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proofs of the results contained in our previous paper [6].

fuch results wore econcerned with we-&hreu loecally convex
spaces of cross~sections and with algebras of operators.
{Eee §2 for definitions.) The viewpoint we shall adopt

-

here.aonsists in fivstly proving the so-called bounded case
of the weighted approximation problem, and then use it to
treat the general case. This approach.corresponds to the
cne wsed in [4] for the case of modules of continuous func-
tions, whereas the approach used in [6] corresponds to the
one used in [5].

The weighted spaces ¢of cross-sections éontain as a
particular case the weighted spaces of vector-valued func-
ticns. For these it is possible’to generalize many of the
recultes about scalar-valued functions which do not general-
izme to cross-sections. Tox such gensz “alizations, see [8],
where the weighted Dieudonné thecrem for density.in tenser
prodnets ig treated; [9},vwhere the dual of a weighted space
of continuous vector-valued-functions on a-tocaily compact -

space is determined; and [10] which concerns the non self~-

adjoint bounded case of the weighted approximation prcoblen.
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on X and obviously v [X[le] = v[fl | X. If L is e
vector space of cross-sections over E, we will denote by
L | X the vector space of all £|X when f ranges over
L. Obvious L |X is a yéctor space of cross-sections over
X. Similarly, we dcnote by V!‘X .the set of all restric-

tions v | X when v ranges over V.

Defigition 1. Let L be vector space of cross-sec-
A tiong over E. A weight v on E 1is said to be

(1) L -bounded,

(2) L -upper semicontinuous,

(3) L-null at infinity,
in case the function v{f] is, respectively,

(1) bounded on E,

(2). upper semicontinuous on E,

(3) null at infinify on E, for every cross-

section f € L.

From the above definition, it follows that any weight

v which is L - bounded determines a seminorm over L, namely
f v—> U.f“v = sup (v(x)[Fx)]; x < E}.

Notice also that if the weight v is L -upper semicontinu-

ous and L-null at infinity; then v .is L - bounded.

Definition 2. Let L be a vector srace of cross-scc-

- tions“over E and let V be a directed sect of weights which



are L -bounded. We will denoto by 'LVb the locally con-
vex space obtained by endowing 1. with the topology deter-
mined by the family of semiuoms £ #==> | fﬁv, when v
ranges over V. If the weights v € V are L-qpﬁér semi~
continuous and L -null at infinity, v, will éenote the
locally convex space obrained as above. The spaces LVb
and Lva) are called weighted locally couvex spaces of cross-
sections.

Since we assumad V to be directed, the sets of the
form ({f € L; %Efﬁv < ¢}, where v ¢V and ¢ > 0, form
2 basis of neighborhcods of the origin in LVb or LVa)

When X is a closed subset of E and v is an L~
upper semicontinuvous ﬁeight on E, then v | X is @ix) -
upper semicontinuous. Similar properties hold for weights
that are L -bounded or L -null at infinity. Hence if LV.b
or LV are defined, then (L P (v | X)y, or (L | X) (v | X) g,
2re also defined. We will denote such spaces simply by

val X and LVQJ X wespectively. For more deiails see

(1], le].



3. The weighted appreoximation problem

The vector space TF Fx of all cross~sections is an
A -module, for any sub&ié;gr& A< C(Eg%?, under the follow-
ing multiplication operation: if u € A and £ is a cross-
section, then uf 1s the crosé~section whose value at x
€ E is u(x)f(x). If W is a vector space of cross-sec-
tions, we say that W is en A~module if W 1is an A - sub-
module of TT'FX.

XE€EE
Given an A -module W < Lvai the weighted approxima-

tion problem consists, then, in asking for a description of

the closure pf W in qué and, in particular, in finding
necessary and sufficient conditions for W to be dense in
Lvai

In the special case in which A consists only of con-
stant functions, an &s-mo&ule is, in general, only a vector
subspace of’ quj In such 2 case, the only thing we can do
is the following: .once‘the\duallof LVa: is known, épply
the Hahn-Banach theorem.

We shall try to reduée the general case to this special
case by looking at the subsets of E on which the functions
of A are constant;.nameiy the equivalence classes X CE
modulce the equivalence relation Xy ~ % whenevgr Xy X9
€ E and u(xl) = u(xz) for all u € A. We shall denote

this equivalence relation by E/A.



Definition 3. An A - module W'CJLV0) is said to be
locaiizeble under A in Lvs) if its closure in LV con-
sists of those f € L such that f| X belongs to the closure
of W | X in LV&J X for each equivalence ClaSS‘/X CE

modulo E/A.

The strict weighted ospproxina LlOn pvﬁalem consists, then

in asking for necessary ana cufficient conditions in order

”

that W be localizable under A in LVQ;
Suppose thst C(h;x is sepavating on [, that
is, if x,v € E, x # v, there exists 2 € A such that

a(x) ¢ a(y) zud let W < LV be an A-module which is
N 3 ®

localizable under A in Lvai It follows from the above

definitions that in this case W is denge in LV33 if, and
only if, for each x € E, W(x) = {wix); w £ W} 1is dense
in L{x) = {f(x); £ 2L} < F.» where F_  is endowed with

3

the topology determined by the family of seminerms V(x)

{v(x); v ¢ vl].
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4, The separating case

Let cho be a weighted localll_.y. convex space of cross-
sections and W < L-Vm an A'-module. Let F be }h"el quo-
tient space of E by tl'fx.e equix)alence relation E?A and
let n: C(F;I*(”) —> C(E;}Q be the induced homomorphism
defined by n,(b) =ben for all b ¢ C(F;Ié\). Then B =
n;l(A) is a subalgebra of C(Fa«f.? which is separating on
F. Hence F 1s a Hausdorff space. For every y € F,

n-l(y) is a closed subset of E. Let (F,(Gy) ) be the

yEF
vector fibration obtained by defining Gy = L | rr-l(y). For
every weight v € V we define a corresponding weight u |

on F by setting
) w7 )] = sup WIEET; x € n i)l

Let M c Tr Gy be the vector subspace of cross-sections
over F ziirlern by {((f| 'n']‘(y)); £ e L}, and let U‘.be
the set of weights u defined by (*) when v ranges over
V. Then each weight u € U is M-~ upper semicontinuous #hd

M~null 2t infinity. This fact results from t:‘l'te‘folldv;ing:

Lewma (Lemma 1, [6]). Let E and F be two Hausdorff
spaces and T :E -——> F a continuous mapping from E onto
F. For any upper semicontinuous function g :E —> 5+ -

that vanishes at infinity let h:F ——-—>5 be defined by

-

hy) = sup (g(0); x € n iy



for 211 y ¢ F. Then ontinuvous end van-
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ishes at infinity on F,
Hence we may consider the weighted space MWG; If we
. -1 S <. s
define X = {(w|n "(y)); w € W} then X < MU and it is. .

a B-module,.

THEOREM 1, W is localizable under A in LV if,

pe

and only if, X is localizable under B in MU .

Remark 1. Theorem 1 above answers the coniecture stated

. £
i

w0

in {3], namely that the scpearating and the goneral case
the strict weighted approximatioun problem are equivalent.

This together with the final commeats on §3, esteblish that
corresponding to every sufficient condition for localizability
there is a corollary of density in the sepzrating casc.

The argument uscd to prove Theorem 1 of (6] applies her

with only a slight nodification,
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5. The bounded case

From now on E denotes a2 completely regular. Hausdorff

;,'g

space.

Definition 4. 1In the notation of Definition 3 the
bounded case of the weighted approximation problem occurs
when every a € A is bounded on the support of every ‘v ¢
V. Each of the following hypotheses leads to an instznce
of the bounded casge:

(1) A< Cb(E;}Q;

(2) each v € VT has a compact support.

THEOREM 2. Assume that A 1s gelf-adjoint in the
complex case and that we are in the bounded case. Then VW

is localizable under A in Lvﬁf

Proof. Let £ € LV be such that £| X belongs to the
closure of "Wl X in LVﬁJ Z for each eqﬁivalence~class
X CEZ modulo E/A. Let v €V and € >0 be given. We
may assume A C Cb(E§§? by replacing E by the support:
of v if necessafy. Given any equivalence claks - X © B

module E/A, there exists scme w& € W such that

vEO[E(x) - we(x)] < e

for any x ¢ X. The closed set Ky = {x € E; v £(x) - w,;{2)]
£ Y 'Y

&

> €} As compact, since v[f - wX] vanishes at infinity.



Moreover X and Ky are disjoint. By Lemma 1, [4],
- there is a finite set £ of equivalence classes in E
modulo E/A and functions Oy belonging to the closure

of A in C (RK) such that @, 20 and @ |k =0 for.

al Xe¢ & and = wx = 1. Notice that
Xes ©

(1) e GVEIEG) - we ()] & bey ()

for any x € E and X € &, In fact, eithar x € K, and

X
then sgx(x} = 0; ov else x f Ky in which case
v(x)[£{x) - wy(x)] < £, In both cases, (1) holds true.

From it we get

(2) v T o (xw () - £(0)] £ e
Xed -

for any x ¢ E. If £ has k elements, let ¢ > 0 be
such that &kM < ¢, where M is the maximum of h“x Iy

when X vranges over .£. For each X € £ there exists some

ay € A such that lax(x) - @X(x)} < 8 for all =x.¢ E,
Hence
v(®] £ 2, (xwy(x) -~ £(x)] 5 2
Xel
for all x € E. Since AW < W, w= ! . belongs te W
" xeg & ¥

and therefore f belongs to the closure of W in WV,

q.e.d,
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6. Sufficient conditions for localizebility

We will denote by P(R') the algebra of all R -valuad
AAAS Vn,
polynomials on &n. A weight on R" is an upper semicon-
tinuous positive real-vdlued function on Bn' A weight <

n . . P ,
on R 1s said to be rapidly decrcasing at infinity when

L

PR") © Cwbqg“), or equivalently Pgif)_c co ®RT). 1f,
in addition to this, P(&n) is dense in waGRn), then

w is said to be a fundamental weight. We shall denote by

Qn the set of all fundamental weights on ‘B‘n, and by “n
the subset of (Qn consisting of all v ‘-:-‘Qn such- that Yk
€, forall k> 0.

We shall consider 5“ as a vector lattice in the
usual way: if u = (ul, ceey un) and t = (_tl, ceny tn)
belong to 3}3 ‘we write u < t provided u; Sty for all
f = 1,2,...4n; and define lu] = (Iuli, ey Iunl). A
real-valued function ¢ defined on \‘g‘f is then said to

be modulus-decreasing if u,t 63{’ and |ul < |t| imply

o(u) > ¢o(t). Denote by Q: the subset of Qn consisting

of those fundamental weights which are decreasing, and ty

d . d
I‘n the intersection Pn n nn.

If A is a subalgebra of C(E;}Q containing the con-
stants, G(A) will denote a subset of A which topologi-
cally generates A as an algebra over K with unity, i.e.

Aprie

the subalgebra over K of A generated by G(A) and 1
Man,



s dense in A for the compact-open topology of
2 3 2o N o K - wom e v
Similarly, if W © LV ig an A -module, GO)

note a subset of W which topologicelly gencrates W as
a module over A, i.e..the submodule over A of W gen-

erated by G(W) 1is dewvse in W for the tepolosy of 1V .

THEOREM 2. GSupposce that there exist G(A) and GO

such that
1) G(A) consists only of real-valued functions:
. g :

(2) given any v €V, Gys ooy B € G(A) and

-l
/"

w € G(W), there exist a1 a,, £ G(A), where

n"‘%"l’ * ey N w

N>n, and « ¢ y such that

v(x}{w(x)] < wlag(3)y ooy a 02, .o, ay (x))
for all x € E.

.

Then W 1is localizable under A in Lvaj

~

Remark 2. The above Theorcm reduces the search for
sufficient conditions for localizability on a completely
regular space to the search of sufficient conditions for a
weight on X" to be fundamental. Theorem 3 follows from

POV .
Theoren 2 in the same monner as Theorem 2 follows from
Theorem 1, [4]. An independent proof of Theorem 3 can be
modeled on the proof of Theorem 1,'526, [5], an approach

that was indicated in [6]. OQur next thcorvem is a slight

variation of Theorem 3, dropping the hynuthesis (1) in the
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complex case.

THEOREM 4. Suppose that A is self-adjoint in the

complex case and that there exist G(A) and G(W) such

F‘

that, given any v € V, 815 «»e» 8 € G(A) and- ﬁ € G(W),
there exist 8 41> coes aN'G G(A), where N>n and w

d
€ QN
v(x) [w(x)] 2 w(la; G, ..oy la )], ooy lag) D

for all x € E. Then W 1is localizable under A in Lva;

such that

. Our next two theorems reduce the search for sufficient
conditions for localizabilitonf modules to the search for
fundamental weights on R, i.e., to the One Dimensional

Bernstein ApprOximation Problém.

THEOREM 5. Suppose that there exist G(A) and G(W)
such that:
(i) G(A) consists only of real-valued functions;
(2) given any v G‘V;.va € G(A) énd w € ¢(W)
there éxisﬁs‘ Y€E€T, such that for all x € E:
v(x)[w(x)] < v(a(x)).
Then W is localizable under A in LV ,
THEOREM 6. Assume that A is self-adjoint in the:
complex case and fhat there exist G(A) and G(W) such

that, given eny v € V, a € G(A) and w € G(W) there
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exists vy € ?f guch that
v(xXw(x)] < v(la(x)])
for all x € E. Then W 1is localizable under A in LV05
Remark 3. The above theorem combined with classical

results concerning the Bernstein problem allows cne to find

practical sufficient conditions for localizability.

THEOREM 7 (Analytic eriterion for localizability).
Assume that A 1is self-adjoint in the complex case and that
there exist G(A) and G(W) such that, given any v € V,
a € G(A) and w ¢ G(W), there exist‘constants C >0 and
¢ > 0 such that for all =x € E:
vix)[w(x)] < Ce»cla(x)l-

Then W 1s localizable under A in Lvaj

THEOREM 8. (Quasi-analytic criterion for localizability).
Assunme that A is self-adjoint in the complex case and that
there exist G(A) and G(W) such that, given any v € V,

a £ G(A) and w € G(W) we have
= ~-1/m
ji (Mﬁ) = 4@
m=1

where M = sup (v [a"(x)w(x)] ; x € E} for m = 0,1,2,..

Then W 1is localizable under A in Lvaf

Remark &. Theorem 7 is based on the uniqueness of anal-

+
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ytic continuation, whereas Theorem 8 rests on the Denjoy-

Carleman theorem.

~ If there exist G(A) and G(W) such that every a
€ G(A) is bounded on the support of the function viw],
for eny v €V and w € G(W), it follows from Theorem 7
that W is localizable under A in quf This result ex-

tends Theorem 2,
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7. Algebras cf operators

In what follows & denotes a locally convex Hausdorff
space over 3& and G denotes a commutative algebra of
%
linear operators over £, not necessarily continuous. We

further assume that G contains the identity operator.

Definition 5. The point co-spectrum of G i1s the set
of all homomorphisms h of G onto X such that there ex-
ists ¢© € £', o # 0, such that w(h(x)) = h(u)o(x) for

all v € and x € £,

The point cd-spectrum of G 1is also the set of all
homomorphisms of G onto K such that there exists o € £y
o # 0, such thaﬁ o(u(x)) = 0 for all u in the kernel
of h and x in &£. Or, equivalently, the set of 211 home-
morphisms of G onto .Ei such that the closed vector sub-
space S, of & sgpanned by [u(x); u € h-l(O), x € &}
is a proper vector subspsce of ¢£.

We shall endow the point co-spectrum of G with the
weakest topology under which all the functions u defined
oﬁ,it by u(h) = h(u) are continuous, when u rangés over
G. This topolngy is a Hausdorff one, and we shall denote
by Ev the point co-spectrum of G endoweé with this topol-
ogy. For each h € E,  consider the qﬁotient vector space

Fp = £/sh ~and let x > x, the associated quotient map.
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gaction over E, which we shall denote by &(x). Yae wap-

. v . . . be un A, i ” :
ping & from £ dinto i b% is obvicusly linesr. Let
v . ]

MER
Fe A ™ PR | )
L = ®&}., For each continuous semineym p over &, let.

p () = inf {p(y) s v € %)
for all 5, € F, . The mapping h > Py is then a waight
cver D, end we wlill denote by V(I') the set of zll zuch

welghts, when P vanges cver a8 set 1 of continuocus semle

normg of & which determine the topolezy of £. lHotice

.

that overy weight in V(I') {g L - bounded, for Ph<3*)'<
[ el
pl{x} for all h € E. Hence we may consider the welghted

The abeove iregquality also shows that Podg a continu-

cus Wap . frem £ onto LV(T,R. - On the other hand ths map-

ping u =-> u I3 a homomorphicm of 4 into C(EF}. Let

&

%

A demsis the image of O wunder this homomorphica. Notice

» a 'y .« 4 - P n
that A is ezparvating ovar ¥ and that &{(u(x)) = wu2{x}

for all, w € U and x € £, Henee 'L ig an A-moduls,

N V. % ¢ =, ; - ool oo g g B 1%
coenddiion under whieh % 45 a tovolegical wector isomornhden.

THYEORFM §. A necegsdyy and sufflclent condition for

the exlstence of a set T of seminorms cver I,
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termines the topology of £, such that & is a topologi-
cal vector isomorphism between & and LV(F)b is that &
be locally convex under G with respect to the category of

all algebras isomorphic ,to K.

WP,

Remark 5. The above notion of local convexity was intro-
duced in [2]. 1In order to represent £ as an LV(F)G) space,
addi;ional hypotheses on the seminorms of I’ must be consid-
ered, namely for each p € I" the function h —> ph(xh)
must be upper semicontinuous and null at infinity, for every
x € £. Once L has been represented as an LV(F)G) we may
define localizability under € for G«-iﬁvarient subspaces
and consider the problem of finding necessary and sufficient
conditions for a given G- invariant subspace to be dense
in- £. Furthermore, we may ask when spectral synthesis
holds,.i.e., when a proper closed G-inva£iant subspace
is the intersection of all the proper closed G -~ invariant
subspaces of codimension one containing it. The following

theorem obtains this. (See [6], [7].)

THEOREM 10. Let &£ be.a space which can be repre-
sented as an LV(F)gf and let W be a proper closed G-
invariant subspace which is localizable under G in £, ‘
Then W& is contained in some proper closed G - invariant
subspace of codimension one and it is the intersection of

all proper closed G - invariant subspaces pf codimension
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one which contain it.
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