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ABSTRACT

From the decomposition of Weyl tensof into its elec
tric and magnetic parts, we formulate the eigenvalue problem
for cosmologiéal models, and we use quasi-Maxwellian form of
Einsteiq's equation to propagate it along a time-like con-

gruence, Three related theorems are presented.

It is well known(l) that Weyl tensor can be decomposed

into symmetric, trace-free electric Ea and magnetic HaB parts,

B
relative to a velocity field ve, Accordingly, we construct the

Petrov tensor
F = E + iH (1)

with the properties

F* =0 ; F _=F (2)

This tensor is defined in the 3-space orthogonal to v® . and
carries all the information contained in Weyl tensor. Then we

define the eigenvalue problem'for FaB



- B -
From (2) it follows that V is an eigenvector of FaB with null
eigenvalue. If the eigenvalue associated to a generic eigen-

vector t Hs non-null, then L rests on the J-space orthogonal

to V. In what follows we assume that V is time-like and the
unique eigenvector with null eigenvalue. The solutions {§ R 2}
of the eigenvalue problem (3) provide a classification g}) ()
gravitational fields, first made by A. Petrov(z)*.

Now the eigenvalue problem is of algebraic nature and
purely local. Having in mind that gravitationa1 field invari-
ants are constructed with eigenvalues of FaB’ we are led to
ask about the modifications of properties associated to Petrov
‘eigenvectors/eigenvalues that can be measured by an observer
along his path. To follow the eigenvalue problem along a path
on the space-time manifold we use quasi-Maxwellian form of

Einstein's equation relative to Va(1),‘projected on the eigen

vectors { Z%}. A straightforward calculation gives

(i)
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Remark that by choosing time-like observers with ve = dg s
FGB reduces to the form M+iN where M,N are 3x3 real matrices
such that
C2323 2313 C2312 €310 C2320 C2330‘\
w o= 3123 %3131 3112 | ana v =| C3110 C3120 C3130 }
C1223 %1231 Ci212 / ©1210 €1220 C1230 /.
| e

Locally, this is just Petrov's choice of matrices for

classifying gravitational fields.
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where (]| ) denotes covariant derivative and é = ¢ua v®. o™V and

8 are respectively the shear and expansion of the congruence of

u

cruves with 4-velocity v and w is the vokticity vector.

Let us restrict our discussion here to the case in

which the Weyl tensor is of electric type for the observer
-+
) (Hae = 0). This restricts us to Petrov types I and D only(3).

Then we use equations (4) to prove the following theorems:

‘Theorem 1: For a shear-free observer with four velocity V., if



two eigenvalues of Ea coincide at a given point,

B8
they shall coincide along V.

Theorem 2: If an eigenvector L of Ea is a Killing vector,

8
then the variation of the density p along L measures
the variation of the corresponding eigenvalue along

->

L.

Theorem 3: Under the assumptions

(i) » =¢w

(i) the eigenvalue of.da and E_, coincide

g B
(iii) expansion is constant (steady state model)
if one of the ‘eigenvalues of shear is null, then the geometry is

Petrov type D (if not trivial).

These theorems follow directly from an examination of
equations (4a,b) and the equation of evolution of the shear.
Theorem 1 tells that in the absence of shear the Petrov type
(I or D) is an invariant for the obsefver 1 along his worild
Tine. Actually, we can exhibit simple models in which the shear
has the role of changing Petrov type (I - D » I etc) along V.
‘Theorem 2 tells us that in the absence of matter, the eigen-
value is constant along the corresponding Killing eigenvector.
Other results can be obtained and they constitute a gquide to
classify cosmological mﬁde]s and eliminate possibilities when
integrating cosmological solutions. They can also be useful
in treating perturbation of the models.

The above procedure has also been used to investigate
a general situation for any Petrov-type selution. We will

publish our results elsewhere.
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