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ABSTRACT *

We conjecture that the equation
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provides a very accurate approximation of the yet ﬁnknown
critical frontier of a fully anisotropic homogeneous quenched
bond-mixed g-state Potts ferromagnet in square lattice, where
the random coupling consfant J is distributed according to
the laws P(J) and P'(J) for “hofizontal" and "vertical" bonds
respectively. This equation contains as particular cases a
great number of exact (or believed so by us) results as well
as a few recent conjectures (which are definitively cnly

approximate) .



Many efforts are presently being devoted to the
study of the critical properties of random g-state Potts

models (characterized by a Hamiltonian J4>= —q.Z:Jij80.'c' r
i,] 1]
where 0i=l,2,...,q 'V i), in particular the para—ferro--
magnetic critical frontier (CF) of the quenched bond-mixed -
versions in square lattice. We are concerned here with a
fully random anisotropic'homogeneous version, where we asso
ciate, for the coupling constanfoij>0 between first-neigh-
bours, the general dist?ibution laws P(Jij) for all "hori-
zontal” bonds and P'(Jij) for‘gll "vertical" ones. The com-

plete CF of this model is still unknown, but some partial

results are already available for the particular case

P(J..)
1

5 (1—p)§(Jij-Jl)+p6(Jij—J

P'(J..)
i

3 (l-p')S(Jij'Ji)+p'6(Jij—Jé) (Ji,JéZO)’ (1.b)

To be more precise we have:

a) the anisotropic pure Potts model ([p(l-p)=0; p'(l-p')=0]
. C=T! 1— s 3 e

or [Jl/JZ SEVEP 1]) whose critical temperature T, satis
fies (Burkhardt and Southern 1978, Baxter et al 1978), in

the let us say [p=p'=l] version,

Z/kBTc

-qJ [
| 1+ (g-1)e

- '
qJ2/kBTc]

[l+(q—l)e =q (2)

for all values of g for which the transition‘ié a second

order one (qg<4);



b)

c)

the anisotropic pure percolation limit ([T=0; J,=J1=0;

J2,Jé>9] or [T=0; J,=J! Ji>0] among other equi-

2 72 1’
valent possibilities) whose CF we believe (see also

=0; J

Southern and Thorpe 1979 and Turban 1980 for the parti
cular case p/p'=J2/Jé=l (isotropic model)) to be one
and the same for all values of g<4 namely (Sykés and

i =0 =T'=0- =T
Essam 1963), in the let us say [T=0; J,=J{=0; J,=J}>0]

version,

This CF can be equivalently written in a different fomm
by making use of the g+1 isomorphism.(Kasteleyn and

Fortuin 1969), namely, in the let us say EJI=Ji= ;

-— 1)
J /% 5T 35 /kpT

p+«>1-e i p'el - e versicn,

— T
JZ/kBTc] JZ/kBTc}

l-e + [l-e =1 (3")

or even in a mixed form which generalizes both (3) and
(3'), namely

-J,/k_T -J!/k_T
— 2 B C] + p] [l-e 2 B C)

P [l—e =1 | (3")

This last expreséion reduces, for p/p'=J2/Jé=l, to’
equations (4) of Southern and Thorpe's paper (1979) and

(18) of Turban's paper (1980);

the Zsotropie bond-dilute almost purve Potts model

14T =l=".
( [p=p ~;, J,=31=0; J,

sions) whose critical temperature is characterized by the

=Jé>0] among other equivalent ver-

derivative



d)

e)

LoarTm | g
€ = , (4)
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which is believed to be exact (Southern and Thorpe 1979;

for g=2 see Harris 1974);

the Zsotropic bond-dilute almost pure percolation limit

— ' N 3 .
1791 5 J2>0] among other equivalernt

versions) whose critical temperature is characterized by

(ET&O; p=p'%l/2; J,=J31=0; J

the derivative

-q J,./k_T (p)
d e 2B c

.2 1n q -
= — (5)
g-1

d p p=1/2
which is believed to be exact (Southern and Thorpe 1979;

for g=2 see Domany 1978);

the anisotropic equal probability bond-mixed Potts model
([p+p'=l; Jl/Ji=J2/Jé=l] Br'[p/p'=Jl/Jé¥J2/Ji=l]) whose
critical temperature is, for g=2 (Fisch 1978; see  also
Oguchi.and Ueno 1978, for a slightly less general state-
ment) , one and the same for all values of p (remark that
péo corresponds to the anisotropic pure Potts model),
namely, in the let us say [p+p'=l} Jl/Ji=J2/Jé=l]‘Kﬂsian,

=2 | (6)

- =2J./k_T - =2J3./k_T
[l+e l',B c] {l+e 2B c);

Though we have not attempted to prove it, we believe that

Fisch's statement (1978) can be extended to a?l values of



g<4, therefore relation (6) generalizes into

-qJ; /kpT C] [ -qJ, /kBTc]

[l+(q—l)e 1+(g-l)e = q (6")

Before going on let us introduce some convenient
variables and relations. We may associate to a single Potts
bond with coupling constant Ji a new variable (referred here-
after as thermal transmissivity; see Tsallis and Levy 1980 (a),
Levy et al 1980 and references therein) defined by

l_e—qu/kéT |
t, = € [0,1] (7, 30) (7)

-qJ./k T
1+(g-1)e + B

This variable allows a most simple expression of the ayﬁﬂakxm'
coupling constant JS associated to a series array of two bonds -

(respectively associated to J, and J2), and this is (Tsallis

1
and Levy 1980 (b))

t = t,t (8)

If the array is a parallel one, the equivalent transmissivity
t_. satisfies
p
D = ¢
b

(9)

D
t2

O

where we have introduced the dual thermal transmissivity (of

a given one)

- S 3 . (10)
1+(g-1) ¢t . .

'—l.
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Let us next introduce another variable (which generalizes the

one appearing in Levy et al 1980 for g=2) through

In [1+(g-1)t]

€fo,1] | (11)

1

In g

We remark that, in the limit g*1, sequals t. For all g we verify

the following remarkable property

sD(t) = s(tD)

il

1-s(t) ' (12)

i.e. s transforms, under duality, like a probability; this
fact is at the core of the central conjecture (presented be-

low) of the present work. Note also that, if we have two bonds,

sp=sl+sz—ss(sizs(ti) v i) which re-states, for all values of q,

the relation tp=[tl+t2+(q—2)ts]/[l+(q—l)ts] between transmissi-

vities (q=1’implies tp:t +t2—ts); on the other hand Sq will in’

1

general differ from’slsz, therefore (ana only therefore) sg
will in general differ from stg. If we respectively' note

Pt(t) and PS(S) the probabilities distributions of t and s,
associated to a given one P(J), we have the following rela-’
tions

(1-t) [1+(g-1)t] - (g-1) (1-t)

P (t) = P _(s)
t S
kBT _ . kBT In g

P(J) =

In particular, distribution (l.a) (analogously for (1l.b)) leads

to

Pt(t) (1vp)5(t—tl)+p5(t—t2) \ (1.a"')

(]

Py (s) (1—p55(s—sl)+pa;s—s2) - (1.a")
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We are now prepared to re-state, in the new
Variables, the particular exact results we presented before
(models (a) to (e)), and relations (2),(3'), (4),(5) and (6')

respectively become

1-t)

t, = 2 (2')
1+(q—l)té
82+Sé=l | (2')

P t2(q=l)+p‘té(q;1) =1 (3™)
P sy{g=l)+p's (g=1) = 1 (_BIV)
2
dp =1 (1+/q)
ds — .
82 _ 2 /_(:.— 1 . (4")
S Ing /g+1 '
at, __291ng (57)
P p=1/2 a1 |
‘ds
_2 = = 2 (5")
P lp=1/2
1-t ~
1+(q—l)t2 ‘ )
and _Sl+52 = 1 | _ , | (Gf"jA



Let us now state our conjecture: the general CF

we are looking for is given, within a very good approxima-

tion, by
<s>, + <s>,, =1 * (1lsg<4) (13)
s s
hence
-qJd/k_T -qJ/k_T
<:ln 1+(g-1l)e B ¢ ;> + <fln 1+(g-1)e Bc :> =1ln q
P P!
(13")

where <+++*> means mean value. Relation (13) becomes, for the

particular case (l.a)-(l.b),

;
- | ] lalt — ; "
(1 p)sl+psz+(l p )sl+p s, =1 (%3 )

. " Iv " " |
which exactly reproduces (2') , (377), (5'") and (6''). - In
what concerns relation (4'') it paftially fails as it leads

to (dsz/dp)p=l= - 1/2 for all values of g, therefore the
errors for g=1,2,3 and 4 are respectively 0%, 1%, 2.5% and
4%, Expression (13') reduces, for g=2 and P=P', to Nishimori's
conjecture (1979), which he claimed to be exact (this is not
so, as proved by Aharony and Stephen 1980); furthermore the
particular case where P=P' given by (l.a), coincides with
the heuristic approximation of Levy et al‘l980. In what
concerns general values of q, Southern's result (1980) can
be reobtained from relation (13''") with sl=si=0 and

- ' =
p/pP —52/52 1.



Let us stress at this point that although relation

(13) (and consequently (13")) 1is in general not exact, we claim

it to be a very good approximation everywhere (b’Tc) and for

l<g<4 (the error in the s- variable is expected to be less
than one percent in the worse case (g=4) and the worse region

(middle way between the equal concentration and pure cases, in

the bond-dilute particular case)). More specifically, and be-

sides the well known exact results, we believe that:

A) relation (13) is exact for g=1 (therefore generalizing re-
lation (3"), as for this case the problem becomes iso-
morphic to bond percolation and -the s- variable (which 1is
now identical to the t- variable) strictly behaves as a
probability (in particular s =SS, and sg = s?sg )i

B) relation (13'') is asymptotically exact for all qs§ for
the anisotropic slightly bond-mixed model (UJzﬁ;ﬁ /EBT - 0

and (Jé-Ji)/kBT + 0] therefor§ [(sz-sl)eo and (sé-si)+0)])

i.e.

52+Sv'2’\:l +(l-—p) (sz—sl)+(l_pl) (sé—si) (14)
hence
: -qJ /k T _qu/k T
[l+ (q"l) e 2 B C] [14_ (q_l) e 2 B CJ
g |- a(J 2'Jl) (1-p) (g=1) i_ a(J é_Ji) (1-p") (g-1) }
T Tqd, /KT T
ke oo,y || N Fle, J

(14"')



which respectively generalize (2'") and (2); see Fig. l.a
for the isotropic case [p/p'=sl/si=sz/sé=l] ;

C) relation (13") is asymptotically exact for all gsg4 for
the anisotropic almost equal probability bond-mixed model

(distributions (l.a)-(l.b) with p=21/2 and p'=1/2), i.e.

Sl+ sz+s'+s'ﬂ:2 [l+(sz-sl)( %% —p)+(sé-si)( %% - p')}
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(15)
hence
-aJ T -qJ T -qJ. T -J .} T
[l+ (g-l)e 18 c} [l+ (g-le 2/ks cil {1+ (g-l)e l/kB c] [1+ (g-le ZA(B c} v
-qJZAEEE —qJé TE

q2 [1+(1—2p) 1n 1+ (q—l)e T+ (l_zpl) 1n 1+ (C;I‘l)e (15")
. J T -7 /k T _
l+ (q—l) e-q l/l(B [ 1+ (q"l) e l/kB C ":

which generalize (5'") and (6"") (hence (5) and 'K§'));
see Fig. l.a for the isotropic' case [p/p'=sl/si=sz/sé=l];
D) relation (13) is asymptotically exact for all gg4 in the
limit T+0 of the following generalized bond-dilute aniso-

tropie model:

(1-p) 6 (J) + PR(J) (16.a)

P (J)

P'(J)

(1-p'") 8 (J) +p'R'(J) , (16.b)

where the distribution laws R(J) and R'(J) satisfy

) ‘o . €
J R(J)dAJ = R'"(J)dd = 1 and lim R(J)dJ =,
0 e} ' €-0 0

E; )
lim JOR'(J)dJ =0 (i.e. both R(J) and R'(J) do not grow,
€0



E)

in the limit J»0, as 1/J or faster). The standard parti

cular case R(J)=6(J~J2) and R‘(J)=6(J~Jé) leads to
p+p'Wl+p(l—sz)+p'(l—sé) (17)
hence

1
c!

g
.
v

. .. v - . -
which generalize (3 V) and {53'"") (hence (3") and (5)):

see Fig. l.b for the case R(J)=R'(J):6(J—J2);

the CrF (13") has a definite location with respect to the

unknown exact one, in the sense that they heve in common

.
The

ollowing {(and, for g#l, probably only the follcw-

Hh

ing) regions (and their trivially eguivalent ones):
-

. b —_ —e Ve T " R R £ 4 N N
the line (51—52~s,—52—;/2,‘vp—p ) of the Fig. i.&;
e 4
{ v — T L y y iy o - HE R o e
8) (p=p'=l; s, +s'=1; VWs.; Vvsl] which cgeneralizes the
N 2 72 L 1
b RN e Y — P I - - L.
line (p=p'=1l; 52~52—¢/2;‘oa,_sl) of the Fic. l.z;
- < L
[ o~ — LI . 1 r P K L1
Y) (p=p'=1l/2; s +5,+s1+5,=2) which ceneralizes the
Fs 4 <
L £ ooy b o - 7 — ~t . : —_ Y " N
line {p=p'=1/2; s,/sl!=s_ /sl=1; s,+s.=1) of the Fig.
-~ B < 2 l <
b .
Ledy
I3 —at—=N. — Y. | R < vy 3 — < <
§) (s,=s]=0; s,=s,=l; ptp'=1) which is represented in
- e
3 b
Flg- ,’.-bt
~ , ~ - Foh
Furthermore, Ior the Isotropic case ipfp'=s /sl=z_/sl=1
- i BN 4 Z -
<A 2 3~ o " - S mryye o —
Conglicered Iin Fig. L.a, the uninown ¢Xact suriace (gFli
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on the low- (high-) s, side of the CF (l-p)sl+psz=l/2

2
for (1>p>1/2; sl<1/2) and (0<p<l/2; sl>l/2) ((1>p>1/2;
sl>l/2) and (0<p<l/2; sl<1/2)). Analogously, for the

I
1707 Sy

1.b, thé unknown exact surface (g#l) lays on the low

bond-dilute case [s;=s =sé] considered in Fig.

-s, side of the CF (p+p')sz=l for all (p,p') such that

2
l<p+p'<2.

Let us conclude by saying that, for numerical
purposes, the conjectural equation (13') for the critical
frontier of the ferromagnetic fully anisotropic homogeneous
quenched bond-mixed Potts model in sqnare lattice we have
beeﬂ considering here is certainly quite satisfactory, and,
for analytical . purposes, it leads to a great number of
particular ésymptotic behaviours (egs. (14'), (15') and
(17')) which we believé to be exact. Furthermore, we can
speculate that Fisch's statement (1978) for the standard
quenched bond-mixed Ising ferromagnet can be extended as
follows: the same critical temperature Tc might be shared
by a whole class of generalized quenched bond-mixed Potts
ferromagnets, where half (any half) of the bonds have
coupling constants distributed according to P(J), and the

other half according to P'(J). Clearly the fully aniso-

.tropic model we have been considering in this paper is but

an element of this class.
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CAPTION FOR FIGURE -

Fig. 1

The conjectural equation (13") represents the
g- state Potts model critical surface in a 6-
dimensionai parameter space: two typical parti
cular cases are represented here, where the
shadowed regions are believed to be asymptotic
ally exact for all gg<4. (a) p/p'ﬁsl/si=sz/sé=l,
hence (l—p)sl+psz=l/2/(the lines (p=1; sz=1/2;

stl) and (p=0; sl=i/2;'V'sz) are known to be

bexact as well); (b) s,=s:=0 and s,=s], hence

171 2

(p+p')sz=l (the point (p=p'=1l; s,=1/2) is known

2
to be exact as well).
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