62),30.9(6p),27.8(5d) 2.2(5ds/2),1.0(5ds/2)
13e 1.5(6p) 20¢” 8.1{6ps/3).2-4(5ds/),1.0(5d3/3)
8y 3.4(5d) 2le” 31.0(5dy,2),27.7(5d5/2)
168 17.1(5d),1.9(6s} 2te’ 1.2(6p1/2),2-5(6p,3/2),
ide 1.1(5d) 36.0(5d/2),22.5(5d3/2)
4b, 22.2(8d) 22e” 3.6(6ps/2),3.1{5d372),59.2(5ds/2)
15¢ 15.6(5d) 28e"(s} 3.4(68y3),9.9(6ps 2},
20, {C\N) 21.1{6pa;s),8.1(5dy/2),21.7(3ds/a)
b, 42.2(5d)
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Table II1
Non-relativiatic Relativistic
Ir 5 0.0 Ir 581.{2 0.0 -
5p 0.6 S5piz 0.1 B5p 03
5d 27.8 5p3f3 0.2 '
6s 3.1 5ds;; 8.1 5d 29.8
6p 30.9 5dssa  21.7
CM; 8.3 681,2 3.4
Naz 3.3 6py;z 99 6p 31.0
C,q(ea.ch) 3.7 6[)3;2 21.1
Neg(each) 2.8 | Cus &
Nax 3.1
Cugeach) 2.7
N.,{each) 34
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Table IV
Non-relativistic Relativistic
Ir 5s 1.94 Ir 98172 1.96 :
populations: 5p 5.91 | populations: 5py;; 1.98 S5p 5.92
5d 7.43 5pss2  3.94
6s  0.09 5ds/; 3.17 5d 7.38
6p 0.45 5ds;; 4.21
Charges: Ir +1.18 68172 0.23
Caz 10.07 6pia 0.19 6p 0.51
Naz -0.85 6pss  0.32
Ceg +0.02
N., -0.87 | Charges: Ir +1.01
Cax  +0.08
Naz . -0.84
C +0.05

-0.86
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Table V

Non-relativistic | Relativistic

Ir-C.; 0.30 0.48
Ir-Ce,  0.31 0.48
(each)
Cor-Nox  1.36 1.36
CegNey 131 1.31
(each)
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Table V1
Non-relativistic Relativistic

Transition Energy* Transition Energy'®
(103em™1) (10%cm™1)

3b, — 153, 2A; —2B, 23.0 27e’'—28e’ 2E'F’ 19.4

12e—15a; 2A; —3E 19.6 21e”—28e’ 2E'3E” 21.8

15a; —9by; 2A, —?B, 34.7 22e”—28¢’ IE'-IE” 16.0

28e’—28e” ?E'—3E” 38.5

CBPF-NF-023/94
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