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ABSTRACT
We show that nonlinear electrodynamics (NLED) modifies in a fundamental basis the concept
of gravitational red-shift (GRS) as it was introduced by Einstein’s general relativity. The effect
becomes apparent when light propagation from super strongly magnetized compact objects,
as pulsars, is under focus. The analysis, here based on the (exact) nonlinear Lagrangean of
Born & Infeld (1934), proves that alike from general relativity (GR); where the GRS inde-
pends on any background magnetic (B) field, when NLED is taken into the photon dynamics
an effective GRS appears, which happens to decidedly depend on theB-field pervading the
pulsar. The resulting GRS tends to infinity as theB-field grows larger, as opposed to the
Einstein prediction. As in astrophysics the GRS is admittedly used to infer the mass-radius
relation, and thus the equation of state of a compact star, e.g. a neutron star (Cottam, Paerels
& Mendez 2002), this unexpected GRS critical change may misguide observers to that fun-
damental property. Hence, a correct procedure to estimate those valuous physical properties
demands a neat separation of the NLED effects from the pure gravitational ones in the light
emitted by ultra magnetised pulsars.
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1 INTRODUCTION

The idea that the nonlinear electromagnetic interaction, i. e., light
propagation in vacuum, can be geometrized was developed by Nov-
ello et al. (2000) and Novello & Salim (2001). Since then a number
of physical consequences for the dynamics of a variety of systems
have been explored. In a recent paper, Mosquera Cuesta & Salim
(2003,2004) presented the first astrophysical context where such
nonlinear electrodynamics effects were accounted for: the case of a
highly magnetized neutron star or pulsar. In that paper NLED was
invokeda là Euler-Heisenberg, which is an infinite series expansion
of which only the first nonlinear term was used for the analisys. An
immediate consequence of that study was an overall modification of
the space-time geometry around the pulsar as “perceived” by light
propagating out of it. This translates into a fundamental change of
the star surface redshift, the GRS, which might have been inferred
from the absorption (or emission) lines observed in a super mag-
netized pulsar by Ibrahim et al. (2002;2003). The result proved to
be even more dramatic for the so-called magnetars: pulsars said
to be endowed with magnetic (B) fields higher then the Schafroth
quantum electrodynamics criticalB-field. In thisLetterwe demon-
strate that the same effect still appears if one calls for the NLED
in the form of the one rigorously derived by Born & Infeld (1934),

which is based on the special relativistic limit to the velocity of ap-
proaching of an elementary charged particle to a pointlike electron.
As compared to our previous results, here we stress that from the
mathematical point of view the Born & Infeld (1934) NLED is de-
scribed by an exact Lagrangean whose dynamics has been success-
fully studied in a wide set of physical systems (Delphenich 2003).
The analysis presented next proves that this physics affects not only
the magnetar electrodynamics (our focus here) but also that one of
newly born; highly magnetised proto-neutron stars and the dynam-
ics of their progenitor supernovae.

2 NEUTRON STAR MASS-RADIUS RELATION

Neutron stars (NSs), formed during the death throes of massive
stars, are among the most exotic objects in the universe. They are
supposed to be composed of essentially neutrons, although some
protons and electrons are also required in order to guarantee stabil-
ity against Pauli’s exclusion principle for fermions. As remnants
of supernova explosions or accretion-induced-collapse of white
dwarfs, they are (canonical) objects with extremely high density
ρ ∼ 1014 g cm−3 for a mass∼ 1 M� and radiusR ∼ 10 km,
and supposed to be endowed with typical magnetic fields of about
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B � 1012 G, as expected from magnetic flux conservation during
the supernova collapse.

In view of its density, a neutron star (NS) is also believed
to trap in its core a substantial part of even more exotic states of
matter. It is almost a concensus that these new states might exist
inside and may dominate the star structural properties. Pion plus
kaon Bose-Einstein condensates could appear, as well as “bags” of
strange quark matter (Miller 2002). This last one is believed to be
the most stable state of nuclear matter (Glendenning 1997), which
implies an extremely dense medium whose physics is currently un-
der severe scrutiny. The major effect of these exotic constituents
is manifested through the NS mass-to-radius ratio (M/R). Most
researchers in the field think of the presence of such exotic com-
ponents not only as to make the star more compact, i.e., smaller in
radius, but also to lower the maximum mass it can retain.

The fundamental properties of NSs, their mass (M ) and ra-
dius (R), provide a direct test of the equation of state (EOS) of cold
nuclear matter, a relationship between pressure and density that is
determined by the physics of the strong interactions between the
particles that constitute the star. It is admitted that the most direct
procedure of estimating these properties is by measuring the grav-
itational redshift of spectral lines produced in the NS photosphere.
As the EOS relates directlyM andR, hence a measurement of the
GRS at the star surface leads to a strong constraint on theM/R
ratio. In this connection, observations of the low-mass X-ray bi-
nary EXO0748-676 by Cottam, Paerels and Mendez (2002) lead
to the discovery of absorption lines in the spectra of a handful of
X-ray bursts, with most of the features associated with Fe26 and
Fe25 n = 2 − 3 and O8 n = 1 − 2 transitions, all at a redshift
z = 0.35 (see its definition in Eq.(2) below). The conclusions re-
garding the nature of the nuclear matter making up that star thus
seem to exclude some models in which the NS material is com-
posed of more exotic matter than the cold nuclear one, such as the
strange quark matter or kaon condensates forM = 1.4 − 1.8 M�
andR = 9 − 12 km.

But the identification of absorption lines was also achieved by
Sanwal et al. (2002) using Chandra observations of the isolated NS
1E1207.4-5209. The lines observed were found to correspond to
energies of 700 and 1.400 eV, which they interpreted as the signa-
ture of singly ionized helium in a strong magnetic field1. The in-
ferred redshift is 0.12-0.23. Since, as well as gravity (see Eq.(2)), a
magnetic field has nontrivial effects on the line energy, e.g. Eq.(1),
then Sanwal et al. (2002) could not make their case for a correct and
accurate identification of the lines, and neither can they decidedly
rule out alternative interpretations, such as the cyclotron feature,
which is expected from interacting X-ray binaries, as prescribed by
the relation

EHe = 3.2 (1 + z)−1
[

Bsc

1015G

]
keV . (1)

To get some insight into the NS most elusive properties: its
mass and radius, astronomers use several techniques at disposal. Its
mass can be estimated, in some cases, from the orbital dynamics of
X-ray binary systems, while attempts to measure its radius proceed
via high-resolution spectroscopy, as done very recently by Sanwal
et al. (2002) upon studying the star 1E1207.4-5209; and Cottam,
Paerels and Mendez (2002) by analysing type I X-ray bursts from
the star EXO0748-676. In those systems success was achieved in
determining those parameters, or the relation between them, by

1 Note that theB-field strength in this source is unknown because no spin-
down was measured in it.

looking at the general relativistic effect known as GRS of excited
ions near the NS surface. Gravity effects cause the observed en-
ergies of the spectral lines of excited atoms to be shifted to lower
values by a factor

1

(1 + z)
≡

(
1 − 2G

c2

[
M

R

])1/2

, (2)

with z the GRS. Since this redshift depends onM/R, then
measuring the spectral lines displacement leads to an indirect, but
highly accurate, estimate of the star radius.

The above analysis stands on whenever the effects of the NS
B-field are negligible. However, if the NS is pervaded by a super
strongB-field (Bsc), as in the so-calledmagnetars, there is then
the possibility, for a given field strength, for the gravity effects to
be emulated by the electromagnetic ones. In what follows we prove
that this is the case if NLED [a là Born-Infeld (1934)] is taken
into account to describe the general physics taking place on the
pulsar surface. Our major result proves that for very high magnetic
fields (B � 1014 G) the redshift induced by NLED can be as high
as that one produced by gravity alone, while in the extreme limit
(B � 1015 G) it largely overtakes it (see Figs.1 and 2). This way
the NLED emulates the gravitation. In such stars, then, care should
be excersized when putting forward claims regarding theM/R or
the EOS of the observed pulsar.

3 NLED AND EFFECTIVE METRIC

It is well-known that extremely strong magnetic fields induce the
phenomenon ofvacuum polarization, which manifests, depending
on the magnetic field strength, as either real or virtual electron-
positron pair creation in a vacuum. Although this is a quantum ef-
fect, we stress that it can also be described classically by including
corrections to the standard linear Maxwell’s Lagrangean. Because
of their interaction with this excited background of pairs, the mod-
ification of thedispersion relationfor photons, as compared to the
one from Maxwell dynamics, is one of the major consequences of
the nonlinearities introduced by the NLED Lagrangean. Among the
principal alterations associated to this new dispersion relation is the
modification of the photon trajectory; which is the main focus in
the present paper. (A discussion on light-lensing in compact stars
is given by Mosquera Cuesta, de Freitas Pacheco & Salim 2004
in a paper in preparation). We argue here that for extremely su-
percriticalB-fields NLED effects force photons to propagate along
accelerated curves.

In case the nonlinear Lagrangean density is a function only
of the scalarF ≡ FµνF

µν , sayL(F ), the force accelerating the
photons is given as

kα||νk
ν =

(
4
LF F

LF
Fµ

β F
βνkµkν

)
|α

, (3)

wherekν is the wavevector,LF , LF F stands, correspond-
ingly, for first and second partial derivative with respect to the in-
variantF . Here, and also in Eq.(9) below, the symbols “|” and “||”
stand, respectively, for partial and covariant derivative. This fea-
ture allows for this force, acting along the photons path, to be ge-
ometrized (Novello et al. 2000; Novello & Salim 2001; De Lorenci
et al. 2002) in such a way that in an effective metric

geff
µν = gµν + gNLED

µν (4)

the photons follows geodesic paths. In such a situation, the
standard geometric procedure used in general relativity to describe
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the photons can now be used upon replacing the metric of the back-
ground geometry, whichever it is, by that of theeffectivemetric. In
this case, the outcoming redshift proves to have now a couple of
components, one due to the gravitational field and another stem-
ming from the magnetic field. As the shift in energy, and width,
produced by the effective metric “pull” of the star on laboratory
known spectral lines grows up directly with the strength of the ef-
fective potential associated to the effective metric, this shift has
two contributions: one coming from gravitational and another from
NLED effects. In the case of hyper magnetized stars, e. g. mag-
netars, both contributions may be of the same order of magnitude.
This clearly entangles imposition of constraints on the ratioM/R.
This difficulty can be overcome by taking in account that the con-
tribution of theB-field, which depends on both the anglesθ andφ,
differs from that of the gravitational field which is fully isotropic.

Our warning (see Fig.2 !) then holds: The identification and
analisys of spectral lines from highly magnetized NSs must take
into account the two possible different polarizations of the re-
ceived photons, in order to be able to discriminate between redshifts
produced either gravitationally or electromagnetically. Putting this
claim in perspective, we stress that if the characteristic redshift, or
M/R ratio, were to be inferred from this source, care should be
taken since for this super strongB-field, estimated upon the identi-
fied line energy and width or via the pulsar spindown, such redshift
becomes of the order of the gravitational one (GRS) expected from
a canonical NS. It is, therefore, not clear whether one can conclu-
sively assert something about theM/R ratio of any magnetar under
such dynamical conditions.

3.1 The method of effective geometry

In this paper we want to investigate the effects of nonlinearities
of very strong magnetic fields in the evolution of electromagnetic
waveshere described as the surface of discontinuity of the electro-
magnetic field (represented here-to-for byFµν ). Since in the pul-
sar background there is only a magnetic field2, then the invariant
G = BµE

µ is not a functional in the Lagrangean. For this reason
we will restrict our analisys to the simple class of gauge invariant
Lagrangians defined by

L = L(F ) . (5)

The surface of discontinuity3 for the electromagnetic field will
be represented byΣ. We also assume that the fieldFµν is contin-
uous when crossingΣ and that its first derivative presents a finite
discontinuity (Hadamard 1903):

[Fµν ]Σ = 0 , (6)

and[
Fµν|λ

]
Σ

= fµνkλ , (7)

respectively. The symbol

[Fµν ]Σ ≡ limδ→0+(J |Σ+δ − J |Σ−δ) (8)

represents the discontinuity of the field through the surfaceΣ.
The tensorfµν is called the discontinuity of the field, whilst

2 For the present analysis we assume a slowly rotating NS for which the
electric field induced by the rotating dipole is negligeable.
3 Of course, the entire discussion onwards could alternatively be rephrased
in terms of concepts more familiar to the astronomy community as that of
light rays used for describing the propagation of electromagneticwaves in
the optical geometry approximation.

kλ ≡ Σ|λ (9)

is called the propagation vector. From the least action principle
we obtain the following field equation

(LFF
µν)||µ = 0 . (10)

Applying the Hadamard conditions (6) and (7) to the discon-
tinuity of the field in Eq.(10) we obtain

LF f
µνkν + 2LF F ξF

µνkν = 0 , (11)

whereξ is defined by

ξ
.
= Fαδfαδ . (12)

Both, the discontinuity conditions and the electromagnetic
field tensor cyclic identity lead to the following dynamical relation

fµνkλ + fνλkµ + fλµkν = 0 . (13)

In the particular case of a polarization such thatξ = 0, it
follows from Eq.(10) that

fµνkν = 0 . (14)

Thus, by multiplying Eq.(13) bykλ and using the result of
Eq.(14) we obtain

fµνkλk
λ = 0 . (15)

This equation expresses that for this particular polarization the
discontinuity propagates with the metricfµν of the background
space-time. For the general case, whenξ �= 0, we multiply Eq.(13)
by kαg

αλFµν to obtain

ξkνkµg
µν + 2Fµνfλ

ν kλkµ = 0 . (16)

¿From this relation and Eq.(11) we obtain the propagation law
for the field discontinuities, in this case given as

(LF g
µν − 4LF FF

µ
αF

αν) kµkν = 0 , (17)

where

Fµ
αF

αν = −B2hµν −BµBν . (18)

Eq.(17) allows to interpret the term inside the parenthesis mul-
tiplying kµkν as an effective geometry

gµν
eff = LF g

µν − 4LF FF
µ
αF

αν . (19)

Hence, one concludes that the discontinuities will follow
geodesics in this effective metric.

3.2 Born-Infeld NLED

One can start the study of the NLED effects on the light propaga-
tion from hypermagnetized neutron stars, with the Born-Infeld (B-
I) Lagrangean (recall that a typical pulsar has no relevant electric
field, i.e.,E is null)

L = L(F ) , (20)

with

L = − b2

2

[(
1 +

F

b2

)1/2

− 1

]
, (21)

where

b =
e

R2
0

=
e
e4

m2
0c8

−→ b =
m2

0c
8

e3
= 9.8 × 1015 e.s.u. (22)
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In order to obtain the effective metric that decurs from the B-
I Lagrangean, one has therefore to compute the derivatives of the
Lagrangean with respect toF . The first of them reads

LF =
−1

4
(
1 + F

b2

)1/2
, (23)

while its second derivative follows as

LFF =
1

8b2
(
1 + F

b2

)3/2
. (24)

The L(F ) B-I Lagrangean produces, according to equation
(19), aneffectivecontravariant metric given as

gµν
eff =

−1

4
(
1 + F

b2

)1/2
gµν +

B2

2b2
(
1 + F

b2

)3/2
[hµν + lµlν ] , (25)

where we define the tensorhµν as the metric induced in the
reference frame perpendicular to the observers; which are deter-
mined by the vector fieldV µ, and lµ ≡ Bµ

|BγBγ |1/2 as the unit

4-vector along theB-field direction.
Because the geodesic equation of the discontinuity (that de-

fines the effective metric) is conformal invariant, one can multiply
this last equation by the conformal factor

−4
(
1 +

F

b2

)3/2

(26)

to obtain

gµν
eff =

(
1 +

F

b2

)
gµν − 2B2

b2
[hµν + lµlν ] . (27)

By noting that

F = FµνF
µν = −2(E2 −B2) , (28)

and recalling that in the case of a canonical pulsarE = 0, then
F = 2B2. Therefore, the effective metric reads

gµν
eff = (1 +

2B2

b2
)gµν − 2B2

b2
[hµν + lµlν ] , (29)

or equivalently

gµν
eff = gµν +

2B2

b2
V µV ν − 2B2

b2
lµlν . (30)

As one can check, this effective metric is a functional of the
background metricgµν , the 4-vector velocity field of the inertial
observersV ν , and the spatial configuration (orientationlµ) of the
B-field.

Because the concept of gravitational redshift (GRS) is associ-
ated with the covariant form of the background metric, one needs
to find the inverse of the effective metricgµν

eff given above. With the
definition of the inverse metric

gµν
eff g

eff
να = δµ

α , (31)

one obtains the covariant form of the effective metric as

geff
µν = gµν − 2B2/b2

(2B2/b2 + 1)
VµVν +

2B2/b2

(2B2/b2 + 1)
lµlν . (32)

In order to openly write the covariant time-time effective met-
ric component, one can start by figuring out that a) both the emitter
and observer are in inertial frames, thenV µ = δµ

0 /(g00)
1/2, and b)

the magnetic field is a pure radial field. In this case, one can write
Bµ = Bµ(r), whereBµ ≡ B lµ = B lr, which implies that the
lµ time, polar and azimuthal vector components becomelt = 0,
lθ = 0 and lφ = 0. By using all these assumptions in Eq.(19)
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Figure 1. Ratio between the effective time-time metric components geff00 and
the background g00 as a function of the magnetic field strength B-Field.
Notice that the ratio goes to zero as larger the B-field grows, which means
that the effective (gravitational + NLED) redshift tends to infinity while the
standard one (GRS) remains constant for a given M/R, as it independs on
B.

one arrives to the time-time effective metric component (in the ap-
pendix we derive the corresponding grr metric component, which
is also interesting to reckon with)

geff
tt = gtt − 2B2/b2

(2B2/b2 + 1)
gtt , (33)

or similarly

geff
tt =

[
1

2B2/b2 + 1

]
gtt . (34)

This effective metric corresponds to the result already derived
in our previous paper (Mosquera Cuesta & Salim 2003;2004). We
stress, meanwhile, that our former result was obtained by using the
approximate Lagrangean

L(F ) = −1

4
F +

µ

4

(
F 2 +

7

4
G2

)
, (35)

where µ = 2α2

45
(h̄/mc)3

mc2
, with α = e2

4πh̄c
, G ≡ FµνF

∗ µν ,
F ∗ µν ≡ 1

2
ηµναβFαβ , and F was defined above. This Lagrangean

is built up on the first two terms of the infinite series expansion
associated with the Heisenberg-Euler (1936) Lagrangean, which
proved to be valid for B-field strengths near the quantum electrody-
namics critical field B ∼ 1013.5 G. In the present paper we overrun
that limit. In fact, from Eq.(34) is straightforward to verify that the
ratio geff

00 /g00 � 1, and goes all the way down to zero as the B-
field attains higher strength values. This means that the effective
surface redshift grows unbounded as B becomes larger and larger.
Both results are displayed in Figs.1 and 2. Fig.2 also confirm that
for canonical NSs the gravitational (GRS) redshift remains constant
even for fields larger then the Schafroth QED limit.

4 DISCUSSION AND CONCLUSION

In a very interesting couple of Letters by Ibrahim et al. (2002;2003)
was reported the discovery of cyclotron line resonance features in
the source SGR 1806-20, said to be a candidate to a magnetar by
Kouveliotou et al. (1998). The 5.0 keV feature discovered with
Rossi XTE is strong, with an equivalent width of ∼ 500 eV and a
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Figure 2. The plot shows the variation, for a given constant M/R ratio,
of the effective redshift (which in turns depends on the effective time-time
metric component geff

00 ) as a function of the B-Field strength. Notice that it
tends to infinity as larger the B-field grows, while the standard one (GRS)
takes on a fixed value z � 1.

narrow width of less than 0.4 eV (Ibrahim et al. 2002;2003). When
these features are interpreted in the context of accretion models
one arrives to a M/R > 0.3 M� km−1, which is inconsistent with
NSs, or that requires a low (5− 7)× 1011 G magnetic field, which
is said not to correspond to any SGRs (Ibrahim et al. 2003). In
the magnetar scenario, meanwhile, the features are plausibly expla-
nined as being ion-cyclotron resonances in an ultra strong B-field
Bsc ∼ 1015 G (see Eq.(1)). The spectral line is said to be consistent
with a proton-cyclotron fundamental state whose energy and width
are close to model predictions (Ibrahim et al. 2003). According to
Ibrahim et al. (2003), the confirmation of this findings would al-
low to estimate the gravitational redshift (the GRS), mass (M ) and
radius (R) of the quoted “magnetar” : SGR 1806-20.

Although the quoted spectral line in Ibrahim et al. (2002;2003)
is found to be a cyclotron resonance produced by protons in that
high field, we alert on the possibility that it could also be due
to NLED effects in the same super strong magnetic field of SGR
1806-20, as suggested by Eq.(34). If this were the case, no con-
clusive assertion on the M/R ratio of the compact star glowing
in SGR 1806-20 could be consistently made, since a NLED effect
might well be emulating the standard gravitational one associated
with the pulsar surface redshift.

In summary, because we started with a more general and exact
Lagrangean, as that of Born & Infeld (1934), we can assert that the
result here derived is inherently generic to any kind of nonlinear
theory describing the electromagnetic interaction, and thus is uni-
versal in nature. Thence, absorption or emission lines from magne-
tars, if these stellar objects do exist in nature (see Pérez Martı́nez
et al. 2003 for arguments contending their formation), cannot be
saftely used as an unbiased source of information regarding the fun-
damental parameters of a NS pulsar such as its M , R or EOS.

APPENDIX

An additional outcome of the above procedure regards the modi-
fications to the radial component of the background metric. For a
pure radial B-field the 4-vector unit lµ can be written as

lµ ≡ δr
µ√−grr

=
√−grr δr

µ , (36)

which renders

lr =
δµ

r√−grr
, (37)

and consequently

lµlµ = −1 −→−→ lrlrg
rr = −1 . (38)

Therefore, the third term in Eq.(32) reduces to

BµBνgµν = −B2lrlrgrr . (39)

In this way, one can verify that such a radial-radial effective
metric component is given by the relation

geff
rr = grr− 2B2/b2

(2B2/b2 + 1)
grr =

(
1 − 2B2/b2

[2B2/b2 + 1]

)
grr(40)

or equivalently

geff
rr =

[
1

1 + 2B2/b2

]
grr . (41)

Some astrophysical consequences of this fundamental change
in the radial component of the background metric will be explored
in a forthcoming paper.

ACKNOWLEDGEMENTS

We are grateful to the anonymous referee for all the suggestions and
criticisms that helped us to improve this manuscript. J. M. Salim
acknowledges Conselho Nacional de Desenvolvimento Cientı́fico
e Tecnológico (CNPq/Brazil) for the Grant No. 302334/2002-5.
HJMC thanks Fundação de Amparo à Pesquisa do Estado de Rio
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