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Abstract

Density functional calculations were performed to investigate the species formed by the
interaction of an Fe atom and ammonia. The Discrete Variational method was employed
and total energy calculations were performed for several configurations. It was found that
the ground state is a °E, with Fe configuration ~3d®€4s'!; the Fe-N interatomic distance
was determined to be 1.984. The hyperfine parameters isomer shift, quadrupole splitting
and magnetic hyperfine field were also calculated, and compared to reported experimental
values obtained by Mossbauer spectroscopy in frozen ammonia.
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1 Introduction

Transition metals may absorb ammonia strongly on their surfaces, even at room temper-
ature. The heterogeneous catalytic synthesis and decomposition of ammonia is a subject
of great technological importance [1}. Thus the understanding of the bonding mechanism
between transition metals and ammonia is desirable. On the other hand, the technique
of isolation of atoms and small molecules in frozen gases allows the use of solid-state
techniques such as Mdssbauer spectroscopy to probe charge and spin distributions. Ac-
cordingly, an investigation of Fe isolated in solid ammonia has been reported; the reaction
product FeNH; was identified, and Mdssbauer hyperfine parameters were measured [2].
However, it became evident that quantum chemical calculations would be needed to better
understand the origin of the values obtained.

In this work, we report Density Functional Theory (DFT) calculations (3] for the
species FeNH3;. The method employed is the Discrete Variational (DVM) [4]. We de-
termine the ground state by performing total energy calculations for several electronic
configurations. The charge and spin distributions are analysed. Finally, the Mossbauer
hyperfine parameters isomer shift (§), quadrupole splitting (AEQ) and components of
the magnetic hyperfine field (Hp) are calculated and compared to experiment.

This paper is organized as follows: in Section 2 we briefly describe the theoretical
method; in Section 3 we discuss the electronic structure, in Section 4 we report results
for the hyperfine parameters and in Section 5 we summarize our conclusions.

2 Theoretical Method

In this section we describe briefly the main features of the DVM method [4] and give
details of the calculations. The set of Kohn-Sham equations is solved (in Hartrees) [3]:

[~1/292 + V(7) + VAP (7) = €10 () 1)

In egs. (1), the Coulomb potential V, includes electron-nucleus and electron-electron
interactions, and V7, is the spin-dependent local exchange-correlation potential of spin &,
as derived by von Barth and Hedin [5]. The Coulomb and exchange-correlation potentials
are functionals of the electron density p,

po(7) = Zj 1| o (F) 2 . (2)

where n,, is the occupation of molecular orbital ¢;,, which is allowed to be different for
each spin ¢ in these spin-polarized calculations.
The molecular orbitals are expanded on a basis of numerical atomic orbitals

$io(7) =) xulFICh )

obtained with atomic self-consistent-field local density calculations.
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In the Discrete Variational scheine, minimization of the error functionals associated
with each orbital ¢;, in a three-dimensional grid of points leads to the secular equations:

((H] - [E][SDIC] =0 4)

which are solved self-consistently until a desired criterion is met. In egs. (4), [H] is
the hamiltonian matrix, [S] the overlap matrix and [C] the matrix of the eigenvectors,
all the matrix elements being summations over the three-dimensional grid of points. In
the present calculations, convergence was carried out to < 10~* in the charge and spin
densities.

In order to calculate the Coulomb potential by one-dimensional integrations, the
molecular charge density is fitted to a multicenter multipolar expansion [6]:

H
p(r) = Z d; ) 'Y ConBn(n)Y () (5)

The summation is over a set | of atoms equivalent by symmetry, Ry are piecewise
parabolic radial functions centered at atoms » and A distinguishes different basis functions
of a given £ (j=L,£, A ,N). This expansion may be carried out to any degree of accuracy in
the fit with the “true” density; in the present calculations, partial waves up to £ = 2 were
employed for Fe and N, and £ = 1 for H; the least squares error of the fit of p was ~ 0.04.

The total energy F is defined as the expectation value (sum over integration mesh) of
the energy density e(1{ R, }). In order to control numerical errors, the actual computation
of E is made by point-by-point subtraction of a reference system of non-interacting (NT)
atoms, as in the basis, located at the nuclear sites fi,:

E = (e(F, {R.}) — V(7 {R.))) + EM! (6)

Here we employed the algorithms of Delley and Ellis [7] to calculate E.

The variational basis set included all inner orbitals, e.g., no “frozen core” approxima-
tion was made. The valence functions included 3d, 4s and 4p on Fe, 28, 2p and 3d on
N and 1s, 23 and 2p on H. The self-consistent process was initiated with basis functions
from the neutral atoms; after convergence, the basis was improved by generating atomic
functions for atoms with configurations similar to those of the molecule. These are ob-
tained by a Mulliken-type population analysis, in which the overlap population is divided
proportional to the coefficients of the atoms [8]. This basis optimization process is re-
peated several times, until the configuration of the atoms in the molecule is approximatly
the same as in the basis.

The three-dimensional grid of points was divided in two regions: the volume inside
spheres placed around each nucleus, where precise polinomial integrations are performed
on a regular grid [9], and elsewhere in space, where the pseudo-random Diophantine point
generator is employed [4]. The spheres had radius: 1.8 a.u. (Fe), 1.0 a.u. (N) and 0.5 a.u.
(H). A total of 12,700 points were used inside the spheres, and 2,200 Diophantine points
elsewhere.
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3 Electronic Structure

We performed self-consistent calculations for seven configurations derived by distributing
8 electrons among the spin-up and spin-down highest-energy valence molecular orbitals,
originating mainly from the valence orbitals of Fe. In Cj, symmetry, the 3d,(z?), 4s
and 4p,(z) orbitals of Fe transform as the a; representation, and the 3d; (x*-y®xy), 3d,
(xz,yz) and 4p, (x,y) transform as the e representation. Here the symbols o, 7 and § are
employed in analogy to the linear molecules. For all configurations, the spin polarization
resulted in a splitting of the spin-up and spin-down levels of a few eVs; thus the spin-up
levels, of lower energy, were kept fully occupied.

In Table I are given the configurations considered, charges, Mulliken-type populations
and magnetic moments. These last (in Bohr magnetons) are defined as the difference
between the spin-up and spin-down populations. In Fig. 1 are plotted the total energies
for the same configurations (relative to an arbitrary origin) for different Fe-N distances.
The ammonia N-H interatomic distance and H-N-H angle were kept constant and equal
to the experimental values in the gas phase (1.00 A and 107.2°) [10]. Determination of
the N-H distance for the free NH3 molecule, employing the same method described here,
showed excellent agreement with experiment [11].

It is seen from Fig. 1 that the configurations with the lowest energies are 2, 8 and 3’.
These configurations are constructed by doubly occupying the 9a; orbital, predominantly
Fe 3d(z?), and placing one electron in 10a;1, predominantly 4sf. The orbitals 4ef and e,
almost purely 3d(xz,yz) or 3d(x?-y?,xy), are also doubly occupied. The subtle difference
between these three configurations is in the occupied spin down orbitals of e symmetry. In
configuration 2, the singly occupied orbital 4e] is predominantly 3d(xy,x3-y?); however, a
non-negligible admixture with 3d(xz,yz) (17.4%) is present. In configuration 3 the singly-
occupied orbital 5e} is almost totally 3d(xy,x?-y?) (98%) and in configuration 3’ (for
which only a small interval of Fe-N distances was explored due to difficult convergence),
the same singly occupied orbital is ~100% 3d(xz,yz). In 3 and 3’ the lower-energy 4e|
is unoccupied.

The rationale behind the energy ordering 2<3<3’ is the following: configuration 3
has a slightly lower energy than 3’ since occupation of the d; orbitals, localized on a
plane perpendicular to the Fe-N axis, leads to a smaller repulsion with the N lone pair
on the same axis, as compared to d,. Configuration 2, with lower energy still, presents
a mixture in orbital 4e| of d5 and d., thus lowering the energy still by diminishing the
interelectronic repulsion inside the 3d orbital. This configuration may be viewed as the
Density Functional counterpart of a Configuration Interation calculation, formed by a
mixture of two configurations, one with ds and the other with d, occupation. It will be
seen further on that the mixture of d, and d; in orbital 4e| will prove essential in the
interpretation of the measured quadrupole splitting.

All other configurations have significantly higher energies at all distances; thus the
ground state of FeNH; is determined to be a °E with configuration 2. It is interesting
to notice the similarity with the ®E ground state of the ion FeNHY, as obtained with
a modified coupled-pair functional (MCPF) calculation [12]; in fact, our ground state
configuration corresponds approximatly to that obtained for the positive ion, with the
addition of an electron to the 9a;] (o) orbital.
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As seen in Table I, the Fe atom has a small positive charge in all cases, which is
largest for the lowest-energy °E states (+0.22). Thus delocalization of charge towards the
N stabilizes these configurations. The actual magnetic moment on Fe in the quintuplet
ground state is somewhat smaller than 4 since, as may be seen in the Table, a small part
of the spin is delocalized towards the Nitrogen.

From the Fe populations, it may be observed that the configuration in all cases is near
3d”4s?, more precisely 3d534s!124p%™ for the ground state. This means that dissociation
would lead to Fe 3d"4s! (°F) instead of the Fe ground state 3d®4s? (°D) [13]. This may be
understood as the need to promote approximatly one 4s electron into the more compact
3d orbital, to minimize repulsion with the N lone pair. It is interesting to observe that
even for the two configurations in which the 10a; T orbital (mostly Fe 4s) was not ccupied
(4 and 5), the 4s population is near 1.0. In these cases, the 9a, | orbital (partly 4s) is
occupied, resulting in negative (antiferromagnetic) 4s orbital magnetic moments on Fe.
The 4p populations obtained are very small in all cases.

As seen in Fig. 1, the equilibrium distance for the °E ground state is 1.98A4. For all
configurations except 4 and 5, the minimum lies at distances slightly smaller than 2.04. In
the case of 4 and 5, the smaller equilibrium distances obtained are due to non-occupancy
of the diffuse 10a, T orbital. Interatomic distances obtained with Density Functional cal-
culations compare well with experiment, being usually more accurate than Hartree-Fock
[14]; however, the local density approximation in the exchange and correlation potential
results in equilibrium distances which are usually underestimated by an average 0.05A
[15].

In Table II are displayed the d,, dr and ds populations. We may notice the d,-
ds mixture, present in configuration 2, and practically absent in all others. Another
interesting feature is that for the configurations 2,8 and 8’, with 3 electrons in 9a; and
10a,, only have d, populations of 1.6-1.7. This is the result of mixing with the 2s and 2p
orbitals of N, and consequent charge transfer towards the latter.

In Table III is given the valence orbitals population analysis for the °E (configuration
2) ground state. It may be observed that the orbitals of a; symmetry are responsible for
the 3d-4s hybridization on Fe, as well as mixture with N 2s and 2p.

In Fig. 2 are plotted the one-electron energy levels of predominantly Fe 3d nature, for
the E ground state (configuration 2), as a function of the Fe-N distance. The spin-up
and spin-down e-symmetry orbitals of predominantly d(xy, x?-y?) character become more
stable than their counterparts at short distances, due to increased repulsion along the z
axis and resulting increased antibonding character of the d orbitals with z components.
For the same reason, the diffuse 4s (10a,1) orbital has the highest energy at short distances,
but is destabilized rather steeply as the Fe-N distance is increased.

4 Mossbauer Hyperfine Parameters

The isomer shift § is defined as {16]
§ = 2/3e*nZS'(Z)A(r*})[p4(0) — ps(0)] = A p(0) (7

where 5'(Z) is a correction for relativistic effects, A{r?) the variation of the mean square
radius of the nucleus between excited and ground states of the Mdssbauer transition, and
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the electronic term in brackets is the difference between the density at the nucleus in the
absorber and source. The density p(0) is calculated with the use of Eq. 2. In a non-
relativistic calculation, only electrons pertaining to the totally symmetric representation
contribute to p(0). The quadrupole splitting AEQ for *Fe in axial symmetry is given by
[16]: :

AEQ = 1/2¢%¢Q (8)
where @ is the quadrupole moment of the nucleus with spin I=3/2 in the excited state of
the 14.4 keV Mossbauer transition and q is the electric field gradient [17]:

g = —'/,o(af"')(3z2 — r?)/r8dr + Z Zq(3z: - rg)/r: {9)

The first term is the electronic contribution, calculated in the DVM method as a sum
over the 3-dimensional grid, and the second term is the point-charge contribution of the
neighbor N and H nuclei.
The contributions to the magnetic hyperfine field [18] are the Contact or Fermi H,,
given by:
H, = 8% /30.115[p1(0) - p1(0)] x 1/2 (10)
where g. is the electronic spectroscopic factor, gp the Bohr magneton and the term in

brackets is obtained with Eq. 2. The dipolar field Hp is defined as [19]:

Ho = guin [ () = PUANES" = )/rod x 12 (11)

where the densities are given by Eq. 2 and the integral is a sum over the 3-dimensional
grid. Finally, the orbital contribution Hy, is defined as:

Hy = gumn [ o(F)Elr*)ar (12)
so that the total measured hyperfine field Hp is:
Hp=H.+ Hp + H;.

In Table IV are shown the results obtained for the Mdssbauer parameters described
above. To derive 6, we first performed calculations for free Fe atoms and ions, for which
§ was measured in frozen gas matrices [20], also with a Density Functional self-consistent
method. The results are plotted in Fig. 3 (only 3s and 4s contributions are considered,
since p(0) for the inner electrons do not show significant changes for different configura-
tions and thus cancel out). The negative slope is due to the negative sign of A{r?} for the
14.4 keV transition of 5"Fe (see Eq. 7). From this plot, the value « = —0.228 mm/s.a;?
is obtained, well within the range of “acceptable” values for Fe {21, 22]. Employing the
equation derived for the line in Fig. 3 (6§ = —0.228p(0) + 33.638), the numbers for 6 given
in Table IV were obtained, using the molecular values of p(0).

For all configurations, & is much higher than would be obtained for Fe 3d®4s?, as may
be seen from Fig. 3. The values are clustered slightly above the one for Fet! 3d%4s'. This
is coherent with the Fe configurations in Table I (~3d®%-704g!): the smaller charge on
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Fe, due to larger 3d population, decreases p(0) (increases §) due to shielding of the 3s and
4s electrons by the 3d.

The values of AEQ are also shown in Table IV. Since the sign of the experimental value
was also determined [2], this constitutes a valuable test for the °E ground state found.
In fact, electrons in 3d orbitals pertaining to different spherical harmonics differ largely
in both sign and magnitude of the electric field gradient ¢ [16]. This may be verified in
the large spread of calculated AEQ values for the different configurations, which differ
among themselves in the occupation of 3d orbitals.

The value of @ utilized to calculate AEQ was 0.20b [16]). Although there is always a
degree of uncertaining in any chosen value, one may expect this not to be far from the
exact one. It may be thus seen that the °E ground state configuration 2 is indeed the
one that gives the calculated AEQ closest to experiment. Configuration 2, as discussed
previously, is a mixture of 3 and 8’, for which AEQ has the right sign but is too small
and too large in magnitude, respectively. All other configurations give AEQ very far from
the experimental value.

As for the magnetic hyperfine field, unfortunatly it was not possible to determine
the sign experimentally, the two possible values being +800 or -900 kOe [2]. The values
calculated and displayed in Table 1V are the sum of the Contact field H. and the dipolar
field Hp. They are all very large and with positive or negative signs. Positive fields H,
correspond to configurations where the 10a, T (4s) orbital is occupied; since the counterpart
10a, ] is not occupied, the positive field generated is very large (see Eq. 10). The core
field H, of Fe (1s, 2s and 3s) is negative [23], but not large enough to counterbalance the
positive contribution of 10a;{. The large negative values of H, for configurations 4 and
5 stem from the negative magnetic moments on the 4s orbital (larger 4s| population)
which results in negative valence contributions to H,, added to the negative core fields.
The orbital field Hy (Eq. 12) could not be obtained with the present calculations, since
it requires the inclusion of the spin-orbit interaction. Without this term, the direction of
7 relative to the spin remains undetermined. We calculated the maximum magnitude of
Hjy, utilizing Eq. (12), for the SE ground state; this corresponds to £ and 3 § being aligned.
The number found was £436kQe; if the posivitive value is added to +568 kOe (H.+ Hp),
the result would not be far from the experimental +800kOe. For configurations 5 and 6,
Hp, = 0 due to the non-degenerate ground state {18].

It must be kept in mind, when comparing theoretical values with experiment, that
the calculations did not take into account the effect of the environment of solid ammonia
upon the measured Méssbaver hyperfine interactions.

5 Conclusions

The theoretical investigation of FeNHj, performed with the Density Functional Discrete
Variational Method, demonstrated that the ground state is a ®*E. The pertaining con-
figuration presents a small mixture of Fe 3d(xz,yz) with 3d(xy,x*-y?); this proves to be
essential in understanding the value of the measured quadrupole splitting. The config-
uration on Fe for the ground state is ~3d%64s’!. The value for the isomer shift found
is not far from the experimental value, and confirms the Fe configuration obtained. The
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calculated quadrupole splitting compares well with experiment. The contact magnetic hy-
perfine field for the ground state is large and positive, due to the unbalanced occupation
of a spin-up molecular orbital of predominantly 4s character.
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Figure Captions

Figure 1 - Total energies of several configurations of FeNH; as a function of the Fe-N
interatomic distance. Energies were shifted by an arbitrary value. Numbering of
configurations as in Table I.

Figure 2 — Energies of the valence molecular orbitals of FeNHj; as a function of the Fe-
N interatomic distance, for the °E ground state (configuration 2). Orbitals were
labelled according to the major 3d or 4s contribution. Fe-N distance=1.98A.

Figure 3 — Isomer shifts versus electron density at the nucleus (3s and 4s) for Fe atom
and ions. Values of § from Ref. 20, relative to Fe metal.

Table Captions

Table I — Configurations, states, charges, magnetic moments and populations for FeNHs,
for calculations at the equilibrium distances.

Table II - o, » and é 3d populations for configurations of FeNH;. Configurations num-
bered as in Table I; calculations at the equilibrium distances.

Table III - Population analysis for the valence orbitals of the °E ground state (configu-
ration 2) of FeNH;. Fe-N interatomic distance=1.98A.
a) Only populations > 5% were included. Orbitals adding > 100% include small
negative H 2p populations, due to strongly antibonding nature.

Table IV - Calculated and experimental Mossbauer hyperfine parameters of FeNHj3, for
calculations at the equilibrium distances.
a) From Ref. 2; § relative to Fe metal at room temperature;
b) From Ref. 24; § relative to Fe metal;
¢) Theoretical values of Hy = He + Hp.
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Table |
Configuration States Charge Magnetic Moment {up)| Fe populstions | Fe orbital moments (sg)
Fe N Fe N
(1) {1)9a]10al4e?5e? {PA;4°A4°E |+0.16 -1.97 3.76 0.1% 3d 6.94 2.92
(1 )}4e* ¢’ 4s 084 0.79
& 007 0.06
(2) {1)9a!10a]}4e?5¢2 'E 4022 -198] 3.77 0.20 3d 663 3.28
(1)9a}4e! (xy,x-¥%) ds 1.12 0.47
4 004 0.04
(3) (1)95110al4e35¢? SE +0.22 -198| 378 0.20 3d 664 3.28
(1)92}5e! (xy.x>-y?) T4 11 0.47
4p 005 0.04
(3") (1)9a}10a]4¢%5¢* E +0.22 -197| 3M 0.23 3d 658 3.32
(1)9a35¢* (yz,xz) 4 118 0.40
4 0.4 0.03
{4) (1)9a)4e’5¢? PAy+3A3+%E |+0.03 -1.81 1.99 -0.05 3d 6.93 249
(1)9al4e'5e! 4+ 103 0.48
i 002 -0.02
(5) (1)9sl4c?5e? 34, +0.12 -1.90 | 1.95 -0.07 d 10 2.63
(1)9215e*(xy,x*-y?) 45 085 -0.66
4 002 -0.01
(8) (1)9al10alde?se? A; +0.17 -2.00 | 376 0.13 3d 695 2.94
(1)5e*(xy,x-y*) s 083 0.78
4 007 0.06
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Table II

Configuration

3d population

d(Z) di(xz yz) ds(xy,x"-y*)

Doen i oo

1.00
1.66
1.66
1.62
1.02
1.14
1.02

2.95
2,17
2.01
2.99
2.95
2.00
1.99

2.98

2.81

2.97
1.99
2.96
3.88
3.92

CBPF-NF-022/94
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Table IIT

Orbital Energy {eV) Occupation Population analysis® (in % of one electron)

Bar 1 -10.72 1 13 Fe d(z%), 5.5 N 2s, 87.9 N 2p(2)

8a |  -10.22 1 6.6 Fe d(z%), 6.6 N 2s, 94.6 N 2p(2)
4e 1 -6.32 2 97.9 Fe d(xz,yz) '
5e 1 -6.28 2 98.6 Fe d(xy,x?-y?)
9a; 1 -5.85 1 79.1 Fe d(z?), 8.4 N 2p(z), 5.2 Fe 45
9a; | -3.62 1 28.7 Fe 4s, 62.4 Fe d(z?)
4e | -3.59 1 17.4 Fe d(xz,yz), 81.9 Fe d(xy,x%-y?)
10a,1  -3.44 1 91.9 Fe 4s, 5.9 Fe 4p(z), 5.9 Fe d(z?)
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Table IV
Configuration ] AEQ H, Hp, HP
(mm/s) (mm/s) (kOe) (kOe) (kOe)
1 +0.74 +0.16 +1224 494 +1318
2 +0.42 -1.66 +539  +29 4568
3 +0.43 -0.59 +552 466 +618
3 +0.32 -1.27 +438 -167 4271
4 +0.50 +0.64 -810 -7 -817
5 +0.66 +6.40 -1088 4248 -840
6 +0.77 +6.81 +1193 4333 +1526
Experimental  +40.67() -2.0(a) +800

or
+0.60(5)®  |1.90(5)|® _900(=)
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