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I. INTRODUCTION

Recent measurements of high redshift supernovae [2][3] indicate that the Universe is presently in ac-
celerated expansion and not in a decelerated one, as was firmly believed by cosmologists since Hubble’s
observation and its interpretation in the framework of General Relativity (GR). This was a spectacu-
lar break through in our understanding (or misunderstanding) of the Universe, and it became a major
task to Cosmology and Astrophysics to explain this unexpected fact. Staying in the domain of classical
GR and, consequently, considering the Friedmann’s equations as valid, the only way to explain such
present acceleration of the Universe is by considering the existence of some negative pressure dark energy
[2][4][5][6].This cosmic dark energy opposes the self-atraction of matter and is causing the expansion of
the universe to be positively accelerated[4]. The most obvious candidate to be such dark energy is the
cosmological constant and/or the vacuum quantum fluctuations of fields, which do have negative pressure.
However, theorists estimates that the zero point energies of the quantum fields must be at least 55 orders
of magnitude larger than the critical density value. Hence, there must exist some yet unknown profound
theoretical reason for the many contributions to the effective value of the cosmological constant be can-
celled out to yield a number 55 orders of magnitude less then expected, or even zero. This is known as the
cosmological constant problem. Some theorists believe that some profound symmetry requirements can
be found to explain an exact cancellation, but not a partial one with an extreme fine tuning. In the case
where the effective cosmological constant is indeed exactly zero, there were proposed some candidates in
order to explain the present accelerated expansion of the Universe as, for example, a very light, evolving
scalar field called quintescence [7][8].
Another way to tackle this problem is by considering that presently, at cosmological scales, classical

GR is not valid. In other words, instead of changing the right-hand-side (RHS) of Einstein’s equations
by introducing some new negative pressure fluid, one could try to find physical reasons which justify the
modification of its left-hand-side (LHS) accordingly. How this can be done?
In early works [1][9], a quantum minisuperspace model containing a free massless scalar field minimally

coupled to gravity in a FLRW geometry was studied. These models were interpreted in the framework
of the ontological Bohm-de Broglie (BdB) interpretation of quantum mechanics, [10][11][12], in order to
extract predictions from the wave function of the Universe. This interpretation avoids many conceptual
difficulties inherent to the application of the Copenhagen interpretation to the quantization of the whole
Universe, where no place for a classical domain exists. The BdB interpretation does not need a classical
domain outside the quantized system to generate the physical facts out of potentialities (the facts are there
ab initio), and hence it can be applied to the Universe as a whole 1. The solutions of the Wheeler-DeWitt
equation for such scalar tensor model contain positive and negative frequency modes, the first leading
to an expanding universe, and the second to a contracting one. There were constructed some particular
superpositions mixing negative and positive frequency modes. In Ref. [1], gaussian superpositions were
studied and, for the case of flat spatial section, the Bohm guidance equations were reduced to a dynamical
system. In this way the quantum trajectories were studied, emerging the following three kind of scenarios:
periodic solutions, representing oscilating universes, bouncing universes, and models with a big bang
followed by a big crunch. The bouncing universes contract classicaly from infinity until a minimum size,

1 Other alternative interpretations can be used in quantum cosmology, as the many worlds interpretation of quantum
mechanics [13]
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where quantum effects become important acting as a repulsive force avoiding the singularity, expanding
afterwards to an infinite size, approaching the classical expansion as long as the scale factor increases. For
the periodic solutions, the quantum effects are always important, and they do not grow enough to yield
a large Universe as ours. The models with a big bang followed by a big crunch behave as the classical
solutions for small values of the scale factor, but display quantum behaviour for large scale factor. These
quantum effects are responsible for the turning over of these solutions from decelerated expansion to
contraction. Near the big crunch, the quantum effects are again negligible. Bohmian trajectories which
behave classically for small scale factors but quantically for large scale factors where already found in Ref.
[9]. This is not surprising as it is well known [14] that a large universe behaves classically or quantically
depending on its initial quantum state. After these remarks, the natural question one can ask is if it is
possible that quantum cosmological effects at large scales can mimic a negative pressure fluid and yield
a positive acceleration for the whole Universe. The aim of this paper is to show with a simple model
that it is indeed possible for some suitable initial quantum states of the universe. We take the flat model
considered in Ref. [1], and we consider another gaussian superposition of negative and positive modes
solutions of the Wheeler-DeWitt equation. We write the Bohm guidance equations, which are reduced
to a dynamical system, and we analyze the bohmian trajectories in configuration space. We find the
two following scenarios, depending on the initial conditions: oscillating universes without singularities
and with relative small amplitudes of oscillation, and universes which arise classically from a singularity,
experience quantum effects in the middle of its expansion, and recover its classical behaviour for large
values of the scale factor. We concentrate our attention on these solutions and we study the epoch where
the quantum effects are important. We calculate its acceleration and explore its behaviour as a function
of the scalar field φ and of the logarithm of the scale factor, α ≡ ln(a). We find that a positive acceleration
of the universe can be obtained in such models, whose value can be adjusted by the choice of the free
parameters of the model. This positive acceleration is a quantum effect. The mechanism is driven by
the quantum potential, which appears in the modified quantum Einstein-Hamilton-Jacobi equation and
modifies the usual classical trajectories. In this model, the acceleration is not forever: in the future,
the universe recovers its classical deccelerated expansion. In this way, we present a possible alternative
explanation for the accelerated expansion of the Universe today. Note that this explanation is based on
quantum effects not only present in the scalar field, as described within a different approach in Ref.[15],
but also in the geometry itself.
The article is organized as follows. In Sec. II, we describe the classical model and we quantize it.

In Sec. III, we introduce the Bohm-de Broglie interpretation of the quantized minisuperspace model
presented in Sec. II. We study gaussian superpositions of the quantum solutions previously found, and
we obtain the corresponding quantum bohmian trajectories. In Sec. IV we analyze the beahviour of the
acceleration of the scale factor in the quantum bohmian trajectories, first qualitatively, by showing some
period in the history of the model where the acceleration of its expansion is positive, then quantitatively,
by comparing the curve relating the luminosity distance with redshift in the quantum model with the
corresponding curve coming from the classical model suplemented by a cosmological constant. Sec. IV
is for discussions and conclusions.

II. CLASSICAL AND QUANTUM MINISUPERSPACE MODELS

In this section we make an overview of the models studied in Ref. [1]
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A. Classical Model.

We start from the Lagrangian

L =
√−g

[
R− 1

2
φ;ρφ

;ρ

]
, (1)

We consider the FLRW metric given (in isotropical coordinates) by

ds2 = −N2dt2 +
a(t)2

(1 + ε
4r

2)2

[
dr2 + r2(dθ2 + sin2 θdφ2)

]
, (2)

the quantity ε being the spatial curvature with values 0, 1,−1 for flat, spherical and hyperbolic spatial
sections, respectively. This line element will give, after inserting it in the Lagrangian (1), the following
action:

S =
3V
4πl2P

∫
Na3

2

( −ȧ2

N2a2
+

1
2
φ̇2

6N2
+
ε

a2

)
dt, (3)

where we have set h̄ = c = 1 and ˙≡ d
dt . The quantity V is the volume divided by a3 of the spacelike

hypersurfaces, which are supposed to be closed, and lP is the Planck length. The total volume V depends
on the value of ε and on the topology of the hypersurfaces. For ε = 0, V can have any value because the
fundamental polyhedra of closed ε = 0 hypersurfaces can have arbitrary size [16]. For the case ε = 1 and
topology S3 we have V = 2π2. Defining β2 = 4πl2P

3V , φ̄ ≡ √
φ/12, and omiting the bars, we obtain for the

Hamiltonian:

H = N
(
− β2 p

2
a

2a
+ β2

p2φ
2a3

− ε a
2β2

)
(4)

where pa and pφ are the moments canonically conjugate to a and φ respectivelly, given by:

pa = − aȧ

β2N
(5)

pφ =
a3φ̇

β2N
(6)

A dimensionless scale factor is defined by ã ≡ a
β and the Hamiltonian becomes, omitting the tilde,

H =
N

2β

(
− p2a
a

+
p2φ
a3

− εa
)

(7)

As β is a multiplicative constant in the hamiltonian, we can set β = 1 without any loss of generality,
keeping in mind that the scale factor which appears in the metric is aphys ≡ βa, not a. Defining now
α ≡ ln(a), we simplify the Hamiltonian obtaining:

H =
N

2e3α

[
− p2α + p2φ − εe4α

]
, (8)
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where

pα = −e
3αα̇

N
, (9)

pφ =
e3αφ̇

N
, (10)

This Hamiltonian does not depend explicitly on φ. Hence, pφ is a constant of motion, which we will call
k̄. The classical solutions in the gauge N = 1 can now be listed:

1. Flat model, ε = 0.

In configuration space, the classical solutions are:

φ = ±α+ c1, (11)

where c1 is an integration constant. In terms of cosmic time t they read:

a = eα = (3k̄t)
1
3 , (12)

φ =
ln(t)
3

+ c2. (13)

These are solutions forever contracting or expanding from a singularity, depending on the signal of k̄,
without any inflationary epoch.

2. Spherical model, ε = 1.

In this case we have,

a = eα =
k̄

cosh(2φ− c1) , (14)

where c1 is an integration constant. Conservation of pφ implies that

k̄ = e3αφ̇. (15)

These solutions describe universes expanding from a singularity till a maximum size and contracting again
to a big crunch. Near the singularity, these solutions behave as in the flat case. There is no inflation.
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3. Hyperbolic model, ε = −1.

The classical solutions in configuration space are:

a = eα =
k̄

| sinh(2φ− c1)| , (16)

where c1 is an integration constant. Again, from the conservation of pφ we get

k̄ = e3αφ̇. (17)

These solutions describe universes contracting forever to, or expanding forever from, a singularity. Near
the singularity, these solutions behave as in the flat case. There is no inflation phase. The cosmic time
dependence is complicated in the cases 2 and 3 and we will not write it here.

B. Quantization.

Let us quantize the model following the Dirac procedure [17]. The constraints become conditions
imposed on the possible states of the quantum system. The operator version of the Hamiltonian (8),
obtained by setting α̂ → −ı ∂

∂α and φ̂ → −ı ∂
∂φ , must annihilate the wave function Ψ. Choosing a factor

ordering which make it covariant through field redefinitions, the quantum constraint, i.e. the Wheeler-
DeWitt equation, reads

−∂
2Ψ
∂α2

+
∂2Ψ
∂φ2

+ εe4αΨ = 0, (18)

whose general solution can be written as

Ψ(α, φ) =
∫ ∞

−∞
F (k)Ak(α)Bk(φ)dk, (19)

where k is a separation constant which in the classical limit corresponds to k̄, F (k) is an arbitrary function
of k, the function Bk(φ) reads

Bk(φ) = b1eikφ + b2e−ikφ, (20)

and, for ε = 0, the function Ak(α) is given by

Ak(α) = a1e
ikα + a2e

−ikα, (21)

while for ε = 1 it is

Ak(α) = a1Iik/2
e2α

2
+ a2Kik/2

e2α

2
, (22)
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and for ε = −1 it reads

Ak(α) = a1Jik/2
e2α

2
+ a2Nik/2

e2α

2
. (23)

The functions J,N, I,K are Bessel and modified Bessel functions of first and second kind.

III. THE BOHM-DE BROGLIE INTERPRETATION OF THE QUANTUM MODEL

The Bohm-de Broglie (BdB) interpretation of homogeneous minisuperspace models can be summarized
as follows[18]: the Wheeler-DeWitt equation is

H[p̂α(t), q̂α(t)]Ψ(q) = 0. (24)

Substituting the wave function in polar form, Ψ = AeiS , we have a complex equation and its real part
produce, after dividing it by A:

1
2
fαβ(qµ)

∂S

∂qα

∂S

∂qβ
+ U(qµ) +Q(qµ) = 0, (25)

where Q(qµ) is the quantum potential, given by

Q(qµ) = − 1
2A
fαβ

∂2A

∂qα∂qβ
. (26)

In the BdB approach, the trajectories qα(t) are supposed to be real, independent of any observations.
Equation (25) is the Hamilton-Jacobi equation for them, but with an extra term given by the quantum
potential (26). Then we define

pα =
∂S

∂qα
, (27)

where the momenta are related to the velocities in the usual way:

pα = fαβ 1
N

∂qβ
∂t
. (28)

In order to obtain the quantum trajectories we have to solve the Bohm guidance relations, p = ∂S
∂q , which

are, in this case, given by:

∂S(qα)
∂qα

= fαβ 1
N

∂qβ
∂t
. (29)

Equations (29) are invariant under time reparametrization. Hence, even at the quantum level, different
choices of N(t) yield the same spacetime geometry for a given nonclassical solution qα(t). There is no
problem of time in BdB interpretation of minisuperspace quantum cosmology2.

2 This is not true for the full superspace, see [19], although the theory remain consistent, see [20], [21].
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In the case of hamiltonian (8), we obtain for the guidance relations (29)

∂S

∂α
= −e

3αα̇

N
, (30)

∂S

∂φ
=
e3αφ̇

N
. (31)

The modified Hamilton-Jacobi equation (25) reduces to

1
2

[(
∂S

∂φ

)2

−
(
∂S

∂α

)2]
− ε
2
e4α − 1

2A

(
∂2A

∂φ2
− ∂2A

∂α2

)
= 0, (32)

where the last term in the LHS represents the quantum potential (26):

Q(α, φ) ≡ 1
2A

[
∂2A

∂α2
− ∂2A

∂φ2

]
. (33)

We will now apply the BdB interpretation to our minisuperspace model. We will restrict ourselves to the
case of flat spatial sections, hypersurfaces with ε = 0. In Ref. [1], the following Gaussian superpositions
of the solutions (19) were studied:

Ψ1(α, φ) =
∫
F (k)Bk(φ)[Ak(α) +A−k(α)]dk, (34)

and

Ψ2(α, φ) =
∫
F (k)Ak(α)[Bk(φ) +B−k(φ)]dk, (35)

both with a2 = b2 = 0 in Eqs (20,21), and where the arbitrary function F (k) is the Gaussian

F (k) = exp
[
− (k − d)2

σ2

]
. (36)

While in paper [1] the solution Ψ1 was studied in detail, here we will concentrate our analysis on the
solution Ψ2. Integrating (36) in k we obtain, for Ψ2,

Ψ2 = a1b1 | σ | √π
{
exp

[
− (α+φ)2σ2

4

]
exp(id(α+ φ))

+ exp
[
− (α−φ)2σ2

4

]
exp(id(α − φ))

}
(37)

To obtain the quantum trajectories, we have to calculate the phase S of the above wave function and
substitute it into the guidance equations (30) and (31). We will work in the gauge N = 1. Computing
the phase of Ψ2, we obtain S = dα + arctan(σ2φα

2 ) tan(−dφ) which, after substitution in Eqs (30,31),
yields a planar system given by:
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α̇ =
φσ2 sin(2dφ)− 2d cos(2dφ)− 2d cosh(σ2αφ)

e3α2[cos(2dφ) + cosh(σ2αφ)]
(38)

φ̇ = −ασ
2 sin(2dφ) + 2d sinh(σ2αφ)

e3α2[cos(2dφ) + cosh(σ2αφ)]
(39)

Equations (38,39) give the direction of the geometrical tangents to the trajectories which solves this planar
system. By plotting the tangent direction field, it is possible to obtain the trajectories. The vertical line
φ = 0 divides the configuration space in two symmetric regions. The line α = 0 contains all singular
points of this system, which are nodes and centers. The nodes appear when the denominator of the
above equations, which is proportional to the norm of the wave equation, is zero. No trajectory can pass
through these points. They happen when α = 0 and φ = (2n+1) π

2d , n an integer, with periodicity π/|d|.
The center points appear when the numerators are zero. They are given by α = 0 and φ = 2d

σ2 cot(dφ).
As |φ| → ∞ these points tend to nπ/d (zeros of tan(dφ)). As one can see from the above system, the
classical solutions (a(t) ∝ t1/3) are recovered when |φ| → ∞ or |α| → ∞, the other being different from
zero.
We present a field plot of this planar system in Fig. 1, for the case d = −1, σ = 1. Depending on

the initial conditions, we can see two different possibilities. Near the center points there are oscillating
universes without singularities and with amplitudes of oscillation of order 1. The other possibility is given
by non-oscillating universes. A non oscillating universe arises classically from a singularity, experiences
quantum effects in the middle of its expansion, and recover its classical behaviour for large values of α.

IV. THE ACCELERATED EXPANSION.

A. Qualitative approach

In this subsection we show how our approach for the explanation of the accelerated expansion works in a
qualitative manner, i.e., with the parameters of the wave packet (d and σ) adapted for readable numerical
treatment, without any fitting with usual cosmological orders of magnitude. The aim is just to show that
in some period in the history of such quantum models where the expansion is positively accelerated. We
take here d = −1, σ = 1 for the numerical computations. The quantum effects appearing in the middle of
the non periodic bohmian trajectories described above can deviate them from their classical decelerated
expansion to an accelerated one. We will show that this is indeed the case of this model. From α = ln a(t)
we have

ä

a
= α̈+ (α̇)2. (40)

From Eq. (38), α̇ can be viewed as a function of the canonical variables α̇ = F (α, φ). Then we have

α̈ =
∂F

∂α
α̇+

∂F

∂φ
φ̇ (41)

Computing the derivatives with respect to α and φ, and substituting α̇ and φ̇ from equations (38) and
(39), respectively, we obtain



CBPF-NF-023/03 9

–1

–0.5

0

0.5

1

alpha

–2 –1 1 2

phi

FIG. 1: Field plot of the system of planar equations (38,39) coming from the wave function (37).For numerical

simplicity we choose the values −d = σ = 1. We see the two possibilities: trajectories corresponding to oscillat-

ing universes without singularities and trajectories corresponding to non-oscillating universes that come from a

singularity, experience quantum effects in the middle of their expansions, and recover their classical behaviours

for large values of α.

ä

a
= −1

4

[ (
2φ2σ4 + ασ4

) (
(sin(2dφ))2 cos(2dφ) + (sin(2dφ))2 cosh(σ2αφ)

)
+

(
2σ2d− 2σ4dφ2

) (
sin(2dφ) cos(2dφ) sinh(σ2αφ) + sin(2dφ) sinh(σ2αφ) cosh(σ2αφ)

)
+(

σ6φ3 + 4σ2d2φ− σ6φα2
)
(sin(2dφ))2 sinh(σ2αφ) +

(
2σ4dφα− 8σ2dφ

)
sin(2dφ) (cos(2dφ))2 +(

2σ4dφα − 16σ2dφ
)
sin(2dφ) cos(2dφ) cosh(σ2αφ) + 24d2 (cos(2dφ))2 cosh(σ2αφ) +

24d2 cos(2dφ)
(
cosh(σ2αφ)

)2 − 8φdσ2 sin(2dφ)
(
cosh(σ2αφ)

)2
+ 4σ2φd2 (cos(2dφ))2 sinh(σ2αφ) +

4σ2φd2 cos(2dφ) cosh(σ2αφ) sinh(σ2αφ) + 2σ4φ (sin(2dφ))3 dα− 2σ4φ sin(2dφ)
(
sinh(σ2αφ)

)2
αd+

8d2 (cos(2dφ))3 + 8d2
(
cosh(σ2αφ)

)3
][ (

e3α
)2 (

cos(2dφ) + cosh(σ2αφ)
)3

]−1

.(42)

The equation above gives the acceleration ä
a as a function of α and φ. If one integrates the system (38,39)

to obtain φ = φ(a), the quantum version of the classical equation (i.e. Raychaudhuri equation for the
Friedmann’s model)

ä

a
= −4πG

3
(ρ+ 3p) ∝ −(φ̇)2 ∝ − 1

a6
(43)

can be obtained. Taking the limit where the absolute value of α is very large in Eq. (42), one recovers
the classical behaviour given in Eq. (43), ä

a ∝ −1/a6. Note that the quantum analog of the Friedmann’s
equation can also be easily obtained from Eqs.(30,31,32), yielding (recovering the unities)
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FIG. 2: Acceleration ä/a as a function of φ and α. For numerical simplicity we choose the values −d = σ = 1

.

H2 = φ̇2 + β4c2Q(a, φ)/a6
phys. (44)

We can represent ä
a in a tridimensional plot as a function of α and φ. In this plot we can see the

regions on the plane α− φ in which the acceleration is possitive, negative or zero. We show this plot, for
the parameters d = −1 and σ = 1, in Fig. 2. One can see the classical behaviour ä/a ∝ −1/a6 for a→ 0
(α → −∞) and a → ∞ (α → ∞), but near the region a = 1 (α = 0), a clear departure from classical
behaviour is observed, and positive values of ä/a are obtained. Fig. 3 shows the acceleration ä/a as a
function of α for φ = 1.66.
As we pointed above, the quantum potential is the cause of this positive acceleration. Fig. 4 shows

the quantum potential in the α−φ plane where we can see that it is different from zero in the regions of
positive acceleration. A trajectory passing through this region on the plane α − φ will correspond to a
universe experiencing an accelerated expansion. Fig. 5 shows the quantum potential as a function of α
for φ = 1.66. Note also the increasing in the acceleration and in the quantum potential as we approach
the node point α = 0, φ = π/2.

B. Comparison between the quantum acceleration of the Universe’s expansion and the presence

of a cosmological constant

We will now compare quantitatively the accelerated expansion of the Universe caused by such a quan-
tum cosmological effect with the one generated by the presence of a cosmological constant in the classical
model . First of all, we must recover the units in Eqs.(38,39). This is done by multiplying the RHS of
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FIG. 3: Acceleration ä/a as a function of α for φ = 1.66. For numerical simplicity we choose the values −d = σ = 1

.

these equations by c/β, where β =
√

4π
3V lP and V = Vphys(t)/a3

phys(t), where aphys is the physical scale
factor and Vphys is the physical volume of the spacelike section. Then we obtain

H = α̇ = f(α, φ)
VP

Vphys(t)tP
, (45)

φ̇ = g(α, φ)
VP

Vphys(t)tP
, (46)

where

f(α, φ) =
φσ2 sin(2dφ)

2[cos(2dφ) + cosh(σ2αφ)]
− d, (47)

g(α, φ) = −ασ
2 sin(2dφ) + 2d sinh(σ2αφ)
2[cos(2dφ) + cosh(σ2αφ)]

, (48)

VP ≡ 4π
3 l

3
P is the Planck volume, and tP is the Planck time. We will compare this quantum cosmolog-

ical model with the original classical free scalar field model, classically equivalent to stiff matter, with
flat spatial section, suplemented with a cosmological constant as an alternative source for accelerated
expansion. This classical model satisfies the Friedmann’s equation

H2 =
8πG
3
cφ
a6

+ Λ = H2
0 [(1− ΩΛ)(1 + z)6 +ΩΛ], (49)
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FIG. 4: The quantum potential as a function of φ and α. We see that it is different from zero in the region of

positive acceleration. For numerical simplicity we choose the values −d = σ = 1

.
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FIG. 5: The quantum potential as a function of α for φ = 1.66. We see that it is different from zero in the region

of positive acceleration. For numerical simplicity we choose the values −d = σ = 1

.
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where cφ is a constant such that the energy density of the field is ρφ = cφ/a
6, ΩΛ = Λ/(8πGρcrit),

ρcrit is the critical density, and H0 is the Hubble’s paremeter today. The deceleration parameter today,
q0 = −ä/(aH2

0 ), is given by

q0 = 2− 3ΩΛ. (50)

To obtain the luminosity distance as a function of z one can calculate numerically the integral

dL = (1 + z)
∫ z

0

dy
H(y)

=
(1 + z)
H0

∫ z

0

dy√
(1− ΩΛ)(1 + y)6 +ΩΛ

. (51)

As a power series, it can be written as

H0dL = z + z2
(
−1
2
+

3
2
ΩΛ

)
+ z3(1− ΩΛ)

(
1
2
− 9

2
ΩΛ

)
+ ..., (52)

In the quantum cosmological problem, we have to deal with Eqs. (45,46). There are four arbitrary
parameters: σ, d and two coordinates in the (α, φ) plane, φ0 designating the particular trajectory in
Fig.(1) which represent our Universe, and α0 designating the present moment in a particular trajectory.
The present value of the Hubble’s paremeter in a particular trajectory coming from Eq.(45) is given by

H0 = f(α0, φ0)
VP

V 0
phystP

(53)

where

f(α0, φ0) ≡ φ0σ
2 sin(2dφ0)

2[cos(2dφ0) + cosh(σ2α0φ0)]
− d (54)

In order to obtain a model similar to our present Universe whith H0 
 10−18s−1 and V 0
phys ≥ 1082cm3,

one must have

f(α0, φ0) ≡ φ0σ
2 sin(2dφ0)

2(cos(2dφ0) + cosh(σ2α0φ0))
− d 
 10120 (55)

This huge number can be obtained by choosing a very large value for σ2 (the gaussian in the wave function
would be almost flat indicating no preference in the choice of k, or physically, no prefered choice in the
strength of the initial explosion), a very large value for |d| (a gaussian centered in a very negative value
of k, or a choice for a very strong initial explosion), or trajectories passing very close to the node point,
where the denominator of the above expression approaches zero.
In the case of a large value of σ2, choosing α0 
 1/σ4 
 0, one can check from Eq.(42) that

q0 = − ä
a
|0 1
H2

0


 2 cos(2dφ0) + 1
cos(2dφ0) + 1

(56)

. For 2dφ0 = 2nπ + x with x ∈ (2.145, 2.15) one has −0.21 < q0 < −0.17. Note that, for the classical
model with ΩΛ = 0.73 [22], q0 = −0.19 (see Eq. (50)).
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The supernovae measurements relate the luminosity distance dL with z. Hence, it would be instructive
to compare the quantum cosmological luminosity distance dq

L(z)

dq
L = (1 + z)

∫ z

0

dye3α(y)

f(α(y), φ(y))
β

c
, (57)

with the one given in Eqs.(51,52). We will expande G(y) ≡ e3α(y)/f(α(y), φ(y)) in powers of y around
y = 0 (today)

G(y) = G(0) + y
dG
dy

|y=0 +
y2

2!
d2G

dy2
|y=0 +

y3

3!
d3G

dy3
|y=0 + ... (58)

up to third order. The operator d/dy can be written as

d
dy

= − 1
(1 + y)

d
dα

= − 1
(1 + y)

(
∂

∂α
+

dφ
dα

∂

∂φ

)
, (59)

where dφ/dα can be easily obtained from Eqs.(38,39) and α = ln(a) = − ln(1 + y) + const.. Recalling
that

H0βa
3
0

c
=
H0a

3
phys

cβ2
=
H0a

3
physlP 3V
4π

=
H0tPVphys

VP

 10120, (60)

we obtain

H0d
q
L =

10120

f0

[
z + z2

(
1 +

f0
2a3

0

dG
dz

|0
)
+ z3

(
f0
2a3

0

dG
dz

|0 + f0
6a3

0

d2G

dz2
|0

)
+

+z4
(
f0
6a3

0

d2G

dz2
|0 + f0

24a3
0

d3G

dz3
|0

)
+ ...

]
. (61)

Comparing Eq.(61) with Eq.(52), one can see that f0 must be of order 10120, as we have already
concluded in Eq. (54). Here we will choose |d| as the big number to make f0 
 10120, and |α0| = γ/|d|,
γ being an arbitrary number of order 1. This is to assure that dnG

dzn |0 is of order 1 or less for any n ≥ 1,
which is not the case if we choose σ  13. Using Eq.(59), we can calculate the coefficients in Eq.(61),
obtaining

H0d
q
L 
 z − 1

2
z2 + z3

{
1
2
+

φ2
0σ

4

6[1 + cos(2dφ0)]2

}
+

+z4
{
−1
2
− φ2

0σ
4

3[1 + cos(2dφ0)]2
− φ3

0σ
6γ sin(2dφ0)

2[1 + cos(2dφ0)]4

}
+ ... (62)

In order to obtain Eq.(62), we have used that |d| >> 1 and |α0| = γ/|d| is very small4.

3 In this case, the series expansion of Eq.(57) is not meaningful at lower orders, and the integral must be performed by
other methods.

4 Note that the first correction to the classical model without cosmological constant (see Eq.(52) with ΩΛ = 0) come in
the cubic term. The correction to the deceleration parameter at this particular moment is negligible with this choice of
parameters. However, the corrections in the cubic and forth terms can be adjusted in order to make the curve obtained
from Eq.(62) close to the corresponding curve obtained from Eq.(51), as we will see.
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FIG. 6: The luminosity distance as a function of redshift. The thin line curve corresponds to the quantum model,

the dotted curve is for the classical model with a cosmological constant, and the thick line curve is for the classical

model without cosmological constant.

There are many values of φ0, σ0 and γ which makes the graphic of H0d
q
L similar to the one obtained

from Eq. (51) for ΩΛ = 0.73. For instance, for γ = 1 we set 2dφ = 0.64± 2nπ and the coefficients of z3

and z4 become, respectively, 2.6 and −2.25.
In Fig.6, we show a plot of H0dL(z) given by Eq.(51), H0dL(z) given by Eq.(51) with ΩΛ = 0, and

H0d
q
L(z) given by Eq.(62) with the coefficients of z3 and z4 being equal to 2.6 and −2.25, respectively.

Note that for small values of z they are close but, for intermediary values of z, the quantum dq
L(z)

remain close to the cosmological constant dL(z) while both separates of the pure stiff matter dL(z). Of
course, for bigger values of z, the quantum dq

L(z) may separate strongly from the cosmological constant
dL(z). Hence, quantum comological effects may mimic a cosmological constant in some region but not
everywhere. The two models are distinguishable.

V. CONCLUSION

We have studied gaussian superpositions of positive and negative frequency mode solutions of the
Wheeler-DeWitt equation corresponding to a scalar-tensor model in minisuperspace in the case of flat
spatial section. According to the Bohm-de Broglie approach to quantum cosmology, the quantum trajec-
tories representing dynamical universes evolving in time were studied. We have shown that it is possible
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to have universes which arise classically from a singularity, undergo a positive acceleration in the middle
of its expansion, and recover its classical behaviour for large values of the scale factor. We have shown
that this positive acceleration, which can be made compatible with observations for many choices of
initial conditions, is due to a quantum cosmological effect driven by the quantum potential, according
to the BdB interpretation of quantum cosmology. In this way, it may be possible to explain the positive
acceleration suggested by the recent measurements of high redshift supernovae without postulating a
new contribution to the energy density of the Universe as the dark energy. Note that this acceleration
is caused by quantum effects not only present in the scalar field, as described in Ref.[15], but also in
the geometry itself. We consider the Universe as a quantum system no matter its size. It is possible to
have small classical universes and large quantum ones: it depends on the state functional and on initial
conditions [9, 14].
The quantum cosmological explanation for the acceleration of the Universe presented in this paper

needs to be studied further, not only because it would be an alternative explanation for a misterious
behaviour of the present Universe without appealing to any new form of energy, but also because it is a
possibility of an observable physical effect of quantum cosmology. Furthermore, quantum cosmological
explanations may be suported by symmetry principles which are absent in the classical domain. As
an example, we have seen that the huge cosmological numbers may be explained by some ”democracy”
principle stating that any value of the velocity of expansion (the constant k) is equally good (σ is very
big, the gaussian is almost flat). Of course, more elaborated models taking into account relevant matter
sources like dust and radiation must be studied. This will be the subject of our future investigations.
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