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ABSTRACT

We consider in the one-dimensional first-neighbour spin- %T
magnetostrictive XY model (with crystalline degrees of freedom
assumed three-dimensional) different X and Y spin coupling constants.
This anysotropy leads to a quite rich phase diagram for the di-
merizing spin-Peierls instability; in particular it provides

the possibility of a first-order phase transition at vanishing

external magnetic field, thus constituting a convenient theore-
tical framework for the discussion of substances like thealkali-

TCNQ salts.



Since Chestnut's discussion[]] in 1966 of the connection between
the metallic Peierls instability and what is now called the "spin-Peierls
instability" (SPI), a certain amount of experimenta]EZ—QIand1meo-
retical[]0'23]effort has been dedicated to the study of structural phase
transitions in systems which are magnetically quasi-one-dimensional although
three-dimensional in what concerns crysta]]ine interactions. The system typi
cally presents at high temperatures an uniform (or disordered) phase (equi-
distant atoms along the chain) and, at Tow temperatures, a more complex
( or ordered) phase (a structurally dimerized or even polymerized chain if a
non vanishing magnetic field is present). As we shall see further on, if
we include spin anisotropy in the system the picture becomes quite more com
plex than just outlined. Among the substances which present SPI (or sup-
posed so) we can mention[z'gj TTF-BDT and several alkali-TCNQ salts; 1in
what concerns the latter, the K, Rb and NH4 salts present[z], at vanishing

external magnetic field, a latent heat thus characterizing a first order

phase transition (whereas the Na and CS salts present a second order one) .
This feature is, to the best of our knowledge, absent from all the theoreti
cal frameworks that have been proposed until now for the SPI in the stan-

Y[10,11,13,15,16,20,23]

dard magnetostrictive X model; the same holds for the

SPI in the magnetostrictive Heisenberg mode1[-_]2’]4’]7’]8’21’22l

with the pos
sible exception of the (Hartree-Fock) approximate treatment of Takaoka and
Mot:'izuki[»—zzjJ who disagree with Beni's conc]usions{12].Herein we exhibit on
the spin- é;-XY model (which presents the advantage of being exactly solva-
blein what concerns the magnetic degrees of freedom) that spin coupling ani-
sotropy is a mechanism which provides the possibility for the phase transi-
tion to be a first order one.
We assume in the present paper that the ordered phase is(at

Teast infinitely close to the critical frontier) a purely dimer

rized one, in spite of the possible spin coupling anisotropy .




This point is a delicate one and deserves further comments.
Pincus[10] discussed the isotropic magnetostrictive spin -
%T XY antiferromagnetic linear chain and showed that, at vap
ishing temperature, the system becomes unstable with respect
to dimerization. Beni and P1'ncus[”---I exhibited next that this

instability leads to a second order phase transition between

the uniform and dimerized phases, under the assumption that

those two phases are the only ones to be considered. Dubois
and Carton[13] proved next (for both ferro and antiferromagnetic

cases) that this assumption was right at Teast immediately below

the critical temperature TC (more precise]y they proved that coming
from high temperatures the order which appears at Tcis indeed a dimeri;g
tion). The validity of the assumption was recent]y[zj]comﬂuded
by exhibiting that for all temperatures below TC, no other

contribution to the structural order appears than the pure di

merization one. The whole picture is drastically altered in the presence
of an external magnetic field (which plays the role of the chemical
potential for a fermionic gas): in this case complex polymeriza
tions occur[15’]€] which can even be incommensurate with the
crystalline parameter and whose origin is the energetic dis-
placement (as a whole) of the relevant fermionic spectrum with
respect to the chemical potential. As we shall see further on
no such energetic displacement occurs in the presence of spin
coupling anisotropy (let us stress that this anisotropy privi-
leges a direction but not a sense in the spin space, whereas a

magnetic field privileges both),'therefore the central assump-



tion of this work becomes very plausible if not proved (the
complete proof along the lines of Ref.[23] is almost imprac
ticable because of its operational length).

The magnetic contribution to the Hamiltonian of the spin
- %% XY cyclic linear chain (with unitary crystalline param-

eter) is given by

Y
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where, for future convenience, we have separated the interactions
into odd and even ones and y>0 by convention. We remark that
the isotropic XY(y=0) and the Ising (y=1) models are recov-
ered as particular cases. Let us recall at this point a con-
clusion due to Dubois and Carton[]3] concerning vanishing tem
perature and y<l: the system is in its ordered phase (pre-
sumably dimerized) if Y<Y¢s and is in its disordered phase(uni-
form) if Y>Yes Yo being a critical anisotropy. The present
extension (to all values of y and all temperatures) will con
firm their conclusion., Before going on Tet us indicate an inter-
esting relation between the models with y<1 and those with
y>1. If we perform on the even sites the following canonical

transformation:

X _ <X
525 = 525
Y __cty
S35 =-S5 (2)
Z __caz
SZJ SZJ

we immediately verify that



Hm(JO’JO’Y) = Hm(Y'Joa'Yj_os]/Y) (3)

We shall come back to this Tater on; however we canright now
state that if Ye is a critical anisotropy then 1/ycis crihcal
as well,

Let us now go back to Hamiltonian (1): through the stan-
dard Jordan-Wigner transformation followed by a Fourier trans
formation and a final diagonalization we may rewrite the Ha-
miltonian as follows:

H 1

m _ ot " 1 f_n
—EekUkUk+EekaVk+2E(ekek) (4)

where k runs in the first Brillouin zone associated to a di-
merized chain (i.e. -w/2<k<n/2), U; and Uy (V; and Vk) are cre
ation and annihilation operators associated to fermionic qua-

si-ho]esL24] (quasi-particles), and

Y+n
1 = 2 0 2 22 1/2
e = -(1+yn,) [cos?k + ("T:?ﬁ;) sin?k] (5)
Y-Nn
] — 0 . . 1/2
ep = (T-vyny) [cos?k + ("Tf?ﬁ;>2 sin2k] (6)
1
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ST (7)
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We remark that e, (vsng )= e (-v,=n, )= —e(-vang)= -ef(y,-n ) and

also that Egs.(5) and (6) remain invariant under the trans-



formation YN, i.e. the influence of vy on the spectra is
indistinguishable from the influence of Ny (thus supporting
the assumption of dimerization). The magnetic free energy Fm
is given, at vanishing temperature, by

2
_\] 1 0" __N\] Tl'/ | 1
R e f dk(-c)+e}) (9)

0
and, for finite temperature T, by the general expression

2Nk T (/2 Jey Jey
Fo= - —— f dk [£n(2cosh ) +Lnf2cosh »—](10)
. 2kgT B

To the magnetic contribution we must add the elastic free
energy F, which, contrarily to Fp, is going to be treated
only approximately (within the adiabatic approximation[25’zq

which roughly takes into account the crystalline three-dimen

sionality of the real substance); we have that

Fo = Fe(n=0)+ 2N|5-(2n)%+ 7r(2n)“] (C,D>0) (11)

o

where n is the dimerization or order parameter (the distances
between spins are now alternatively (1+2n) and (1-2n)) and
where higher order terms have been neglected( there is non’term
because of symmetry). The total free energy F is given,through

Egs. (10) and (11), by

F=F +F (12)

If the exchange integral (between nearest neighbours) de



pends smothly on distance we will have (by neglecting higher

order terms)
Jo= 3(0)+23'(0)n +23"(0)n? + 53" (0)n? + = FV(o)n* (13.a)
3" (0)n>+ 23V (0)n*(13.)

and, by using Eqs. (7) and (8),

_ 2d' (0) ndi +[ 27" (0) _ ZJ"‘(O):[nz} (14)
o J(0) 33'(0) J(0)
and
IV
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I = 370 1+ 700) nt o+ — 700 n (15)

By introducing the reduced free energies per site

fi= F4/NJJ(0)] (i= m,e) (16)

we obtain the total reduced free energy per site
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where
t

1

kgT/13(0) ] (18)



and
K = ClJd(o)]|/[3'(0)]*> (19)

If we expand f in (even) powers of n and vanish the coefficient
of n? we obtain the critical surface in the space t-y-K (see
Fig.1). In particular in the plane y=0[23], K monotonically

decreases with increasing t (K~ %}-Kné%-if t+0 and K~.1/8t if

t>o), In the plane t=0, K presents a minimum at y=I (K~é;£”%7
if y+0, K~(1-y)?/4 if y>1 and K~2- yny if y»=); in the neigh
bourhood y=1 (checked numerically as well)we are in disagreement
with the result obtained by Dubois and Carton[13](Km1—y); in any
case these results hold only if the transition is a second
order one, which is not necessarily the case for yx~1 (see Fig.
1).

We remark in Fig.1l an interesting feature: the phase dia-

gram presents two branches for a given value of the reduced

harmonic elastic constant K. Furthermore according to if K>K*
or K<K* (where K*=0.20) we have different types of phase dia-
gram: if K>K* and y increases at fixed reduced temperature t
we have the sequence n #0, n =0 and n #0 if t is sufficiently
low and the sequence n=0 and n#0 if t is sufficiently high; if
K<K* and y increases at fixed t we have the sequence n #0,n=0
and n #0 if t is sufficiently low, n #0 if t takes intermediate
values, and we have the sequence n =0 and n #0 if t is suffi-
ciently high. The same type of richness appears if we operate
with increasing t at fixed y; in any case in the limit t-« we

always obtain n =0 in accordance with the principles of Ther-



modynamics. For vanishing temperature and y<1 we recover Du-

bois and Carton[13] critica] anisotropy yc;however a second

critical anisotropy is exhibited at y=1/yc>1; at the point(y=T,
t=0) we have n =0 for any finite value of K (if the . transi-
tion is a second order one). As a consequence of Eq.(3) if

the point (t,y,K) belongs to the critical surface then the

point (t/vy,1/v,K/y) also belongs to it (this property is nu-

merically verified in Fig.1); remark that this transformation
does not transform the lower branch associated to a given val
ue of K into its upper branch, therefore there is no reason

for the special point which connects both types ef phase diagrams(and
is associated to K*) to belong to the invariant crmtica1 lTine
associated to y=1; as a matter of fact the coordinates of that
point are (t*,y*,K*) =~ (0.52, 0.75, 0.20).

Let us now turn back to the expansion of f in (even) powers
of n the sign of the coefficient of n* determines whether
the transition is a first or second order one, and its zero
determines the equation of the tricritical line. Contrarily to
what happens to the whole set of critical lines, the location

of the tricritical line depends on the values of the parame-
Iv

ters such as D, J"(0), J" (0), and J" " (0); in Fig.1 we have
represented (dash-dotted line)the tricritical line associated
to D= J"(0)= J" (0)= 31V (0)= 0, and it is clear that the even
tual presence of a non vanishing value for D dislocates the
tricritical line towards higher values of y. We verify that . the
particular tricritical line of Fig.1 contains the point (t*,v%
K*) as well as the particular points (O,yT,KT) and (O,]/YT,

KT/YT) with YT:OQO8 and KTzO.6, For v sufficiently Tow (and



also sufficiently high) the trans1t1ons are of the second order
thus recovering the well known result [17,13,15,16,20 23]but
for intermediate y and sufficiently low K and t the “trans1-

tions are of the first order: this could well be the case of

several alkali-TCNQ salts. We have nummerically calculated

one such example (K=0.255 and y<1) by sdlving the . equation
f(t,v,K; n=0)= f(t,y,K; n(t,y,K)):see Fig.2.

Let us conclude by saying that the spin coupling anisotro
py appears to be, for the XY spin-Peierls instability (possi
bly for the Heisenberg case as well, at least as long as the
Hartree-Fock type approximations[12] are qualitatively cor-
rect), an extremely relevant parameter which is at the origin
of considerable richness in the temperature-anisotropy-(har-
monic) elastic coﬁstant phase diagram., In particular it ap-
pears (for the first time as far as we know) to be a mecha-
nism for the XY spin-Peierls instability connecting the uni-
form and dimerized phases through first order phase transi-
tion (alkali-TCNQ salts).

We are greatly indebted to R.A.T Limafor many valuable dis
cussions and to J.Villain for pointing to us transformation
(2); one of us (C.T.) also acknowledges useful remarks from
M.E.Fisher and R.B.Stinchcombe;theothmﬁone (D.M.H.S)acknowl

edges support from the brazilian agencies CAPES and CNPq.
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CAPTION FOR FIGURES

Phase diagram in the (reduced) temperature-anisotropy
space; the Tines are parametrized by the corresponding
values of the reduced elastic constant K(—second order
phase transition; ---- metastability frontier of the
disordered phase; =-.-+- tricritical line corresponding
to the harmonic (linear) approximation for the elastic
potential (exchange integral)).

An example (associated to the harmonic and linear
approximations for the elastic potential and exchange
integral respectively) of phase diagram including the

'second (=) and first (...) order critical Tines, the

metastability frontier (---) of the disordered phase
(n=0 di.e. uniform chain) and the tricritical point (o);
n#Z0 means dimerized chain.



