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Abstract

We have recently introduced an effective-field framework
which, without mathematical complexities, enables the calcula-
tion of the phase diagram (and magnetization) associated with
a quenched bond-mixed spin-% Ising model in an anisotropic sim
ple cubic lattice. The case corresponding to anisotropic coup-
ling consténts but isotropic concentrations was discussed in
detail in that occasion. Herein we discuss the case corresponding
to isotropic coupling constants but andisotropic concentrations .
A certain amount of interesting phase diagrams are exhibited;
whenever comparison with available data is possible, the pre-

sent results provide a satisfactory qualitative (and to a cer-

tain extent quantitative) agreement.
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I. INTRODUCTION

Random magnetism has been intensively focused during last
years, both theoretically and experimentally (see Ref. 1 and
references therein). Two of us have recently presented, in a
paper[l] hereafter referred to as paper I, an effective - field
theoretical framework which enables the discussion of .a quite
general Ising model. To be more specific the model is the quenched
bond-mixed spin-—% Ising magnet in an anisotropic simple cubic

lattice. Its Hamiltonian is given by

& =-7 7. .00, (0. 0.= £1) (1)

<ii> 1] 1 ] 1 7]
where <i,j> runs over all the nearest-neighboring couples of
sites of a simple cubic lattice; Jij is a random variable as-
sociated with three different distribution laws respectively a

long the three crystalline directions (denoted by 1, 2 and 3),

namely
h —-— — ' — =
P (Jij) = (l-p )d(Jij J') +p 6(Jij J_) (r=1,2,3) (2)

where we assume Osprél (vr), 0<J,<J <J3>O, and J'rer(Vr).

1 2
It is important to note that these are conventional restric-
tions, and not physical ones.
The phase diagram of this model involves a 9-dimensional
. . 1
space (determined, for instance, by kBT/JB’ J2/J3, Jl/JB’ Jl/Jl’
JE/JZ’ J%/JB, pl,pz,p3); more specifically the critical frontier

separating the paramagnetic phase from any other (corresponding,
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more precisely, to the stability limit of the paramagnetic
phase) consists in a 8-dimensional hypersurface in the above
mentioned hyperspace. Such a complex critical frontier has ob
viously to be studied through its particular cases. In paper
I we have presented the general formalism (which is a consid-
erable improvement on the Mean Field Approximation (MFA); see
paprer I and references therein), and discussed a large number
of particular cases (anisotropic coupling constants) restricted
however to {40fropic concentrations (p1=pzzp3). In the pre-

sent paper we assume Ais0tropdic coupling constants (J1=J =J,=J

2 73
and J1‘=xJ£=‘I§E J') but allow for andisotropic concentrations.
In Section II the formalism is briefly recalled (in a

form slightly more convenient than that introduced in paper I},
and in Section II the most interesting particular phase dia-
grams are presented and discussed. Finally we conclude in Sec

tion 1IV.

II. FORMALISM

The system determined by Egs. (1) and (2) can be treated

by using the following Callen identity[z]:
<o,> = <tanh B Z Jijoj> (3)
J
where B El/kBT, <-«+> indicates the canonical thermal average

associated with a fixed configuration of {Jij}, and the sum

runs over all the sites to which site i is connected (in the
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present case, first-neighboring ones). This identity can be re

written[B], by introducing the differential operator D =123/93x%,

as follows

<g.> <exp(BDz.JijOj)>'tanhx x

]

=0

11

<?[cosh(8DJij) + 0j51nh(BDJij)]>tanhx .

0 (4)

Now we apply on both sides of this equation the configurational

average (denoted by <~-->J), and obtain

m = <<oi>>J = <<?[cosh(BDJij)-r0j51nh(BDJij)]>>Jtanh><

x=0
(5)

It is worthy to note that this is still an exact relation. By
assuming now the same decouplings of paper I (essentially, ne-

glecting multispin correlations), Eq. (5) yields

{[(1-p_) (cosh(BDJ') +m sinh(B8DJ'))
1 r r r

=4
0
(==

+ p,(cosh(BDJ ) +msinh(BDJ_))]?} tanhx| (6)

=0
Along the last step we have lost the strict criticality of the
system (e.g., the critical exponents are going to be classical
ones,and the real dimensionality of the system will be taken
into account only through the coordination number) ; however,
the present effective-field theory is quite superior to the MFA

one, as extensively exhibited in paper I and references therein.
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A tedious but straightforward evaluation of Eqg.(6) leads

to

m = 2Am + 2Bm?® + 2Cm° (7)

where the coefficients A, B and C are functionscﬁNkBTﬂﬁyJé/J3,
...,pl,pz,p3); they are indicated in the Appendix for the par

ticular case J =J,=J,=J and J%{=J" =J§EJ', in which we are

1 3 1 2

presently interested. Eq.(7) admits two solutions, namely m=0

(paramagnetic phase) and

1/2
, 1/2
(=B-[B’-2c(2a-1)1"2 , (8)

m =
2C

(ferromagnetic phase). The critical hypersurface characterizing

the ferromagnetic-phase stability limit is determined by

A =1/2 (9)

In what follows we discuss the phase diagrams corresponding

to the main particular cases not covered in paper I.

Ior. PARTICULAR CASES

Herein we present the phase diagrams associated with the

isotropic coupling constant models (JrEJ and J}EJ‘ﬂx:r=142,3L
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A. Bond-diluted (J'=0) and bond-mixed (J'/J3>0) models

The coefficient A appearing in Eq.(9) is given by the
t'=0 particular case of Eqg.(A.l). At vanishing temperature (T=0),

the critical surface is given by

15 2 15
E(plpzpy + (1-py) (1-p,) (1-p;) o (py,p,,P5) iy PP, P30 (1-p, ,1-D, ,1-p))

* S0 10, /P3)17 + (1-p)) (1-py) (1-py) & (1-p, ,1-Dy ,1-D,)

- 3
+—} [a(l-p,s1-p,,1-p,)]1° *3 P1P,P30 (P /Py /P5)

3
+—-a(pl,pz,p3)a(l—p1,l—p2,l—p3)
2

-3 1
*2P1PyPy (1-p)) (1-py) (1-py) = = (10)

where o is defined by Eq.(A.8).

This equation provides the results indicated in Fig. 1. The
two- and three-dimensional isotropic percolation thresholds
respectively are 0.4284 (to be compared with the exact re-
sult!*l p =1/2 and the MFA result p_=0), and 0.2929 (to be com

pared with the series result[S] pc20.247 and the MFA result

The type of equation appearing for the finite temperature
critical surface can be illustrated through the p2==0 parti-

cular case:
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(l-pl)(l—p3)[p1(l—p3)-kp3(l—pl)] tanh t

+§{[p1(l—p3)+ p,(1-p;) 1% + 2p;p, (1-p,) (1-p,) Jtanh (2¢)

* ipip:@ [tanh(4t) + 2 tanh(2t)]

43 {p,p,p, (1-p;) +p,(1-p,) ] [tanh(3t) +tanh t]} = (11)

NI

Typical results are indicated in Figs. 2-4. The two-and three-
dimensional critical points respectively are kBTC/J'=3.0898(to
be compared with the exact resﬁi£ 2.2692, and the MFA result
4), and kBTcz 5.0733 (to be compared with the series result[6]

4.5112, and the MFA result 6).

B. Competing interactions bond-mixed models (J'/J < 0)

Consider now the case where the interactions are competing
(typically >0 and J' <0). New physical situations appear in
the sense that the critical temperatufe vanishes now at concen
trations (of J) hdighcn than the percolation threshold(the higher
the more negative J'/J is). Typical results are indicated in
Fig. 5 and 6. The two- and three-dimensional critical concentratims
associated with the isotropic J'/J = -1 model respectively are
P, =5/6=0.833 (to be compared with the values 0.8-0.85 by
Monte Carlo[7], 0.834 by the replica netmu£8],0.833 by the Bethe

method ?!) and p_=23/30=0.767.
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IV. CONCLUSION

We have discussed the quenched bond-mixed first- neighboring
Spin-—% Ising model (with both competing and non-competing in
teractions) on an anisotropic cubic lattice. An analytic ex-
plicit expression for the spontaneous magnetization has been
obtained within an effective field framework which 1is Dbased

[3]

on the introduction of a convenient differential operator

(2]

in the Callen identity . This approximation has been ana-

lyzed in detail in paper I [1]. We have herein focused the
case where the anisotropy in the cubic lattice comes from the
various concentrations of the interactions (in contrast with
paper I where the source of anisotropy was the various Aintexn-
actions). The phase diagrams (stability limit of the ferromag
netic phase) corresponding to various typical cases have been
exhibited (see Figs. 1-7). Several non trivial "crossings" and
non-uniform convergences effects have been illustrated. When-
ever comparison with other available results was possible, the
agreement has been qualitatively (and to a certain extent quan-~
titatively) quite satisfactory. The picture which emerges gives
an overall view of the richness of situations that could oc-
cur in the phase diagrams of real substances.

This work has been partially supported by CNPg and FINEP

(Brazil).
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AEEendix

The coefficients A, B and C apvearing in Egs.(7) and (8)

are given by

4
A = .Zl[ai(pl'pZ'p3)fi(t'tl)-Fai(l_pl’l-*Z'l—p3)fﬂtlﬁj]
t= (A.1)
4
- [ ] - - —- 1
B = igl[bi(p]_,p2,1_o3)<;i(t,t ) +b,(1-p;,1-p,,1-py) g, (t',t)]
= a.2)
4
— l - — —
C = i21[ai(pl,pz,p3)hi<t,t ) +a, (1-p, ,1-p,,1-p,) h (t",t)]
B (A.3)
where
_ 3 - 2
a;(pys/P,sP4) = o b (PyPy/P3) = 3(P;P,P5) (A.4)
1
a,(p;/P,sP5) = T b, (p;,Py,p5) = (1-p) (1-p,) (1-p;) o (p; /P, ,P,)
(A.5)
1
a3(P11P21P3) = ; b3(Per21P3)
= [oc(pl,pz,p3)]2 +2(l—pl)(l—pz)ﬂrp3)a(l—lefszfp3)
(A.6)

a4(Per2:P3) = 3b4(P11P21P3)

= 3la(py/p,y,pP3)a(l-p,, 1-p,,1-p,) +P1P,P; (1-p,) (1-p,) (l—p3)I
(A7)
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a(p,,P,,Py) =P, (1-p,) (1-py) + (1-p;)p, (1-p,) + (1-p;) (1-p,)py

and where

£, (t,t")

fz(t,t')

£,(t,t")

f4(t,t')

g, (t,t")

g, (t,t")

1

I

(A.8)

L [tanh(6t) + 4tanh(4t) + Stanh (2t)] (A.9)
32

L6 tanh(5t'+t) + 20 tanh (3t'+t) +20 tanh (t'+t)
32

+ 10 tanh (3t'-t) + 4 tanh (5t'=t)] (A.10)

L [3 tanh(4t'+2t) +8 tanh (2t'+2t) + 6 tanh (2t)
32

+ tanh(4t'-2t) + 4 tanh(4t') +8 tanh (2t')] (A.11)

L [tanh(3t'+3t) + 3 tanh(t'+3t) + 3 tanh (3t-t')
32

+ tanh (3t-3t') + tanh(3t"'+t) + 3 tanh(t'+t)

+ 3 tanh(t-t') + tanh(t-3t')] (A.12)
- L tanh(6t) -3 tanh(2t)] (A.13)
32

L 12 tanh (5t'+t) -4 tanh(t'+t) +2 tanh(t'=3¢) ]
32

(A.14)
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g, (t,t") = L[5 tanh(4t'+2t) + tanh(2t-4t")

32

-8 tanh (2t"') - 6 tanh(2t)] (A.15)
g, (t,t") = L (10 tanh (3t+3t') — 12 tanh (3t+t")

32

+ 6 tanh (£'=3t) + 8 tanh (3t-3t")

+ 12 tanh (t+3t') — 18 tanh (t+t"') +6 tanh (t-3t")

(A.16)

hy (£,8') = L [tanh(6t) - 4 tanh (4t) + 5 tanh (2t) ] (A.17)

32
h, (t,t') = L6 tanh (5t'+t) =20 tanh (3t'+t) + 20 tanh(t'+t)

32

+ 10 tanh (3t'—t) + 4 tanh (t=5t')] (A.18)
h, (t,t') = L (3 tanh (4t'+2t) -8 tanh (2t'+2t)

32

+6 tanh(2t) + tanh(4t'-2t) — 4 tanh (4t')

+ 8 tanh(2t')] (A.19)
h, (t,t') = L [tanh(3t'+3t) - 3 tanh(t'+3t) + 3 tanh Btt')

32

+ tanh(3t'-3t) - tanh(3t'+t) + 3 tanh (£'+t)
+ 3 tanh(t'—t) + tanh(t=3t') (A.20)

with tsz/kBT and t! zJ"/kBT==(J'/J)t.
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T=0 phase diagram of the bond-dilute (J'=0) ferro-
magnet. (a) percolation critical surface (indicatiwve);

(b) fixed p., and (c) fixed p,/p, cross-sections.
3 2°+71

Phase diagram of the d=2 (p2=0) bond-dilute (J'=0) fer
romagnet. (a) fixed Py and (b) fixed '(l—p3)/(l—p1)

cross-sections.

Phase diagram of the d=3 bond-dilute (J'=0) ferro-
magnet: typical cross-sections. (a) P;= Pyi (b) P, =P,
and fixed pz/pl; (c) P,=P, and fixed (l—p3)/(l—p1)

(values indicated on the curves); (4d) p3=l.

Phase diagram of the d=3 bond-mixed non-competing in
teractions (J'/J>0) ferromagnet: typical cross-sec-
tions. (a) J'/J3=0.5, pz/p.1=0.5 and p3/p1= 1; () J'/J=0.1,
p,/p;=0.5 and p,/p;=1; (c) J'/J=0.01, p,/p;=0.5 and
p3/pl=l; (d) J'/3=0, pz/pl=0.5 axip3/91=l;(e)3“/J=0.Ol,
p2/p1=0.l and p3/p1=l; (f) J'/J3=0.01, pz/p1=0.5 and

p3/p1=0; (g) J'/3=0.01, p2/p1=0.l and p3/p1=0.01.

T=0 phase diagram of the d=3 bond-mixed competing in
teractions (J'/J<0) ferromagnet: typical cross-sec-
tions. (a) fixed Py (indicated on curves); (b) fixed
pz/pl; (c) fixed p,/Py-

Phase diagram of the d=3 bond-mixed competing inter-
actions (J'/J<0) ferromagnet: typical cross-sections.
(a) P,=P; and fixed (l—p3)/(l—p1). (b) various situa

tions: p1=p2=p3 (curve a); pZ(p1=,0.5 and (l—p3-)/(]_—p1):0.l
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(curve Db); pZ/P1=O'5 and (l-p3)/(l—p1)=l (curve c);
(l—pz)/(l-p1)=0.l and p3=0 (curve 4d); (l—pZVUfp1)=l

and p3=0 (curve e).
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