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We discuss, within a framework in which the structural
degrees of freedom (assumed essentially three-dimensional)
are adiabatically treated and the magnetic degrees of free-
dom are exactly treated, the stress-(magnetic)field-tempera
ture phase diagram %ssoc1ated with the one-dimensional
first-neighbour spln- magnetostrictive XY model. The impor
tant influence of the curvature of the coupling constant as
a function of distance is exhibited and satisfactorily com-
pared to experimental data.



The spin-Peierls phase transition is a
magnetically-driven structural one which oc
curs in three-dimensional systems pre-
senting quasi-one-dimensional magnetic inter
actions. On theoretical grounds the interac-
tions that are commonly assumed are the
Heisenberg and XY ones (Refs. [1-6]; for an ex-
celent theoretical as well as experimental
review see Ref. 7); also anisotropic in¥§fa£
tions have been occasionally introduced .
Real substances presenting spin-Peierls in-
stabilities include TTF-BDT, TTF-BDS,

MEM (TCNQ), and perhaps alkali-TCNQ. This
type of systems typically present, in the H
(external magnetic field along the Z axis)-
T(temperature) space, a phase diagram which
can be interpreted[9] as follows: a essen-
tially high temperature region (where the
magnetic chain is wuniform; U phase) sepa-
rated, through a second order phase transi
tion, from the ordered region. The latter

is further divided into two subregions, name
ly the low H one (corresponding to a dimer-
ized (D) chain) and the high H one (corre-
sponding to a complex modulated (M) chain),
separated by a first-order critical 1line.
All three U, D and M phases join at a struc
tural Lifshitz point (for a typical theore-
tical phase diagram see the (v=1; ¢=0.2781)
curve of Fig.2).

The interesting influence (experimen-
tally exhibited recently on TTF-Cu BDT[10]),
on spin-Peierls systems, of pressure or of
uniaxial external stress (along the Z axis)
ha? Tlready been predicted for the XY mod-
e1l6] as well as for the Heisenberg onel1ll,
In both cases only the H=0 situation has
been (preliminary) analyzed. In the present
paper we discuss, with some detail and for
all values of H, the influence of uniaxial
stress ‘T (along the Z axis) on the T-H
phase diagram associated with the one-dimen
sional first-neighbour spin-5 magnetos- -
trictive XY model. The role “played by the
functional form of the coupling constant J
with distance is analyzed as well by intro-
ducing a form which contains both linear and
exponential dependences as particular cases;
the drastic influence of J" is exhibited.
Finally the variation, along the critical
lines, of the crystalline parameter is pre-
sented as well.

We consider a cyclic chain of 2N spins;
the magnetic contribution to its Hamiltoni-
an is assumed to be

J+P 1 N XX Yoy 2N Z



where u is the elementary magneton. By intro
ducing, through the standard Jordan-Wigner ~—
transformation (see for example Ref.[9]),
fermionic creation and annihilation opera-
tors we can rewrite this Hamiltonian as
follows:

1
&?m= _é—j

2N . . 2N N
D R e e I

where an additive constant has been ommited.

Through the Fourier transformation character

ized by -
2N

bk= L eiajk a (3)
VZN j=1 J

and
1 AN ia4q

Jq =% }i1 e Jj (-m/a<k,q<m/a) (4)

(a = 1+d being the reduced crystalline para-
meter and d a convenient variable) we can
rewrite Hamiltonian (2) as follows:

L I S (5)

where
J+Po = lJ(O)l 1% €x bl: bk (6)
and
V= [J00)] E Meq Pk Pr_q (7)
q#0
with
ek.z}l_l%%%% cos ak (8)
h = uH/|J(0) | (9)

J . o
M= 7 ey et -d), glaky o (qq)

J(d) being the coupling constant between
first-neighbouring spins (separate by a
reduced distance 1+d). Note that o is the



Hamiltonian of the U phase.

By treating now,V as a perturbation (up
to second order) to éﬁ) within the tempera-
ture-dependent Green function framework (see
detailed procedure in Ref. [9]) we obtain the
reduced free energy

£, % Fp/N|J(0)| = £ +f (11)

m 2

where

_ 2ta ["/3 €k
fO = - T Jo dk KVL(Z COSh —Z—t—) (12)
(U phase reduced free energy) and

ranh J2U2 _ pan EK%%LZ

J 12 _,m/a
=] [—_9—- %i dk coszak 2t
WOIIO] o “keq/2 T Sk-q/2
(13)
with
t = kpT/]J(0) ] (14)

and where the quasi-continuum limit has been
used.

Let us next include, within both adia-
batic and harmonic approximations, the elas
tic contribution F_, to the free energy of
the system:

C
F, = = 1} X,
2 i=1 j+1

-xj—1)2 (15)
where C is the harmonic elastic constant and
X. 1s the reduced mean position of the j-th
spin with respect to one of them chosen as
origin. Through the relation

XJ =aj + UJ

we introduce the convenient variable u-: and
its Fourier transformed variable u . JThen
it is straightforward to verify that ex-
pression (15) can be rewritten as follows:

F, =NCd?+ 2NC g (1—cosaq)|uq|2 (16)

On the other hand the exchange integral J.=

J(Xj+l-Xj-1) can be linearly expanded 2s



follows:

Jj= J(d)-kJ'(d)(Uj+1'-Uj) (17)

Replacing this expression into Eq.(4) and
the result into Eq.(13) we finally obtain
the total free energy F=F +F of the system:

_ F
where
az (1-cosq) (K-L ) (19)
K=clg)l|/]arw|? (20)
p= 90 4 21
|J(0) |
L= 1 rm1®
1 4msin(q/2) ['O)1* D)
" g cos?k [tanh M(D)cos(l&q/Z)
. “sink
_ tanh h'j(D)ggs(k-Q/Z)] (22)
ng = 2]J'(0)uq/J(0)| (23)
j (D)= J(|J0)|D/3'(0))/|I(0)| (24)

and where we have used the transformations
ag~+q and ak-~k.

At this stage we can finally assume that
the system is in the presence of an external
stress T; therefore the Gibbs energy G asso-
ciated with the U phase is given by

6
N|J(0) ]

g = £ +KD*- 20D (25)



where o=1/J'(0). At thermodynamical equilib

rium og =0 ; consequently the use of Egs.
> 8D t,h,o
(12) and (25) leads to the equation of states

h+j (D)cosk

7T ] +KD

- tanh

14 (? h-j (D)cosk
o =ﬁ 'aﬁ I dk[ta.nh -———Z-i———

0

(26)

This equation implicitely determines D(t,h,o0).
The critical surface separating, in the (t,h,o0)
space the U phase from the polymerized ones
(D and M phases) is determined (see Ref.[9])
by the soft mode conditioanC (t,h,D(t,h,0))=0
hence (by using Eq.(19)) ch (t,h,D(t,h,0)) =K
where . is the wave vector of the structural
mode which freezes at the phase transition
(wy, is minimal at q=q.). Let us stress that
thg results we are lo ﬁing for (critical sur-
face and D(t,h,o) in the U phase) are, except
for the adiabatic assumption, exact in spite
of the perturbative procedure we have fol-
lowed (see Eqs.(5) and (18)); this procedure
is in fact nothing but an operational conven
iency within a quite complex set of equations.
In order to exhibit concrete results we
have assumed the following family of func-
tional forms:

j(D)=-[(1-)(1-D) + ve™D] (0<v<)
(27)

which in the limits v=0 and v =1 reproduces
respectively the standard linear and expo-
nential antiferromagnetic proposals (notice
also that, in the limit D~ 0, j m-J+D——%—Di
hence v=-3"(0)).

Typical results for H=0 are presented
in Figs. 1 and 2. The confluence points of
Figs. 1(a) and 1(b) correspond to D=0 which
is the case (fixed strain instead of the
present cases which are fixed stress ones)
we have discussed in Ref.[9]; we observe
now the drastic effect of v. To be more pre
cise let us consider the typical situation
J(0) <0 and J'(0) >0: if v =1 (exponential
law) the critical temperature decreases
with stress (or equivalently <ncreases un-
der pressure-like action), whereas if v=0
(1inear law) the critical temperature para
doxally <ncreases with stress (or equiva-_—
lently decreases under pressure-like action).
This paradoxal behaviour <is qreaisely the
one observed experimentall%[ 0] and had
been previously predicted[ I. It can be un



derstood if one takes into account the fact
that the critical temperature 1is determined
by Eq.(22) where we remark the presence of
the factor [j'(D)1?/j(D) whose slope (as a
function of D) is very sensitive to v.

In Fig.2 we exhibit typical T-H phase
diagrams; they are in fact quite similar in
shape to those obtained[9] for D=0, present
ing in particular Lifshitz points (full dots;
inflexion points) as well as '"starting points"
(open dots). The t—+ 0 asymptotic behaviour of
the critical lines is given by

ho [j)] - & £nt (28)

where

o/K

|5 | = (1-9) (Teg) + ve (29)

For v=1 (exponential law) the critical lines
associated with different values of o do not
cross each other; this is not true for v=0
(1inear law) as a consequence of the fact
that <ncreasing o leads, for let us say

J(0) <0 and J'(0) >0, to an <Zncreasing H=0
critical temperature but to a decreasing

T=0 critical field. Also the '"re-entrances"
of the critical lines are much more pro-
nounced for v=1 than for v=0.

It should be very interesting to exper
imentally exhibit all these effects. In par
ticular TTF - Cu BDT presents[10}] a 1.1k —
decrease in the H=0 critical temperature if
a 6Kbar pressure is applied; this fact
characterizes a nearly linear J(d) law
(v=0) and therefore critical T-H lines as-
sociated with different values of pressure-
like action are in principle expected to
cross each other.

One of us (C.T.) acknowledges related
discussions with D. Blochas well as the
tenure of a Guggenheim Fellowship.
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CAPTION FOR FIGURES

FIG. 1 - Results for vanishingmagnetic field,
a typical value for the reduced elastic con
stant K =0.4, and several values of v (v=0
and v =1 respectively correspond to linear
and exponential dependences of the coupling
constant with distance): (a) uniform-(non u
niform) critical lines in the reduced uniaxial
stress (o)-temperature (t) space (-0 1is a
compressing-like stress for the standard an
tiferromagnetic case J(0) <0 and J'(0) >0)
and (b) the corresponding reduced uniaxial
strains D.

FIG. 2 - Typical phase diagrams in the re-
duced magnetic field (h) - temperature (t)
space for a reduced elastic constant K=0.4
and both linear (v =0) and exponential (v =I)
dependences of the coupling constant with
distance. All uniform (U) - (non-uniform) crit
ical lines are second order ones; within the
non uniform region, the critical lines sep-
arating the dimerized (D) and modulated (M)
phases are first order ones (herein indi-
cated only for the case (v=1, 0=0.2781);
dotted line). o=0.2781 corresponds to the
confluence point of Fig. 1. The full (open)
circles correspond to the Lifshitz points
("'starting points'); see details in Ref.| 9]
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