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ABSTRACT -

Dirac's method for singular Lagrangians is used to
implement systematically the A0=0 gauge for electromagnetic
field interacting with a Dirac field and a point charge. The
gauge may be fixed completely by imposing additional comnstrains
or by means of a canonical transformation. Quantization by
Feynman functional integral may be done without removing the
residual gauge invariance if we understand that the
functional integral must act over the corresponding gauge

covariant states,
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I. INTRODUCTION

The lagrangians of eletrodynamics and Yang-Mills gauge
theories are customarily written in singular form. Such
constrained dynamical systems may be treated by a general

(1)

method given by Dirac to construct the corresponding
Hamiltonian dynamics which may be then quantized. An
alternative procedure for quantization is by the functional

(2)

integral of Feynman with appropriate modifications in the

(3)

measure as suggested by Faddeev and Popov in connection

with Yang~-Mills theory. In this connection it was pointed

out recently by Gribov(4)

that the most commonly used Coulomb
gauge may fail to fix the gauge for sufficiently strong fields.
We study in this paper a systematic implementation of

(5) d(l)(G). The Hamiltonian

A0=0 gauge following Dirac's metho
dynamics can be formulated in a self consistent fashion both
for abelian and non-abelian gauge theory. The canonical
commutation relations acquire very simple forms. This permits
us to construct a unitary operator to remove all dependence

on Nlongitudinal' mode in the Hamiltonian and the effective
contribution of this mode comes out to be a self-interaction
energy term. It is of course possible to do the same in the
classical context by imposing additional constraint to fix

the gauge completely. For clarity in exposition we will only
" consider the case of electromagnetic field in interaction with
a Dirac field and an external point charge. The case of Yang-

7

Mills theory will be reported in a subsequent publication.



We show in Sec¢.5 that the gquantization by Feynman
functional integral in temporal gauge may be done without
removing thé residual gauge freedom and is shown to be
consistent with the one done after fixing the gauge completely. An
argument is given which suggests that for constrained
dynamical systems (at least at a certain stage) the residual
invariance is no problem for quantization by the functional
integral only if we understand that the functional integral
is definedover the corresponding covariant state vectors.

In the appendix we evaluate some useful path integral.



IT. HAMILTONIAN DYNAMICS OF INTERACTING ELECTROMAGNETIC FIELD.

We will discuss the dynamics corresponding to the

following action functional
5 = J L(t) dt (2.1)

where (h=c=1)

L(t) = M A - 22 + Jd3x ﬁ(iy.a -my - —1‘—-5'“\) FHY -

- e(T y¥ v + 3 Au] (2.2)

Here W(Q,t) is the Dirac field, Au(g't) are electromagnetic

potentials, TF(t) are the position coordinates on the

trajectory of a charged particle of rest mass M and Fuv

(Bu Av - BV Au). The four-current vector, j“=(p,§), where
p(g,t) = 63(§—f(t)), J(X,t) =T 53(§—f(t)), is the external

current of the charged particle. The action is invariant under

the local gauge transformation



eiew(x,t)\P

a¥s a* + oY w(x,t) (2.3)

The transformation of gauge field may as well be written

as

A~> A - (2.4)

where an overdot indicates time derivative and we decompose

the vector field K into its longitudinal and transverse

> > >

A=V 2 =X +3& V.A =0 VxA_ =0
components ; = AT = Ap T -Ap=0 =0-



The Euler-Lagrange equations are

auF“”= (¥ +7yY v,

(i y. 3 ~mV¥Y = -e y. AY,
p¥ =e TV r . (2.5)

where pY= My(l,?) P Y = (1-?2)_1/2 , B =(F10,F20,F30) and

>
B = —(F23, F31, F12).

The Lagrangian in Eq. (2.2) does not contain any kinetic
term corresponding to the component Ao and consequently is
constrained (singular). The Hamiltonian dynamics may be

constructed by the method proposed by Dirac . We

‘define the dynamics on t=const. hyperplanes so that all the
variations in what follows are taken at fixed time. The

canonical momenta are

sy
M GAU



s
B=f - ML e A(F,t) (2.6)

r ﬁ - %2

The second relation here may be written as

f=2+7a, (2.7)

where, T = (T /Ty, Tq) s X =(A1,A2,A3) along with a primary

constraint

(2.8)

which is written as a "weak" relation in the sense of Dirac.

We define canonical equal time Poisson brackets for

any two functionals £ and g by

(£, g} = _2F . 39 _ _ of g
5 (&) OB, (t) 9P, (t) 5’ (t)
.\ [ Y §£ 5q Y 5g

saM (x,t) anu(Q,t) 5nu(§,t) Al (%, 1)



. __8f &g __of 8g

> > > ->
GYa(x,t) SHu(x,t} 6Hu(x,t) 6?&(x,t)
(2.9)

where y = 0,1,2,3 are space-time indices while «,8 =1,2,3,4
are spinor indices and k runs over space indices 1,2,3. The

standard non-vanishing brackets follow to be
o e, .0 = 8 @Y

-z > _ 3 >
(v, (x,t), Hs(y,t)} = 5@8 87 (x~y)

k .k
{r*(t), Py(t)} =¢8", (2.10)

We take as our preliminary Hamiltonian
(2.11)

H' = H, + J v(§,t) n0(§,t) d3x

where Hc is the canonical Hamiltonian

HC = J (HU A o+ ¥ ) d3x +BP % -1



- /B -eRE@n]t s £

3 1 =2 1 ij'+
+ I d x {—7— I + 1 Fij F

vt [ 1 G (F-ten) + e m ]y -1 .08

+e (p+ vy AO} (2.12)

and v is an arbitrary functional. The equations of motion

are given by

where the second term on the righ£ hand side is taken at

constant W,H,Hu,Au,f,ﬁ,Q. For the constraint HO:O to hold

for all times, we require

Iy = {HO,H'} = - —— =0 (2.13)



This leads to a secondary constraint
x = V.T +e(p+ ¥ y=o0 (2.14)

.which is just the Gauss' law equation also contained in Eq. (2.5
We may verify that other equations of motion are consistent

with the Lagrange equations and v=AO. The requirement

...—.' ! _8L= _3_Lz
X {x,H'} + =t {xr HC} + =2 0 (2.15)

is satisfied and does not lead to new constraint. From the

fact that {HO, X }=0, we have two first class constraints

HO ~ (0 and x=0.

A more general Hamiltonian may be taken to be

H" = H' + J u(}—z,t) X(;'t) d3x (2.16)

we find
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. §H 8
K = +c + o J u d3x
¥ ¥
=7 - i7*(AO + u) (2.17)

We remark that the first class constrains HO and Y are

generators of infinitesimal gauge transformation, Writing

SF = {F, eG(t)} (2.18)

we find
eG(tl= | YT + i ewn v 7a3,
' ': u a 0‘:[

. j[wx v 1,7 % (2.19)



IIT. CHOICE OF GAUGE CONSTRAINT. RESTIDUAL GAUGE INVARIANCE.

The functionalw, %, 'are' completely arbitrary. We may
remove HO completely by imposing additional constraints in

view of the gauge invariance of theory. We may write Eq.(2.14)

on using Eq.(2.7) as

VZ(AO+ B o+ e + vt yy= 0 (3.1)

It follows that, in the presence of interactions, (A

must be non-vanishing. For free electromagnetic field we may

make the convenient choice AO=O and V . A =0 leaving us
with two independent (transverse components) degrees of freedom.
Moreover, the gauge is completely fixed. For interacting case
we must retain at least three degrees of freedom of the gauge
field. The non-transverse component, gives rise to Coulomb
interaction energy and the transverse modes of electromagnetic
field come out as the quanta of the field in quantized theory.
In the Coulomb gauge, for example,(% . K}= 0 , we require
V2A = 0 and Vzw = 0. If we assume that the gauge potentials aH
vanish over the surface of a large sphere we may set A = const=0.
By imposing similar boundry conditions on w we may, essentially,

fix the gauge completely. In general, however, we are left with

a residual gauge invariance corresponding to space-independent

transformations AO - AO - w(t). This becomes quite transparent

12



* *
we verify {f,Ho} = {f,AO} = 0, so that, we may set 1I,=0

in the choice of temperal gauge A0=0. In view of the Gauss'

law, in this case, A(§,t) must dependend on both space and
time coordinates and the residual gauge freedom corresponds
to time-independent gauge transformations. We conclude that,
in the presence of interactions, we must work with af least
three degrees of freedom of the gauge field and may live

any residual gauge invariance without fixing the gauge

completely.
fo start
It is clear that a simple choiceAin our context would

be

From {AO, x}= 0 , {AO, no} # 0

X = 0 continues to be a first class constraint while HOz 0

and AO ~ 0 are now second class. Defining Dirac brackets 1

{f,g}* = {f,9} + f a3z {f,AO(E,t)}{HO(Z,t),g} (3.3)

“{fIHO(;:t) }{Ao(zrt) lg}

0

’ AOzO =V (3.2)

' {AO, H'} = 0 we infer that

13



and A,=0 as strong relations. The equation of motion takes

the form

*
S - e T s S (3.4)

where

H=J a3x {—;—— 72+ -%_ F,. FJ 4+ y" [ G.(V - iek) + B m]¥

+ /B - RE,(t1]% + N?j} (3.5)

In addition, we are left with the Gauss law x=0 as a first

class constraint. We remark that if we had naively implemented

temporal gauge in the canonical Hamiltonian we would not be
able to derive Gauss'law. In fact, for only a static external
source (p,0) the interaction term is totally absent.

We also observe that we may rewrite the Dirac bracket

{£,9} = J O [SE . 8 _8F | &g , 8f &g _
7 S i F sY_ M

14
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4 §f Sg + of dg _ of g
— — ——— > . > > . - .
ST 34 or P oP or
o o

and the nonvanishing brackets are
*
WG, eyt =P
-> -> * _ 3 —>_—>
{Wu(x,t), ns(y,t)} -Gugﬁ (x-y)

k * _ k
r(t) , Bt} = & (3.7)

Thus the independent canonical variables in the temporal gauge

have canonical brackets equal to their Dirac brackets. There

are no fields appearing on the right hand side in Eq.(3.7).

In the Coulomb gauge  we impose vV .X o, V.

A =0



16

so that y 0 becomes a second class while Hoz 0 continues to
be first class. Dirac brackets may be defined with respect

to x =0 and V.A~0 and we verify, for example, that

{vy, Hk}* # 0 and contains field VY on the xight hand side.

In quantized theory in such cases we get ghost loops in the
Feynman rules. In fact the Dirac brackets in Coulomb gauge are
rather cumbersome. However, the Coumlomb self energy
interaction term in the Hamiltonian is readily seperated out

in this gauge since we have now strong relation x=0.

It is important to note that the canonical brackets in
Eq.(3.7) are very simple compared to those in Coulomb gauge.
Further constraint(T)may be imposed to fix the gauge completely.
It is, however, more convenient to achieve #this via a canonical

transformation. We will do this in the following section for

quantized theory by making a corresponding unitary transformation.

(1)

See section 4.
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IV. CANONICAL QUANTIZATION IN TEMPORAL GAUGE: GAUGE-FIXING CONDITIONS

The canonical quantization is obtained by replacing Dirac
brackets by commutator a anticommutator between corresponding

operators in a self consistent manner

'{f,g}*—-'> . [f9] or S {E,&} (4.1)
i it

while the first class constraints are imposed as conditions
on physical states vectors. Appealing to the quantization of

free fields ~we are led to the following non.vanishing standard

commutators,

G0, 1,607 =1 & 36D

v %, 0, isﬁ’z,t)} =i %363‘?‘3”

r/\ A _ . k

fx(t), Pz(t)] = i 52 (4.2)

while
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XTIz (T .% +e p+rvtv]11T =0 (4.3)
H7=ET (4.4)

From Eq.(4.2) we may derive

2 V2
(4.5a)
> :; - ~ > _ 3
5. 1,0, AG,0] =1 G (4.5b)
Lo, %T(.ir’,t):[ =0 (4.50)
[’v’.ﬁ(i?,%), iT@;,t)] =0 (4.5d)

The Hamiltonian in Eqg. (3.5) contains terms involving
longitudinal mode. We will show now that their contribution
amounts to Coulomb self-energy interaction term leaving

only the tranverse modes as quanta of the gauge field. We

perform a unitary transformation by the operator(+)
(+) 343 s > a1 o2
We represent the operators ¥ and P by r = r and P = — V



ie f[p(Q,t) + ¥HE, @(%,t)j
U==¢e

19

,K(§,t) d3x

= e (4.6)
We show easily
U % U_l=§ -e 3; A (%,t) (4.7a)
uF . f ol 2 elp+ ¥ ) (4.7b)
A -1 -ie K(g,t)
UVY (x,t)u = e ¥(x,t) (4.7¢c)
v vty vl o §H (4.74)
Ul ¥ F,0) v e O R [ - te 3i,0] v@,0
(4.7e)

From Egs.(4.3) and (4.7b) it follows
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or

(V. ¥ =0 (4.8)

i€l
I
G

el

where (4.9)

The commutation relation in Eqg.(4.5b) implies that in

A

coordinate representation A = A, vV.T = L—g- g0 Hherk nerget
' SA
g% = 0. The functional ﬁk , apart from its dependence on

¥, depends only on the transverse components X? of the gauge
field and U carries all the dependence on A of the state

functional ¥. From Egs. (4.7) and (4.8) we find

oo
[
1
(!
o
(@]
BTN
m
[
Q
0
o
’_l
+
o>
Hv
{2
!
el
Il 2

(4.10)

where




3 1 52 128 ML+ e e .
—— —-F, . —iq . (V- +
+J d”x { 5~ I, + 7 Fiy F 7+ vy [-ia .(V- ie AT)
+ mﬂ@} (4.11)

depends only on gauge invariant transverse components of gauge

field and the gauge invariant ¥ = eleAW and

A

2 s 2
o — - e 3 3 -> + ;-) >
Hoou1. =~ 72~ J Jd x %y [p(x,t) + ¥ (x,t) ¥(x,t)]

N N

<% 15 PG e, vE,n] (4.12)
v

is the Coulomb self-energy interaction term obtained on
integration over, the longitudinal component of T and using
Eg.(4.8) . The transverse part ﬁT is supposed to take care of
all corrections to the instantaneous Coulomb term, such as, for
example, that the total effects are retarded and act no faster
than the speed of light. We may also verify that the form in
Eg. (4.9) is also satisfatory in so far as no new conditions
arise after quantization and we have a self consistent
quantization procedure in temporal gauge.

The residual time independent gauge transformations are

generated by the operstor x(X,t) so that §F=-i[ F, eG(t)] .

The state vector transforms as

21
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i J 5,0 0 axy (4.13)

—

—_— e

1<

where

2 2
Jok.t) = e G, + ¥ (E,b ¥E, 0] (4.14)

For obsevables we have
A A N R + A A . .
o[l glul Ll GLI%,_ o0&, 7,9, v (4.15)

where g[wj indicates the gauge transformed of operator ﬁ. We
may discuss the selection rules for matrix elements of
observables as usual and show the appropriate gauge covariance
properties of the matrix elements of non-gauge invariant
operators.

We note that the discussion in the present section
could as well have been in terms of classical field theory
context. A canonical transformation of variables would replace
the unitary transformation of quantized theory. The Eg.(4.5b)
implies that in the context of discussion in Sec.III, we may impose,

in A0=0 gauge, further constraint,,san

(A -c)=0 (4.16)



in order to fix the gauge completely. Here c=c(t) is a space
independent constant. In fact A and y constitute a canonical
pair in temporal gauge as evidenced by their poisson bracket.
The Gauss law constraint ¥y = 0 now becomes a second class

constraint and we may define new Dirac brackets using their

iterative property 6

(£,9Y"%= 1£,91" +j a3z [iex G0 E,0,q9" -
N * > *
{£,0(2,8)} {x(z,t),q} ] (4.17)

We may then write these constraints as strong relations, viz

>

V.l =—eo+ v v (4.18)
where T is now given by Eq.(2.17),

and obtain the final Hamiltonian H=H .+ H_ -in
Coul T

the form analogous to that given in Egs.(4.11) and (4.12). The
gauge is thus fixed completely. The final form is independent

of c. We may now quantize the theory by replacing new Dirac

23
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brackets by commutators or anticommutators between operators.

In view of Eq.(4.17) the standard commutators are the same as

written above.

It is instructive to show the details of AO z0,

x ' ZA - c(t) <0 gauge. We note

> > * . 3

Iy "G, t), x ¥,0)} o Gy, TG0 = -1 80 %)

The first relation assures the iterative property for Dirac
brackets. The second one shows that det ||{yx', XTH=const. and

is independent of fields. Contrary to the non-abelian 4,3 theory
the Coulomb gauge, in abelian case, is ghost-free. In view of the
non-vanishing determinant above we may solve unambiguously

for arbitrary functional u appearing in the Hamiltonian using

Eq.(2.17). We obtain in our gauge

(4.20)

<
=

v2 4 =

Substituting in the general Hamiltonian of Eg.(2.16) this result,

A=c(t}A0=0, A0=V=O and making use of Eq.(4.18) we readly obtain



the Hamiltonian in Eq.(4.11) which involve only physical

transverse degrees of freedom of the gauge field. Also

ﬁT=ﬁ-$1—2( ) = AT 4+ Yu - Vu = A (4.21)

\Y

<
=

s
There is still another interestingAchoice possible

and which may be generalized to non-abelian Yang-Mills theory

for any gauge group 7. It is simply

~0 , A 20 (4.22)

We note
- -> * v 3,> >
{A3(x,t), x(y,t)} = 933 87 (x-y) (4.23)
*
The gauge is thus ghost-free and det ]I{A3, x| = det(ag) is a

'constant' independent of the fields. This is also true for any

24"
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amd £g.(4-12)
form can be readily reduced to the form in Eq.(4.ll)Afor the

abelian case under discussion. Only the kinetic terms require some
comments. They may be straightened, say, by using the unitary

transformations written in Egs.(4.7a) and (4,7c)

v~y Eia’ . (V- iei):[@ u=yt F—i&.(_v* - ie(® - Th) )| ¥

—

L

o S U S
= V¥ L_ io . (V 1eAT{J y

and

-1

v 1@ -en U P -e 2) (4.26)

Il
—~—~
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Yang-Mills theory. Since we must also require A.=0 Eq.(2.17) gives

3

and Hamiltonian is written in terms of two independent degrees of

freedom as follows

n= /B-eRE )12 + W+ [ & {_; G TS

+oyT l:—i o. (V- ieR) + Bm -{\y - j

SE
—
o

w
<

—
<

LT+ e(p+ w*m] (F,t)
> > |» +-| >}
. RV T+ e(o+ ¥ Wj(x,t) (4.28)

Here K(¥,y) = G(x3,y3) 62(§;§) and G(t,t') is the Green's

2
function satisfying 2—97 = 6(t-t'). The two physical components
9t

1

are written as A=(a

A%, T = (1,,T,) while ¥ =(3,,3,). This

2
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V. QUANTIZATION BY FEYNMAN INTEGRAL:

The quantization using Feynman functional integral2

trajectories in phase space is also straightforward. We may

do it, in temporal gauge even without having removed the
residual gauge freedom corresponding to time independent

gauge transformations. This is possible since H and H are

related by a unitary transformation and consequently the evolution

operator satisfies

(¥, e YY) o (3, 7HHE (5.1)
where H = H [;, B, ﬁT’ KT’ T+, ¥l and

The generating functional for the S-matrix over the
Hilbert space of state vectors {¥} is expressed formally as

the following phase space functional integral

X

- . _ d r 4 pt)

7 = J e 1 [1aRT ma 7T ¢ a¥(x)a ¥y (x)| I 1 ar 9B
a o t k (21)

(5.2)
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where

t"
g = ) at [’ﬁ.% +[ a3x (ﬁT.KT + MYy - H:‘ (5.3)
tl

The functional integral over the state vectors {¥} according

to the prescription of Ref.[ 3] and noting that det ||{A0,H%W|=

const., is given by

. . 3 arfa P,
z =| e 1 |1 da dm nda¥ av (0 T (5.4)
x (k a & Ol & k=1 (21)
where
tll . .
S = J at [ﬁ.i’ +Jd3x(ﬁ.i+n ¥y -H—jl (5.5)
.tl

and H is given in Eq.(3.5).

For simplicity in discussion to demonstrate the relevant
points we will consider the case of electromagnetic field
interacting only with an external non-relativistic charged
(+)

particle . We may easily do the functional integration over

Py and 1 to obtain from Eg. (5.4) the Feynman path integral

(+)We replace the square root term in Eq.(3.5) by 5%—(§-e 3)2.

We remark that we may choose the relativistic Lagrangean in a
. , . 2
alternative from:L(t)=—%—a ;2 - —%— (a+—%—) - j.A where o(t)

is an auxiliary variable.



representation

7= } 5 (1 naad (nmomad) (5.6)
x k t 9

where

(5.7)

From the corresponding integration in Eq.(5.2) we obtain

To perform the path integration in Eg. (5.7)

component of the gauge field it is convenient to use normal

. >, > . . .
mode coordinates . We expande A(x,t) in Fourier series

27

over longitudinal



A, t) = T g () ¢ () (5.9)

The field is suppose to be enclosed in a large box of volume

Q =(2L)3 and satisfies periodic boundry conditions. Here

cos (kK .x) , A =1 ' E#O
6 (%) = —
D >
Ky A sin(%,%) , A = -1 . k#0

(5.10)

©
o
7~
xy
]
P
¥
]
o

and

i{»_[+nr_r+ I I e s
tny g% n2 ¥ n3 AL where ni are positive

integers 0,1,2,..., The coefficients a%%tL for each(ﬁ,l),

represent three normal-mode coordinates. For k#0 we may write

> ol K :
Gy (1= 1 qlo + o (5.11)

28



>T(t)_

where f.qk)\ =0. Also

A(X,t) = 1" (—%—)qu(t) by _y (%) (5.12)
K, '

where prime indicates that k#0. It follows that

t"
= _ 1 32 1
S = [ dt [——2'— Mr + T

r (g + -k ) +
k,\ kXA kA kA
tl
+ e f.K(?,t{} (5.13)
and
z=]e® 1 1 dg..(t) &L, (t) Ta rte) (5.14)
KA kA 0
t k,A\

The longitudinal modes arezero frequency modes of the gauge

field. We may write the interaction term involving longitudinal

mode in a more convenient form as follows

29



¢ ¢’
t" 3 > > 3 4+ > -> 3 ->
r .A(r,t) dt = dt d’x j.vV A(x,t) = dt d xA{x,t)
' J
t 'b/ by

il
—_—
¢

dt 1’ {—*—} (t)p (t)
t k, A k K K, =)

A n 11
=2' |9} |94’ P -qg o' -
k,A K kA4 k4 k-

tll
- J dt ey, pk,_ X'> (5.15)

Here o, = ¢k)\ (¥(t)) is the Fourier coefficient of p(%,t) and

qg' = qg(t"), gq" = g(t") etc. The path integral over each

Ak

may be easily evaluated(+) to obtain the factor

l .
K, [{q"k)\}’t“; {q'm} , t'] = e15L (5.16)

V2iT(t"-t")

(+)

See appendix.

30

3p(x,t)
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where
2
2 tll p
s, =e AE", ") —-A(f',t')'] - % J at ' k'2>‘ ]
t' katl k
t"
2
+ Z' l EI" - ql - >\e pk _)\ dt]
! ’
kA 2(t"-rr) SR RA kg

(5.17)

The second term is the infinite self energy of point charge

which also appears in Eq.(4 - 12) | For many point particles

we will also get mutual interaction energy term. From the

following observation(:{f - 816/\ = )

—

ie A(ii}";t") — " LI ¥ ] ie A(;'lt')
e ——[[KL({qk)\},t:{qu},t)-e

e 2 p2
Ol B N
I d q'k e {

X, A k

31
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we infer that the longitudinal modes in temporal gauge serve :two
purposes. . It isolates the factor corresponding to the

Coulomb energy interaction term which in case of 5 is present
explicitly as seen from Eq. (5.8). Their presence is also
essential to secure that when the Feynman propagator functional
acts on a state satisfying Gauss law it results in a state
satisfying the same law. We also conclude that the functional
integral as defined in Eqg. (5.4) is consistent with that

defined in Eg.(5.2). The residual (gauge) invariance freedom

is no problem for quantization by functional integral only if

we undertand that the functional integral must act on
corresponding (gauge) covariant states. Similar situation

should occur for the case of other constrained systems. In the
case of Yang-Mills theory the canonical quantization is as
straightforward as discussed in the present case. However,
functional integral quantization is quite involved . This

work will be reported in a subsequent publication.
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APPENDIX:

The path integral is of the type

X" t"
| exp {1 [—%—— m %2~ g(t) x] atl 1 ax(t)
Ix! t! t

According to Feyman 2 this is given by

o0}

lim N . N 29, €
m im 2 k
- exp g [}x =X, )T (%, X, )] .
N - {/Zien) } {( 2e )k=l k k-1 m kK1

o dx., dx,...dx

1 2 N-1
t“’
i 2 [ N
et o T (e
= e lim . exp ( ) Z_ X, - X -
N - w[ 215!} J_ 2e |} k=1 [k k-1

£9112
m ] }vdxl dxN—l

This is readily evaluated to give

_ o _iK
2i/(E"-t)
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where
Vi

t '

¢
K = -(1/2m) fgz(t) at  + @/ 2(t -t")) [x' - x" +@/m) j g(t) dat ] 2
/g t’
It follows also

x#

. tl/
exp{i L[(l/m mx? +3 xw)] dt} T axm
t

,x/

= /“m./Qi'n'(t" -t' ) exp i (K+g"x" —g' x')
t

where g(t) = ft J(t) dt +-g(to).
(o) .

The path integral containing a term J(t) x(t)2 may”bg,egsily

handled by the same trick.



35

REFERENCES :

1

2

3

4

5

P.A.M.Dirac, Lectures in Quantum Mechanics, Belfer Graduate
School of Science, Yeshiva University, New York,

1964.

R.P.Feynman, Rev. Mod. Phys. 20, 367(1948); Phys. Rev. 84,
108(1951); 80, 440(1950);
R.P.Feynman and A.R.Hibbs, Quantum Mechanics and Path Integral,

Mc-Graw Hill, New York, 1965.

L.D.Faddeev and V.N. Popov, Phys. Lett. 25B, 29 (1967); L.D.
Faddeev, Teor.i Mat. Fiz. 1, 3 (1969) and in
'Methods in Field Theory', (les Houches Lectures),

North Holland, Amsterdam(1976).

V.N.Gribov, Preprint LI yp-367, Leningrad, (1977).

J.Schwinger, Phys. Rev. 130, 402(1963);
J.Willemsen, Phys. Rev.D1l7, 574(1978);
J.L. Gervals and B.Sakita, Phys. Rev. D18, 453(1978);

S.S. Chang, Phys. Rev. D17, 2611(1978),

E.C.G.Sudarshan and N.Mukunda, Classical Dynamics: A Modern
Perspective, Wiley, New York, 1974;

A. Hanson, T.Regge and C.Teitelboim, Constrained Hamiltonian
System, Academia Nazionale dei Lincei, Roma, 1976.

P.P.Srivastava, Preprints C.B.P.F., Rio de Janeiro, A0023/79:
A Simple Gauge-Fixing Condition in Yang-Mills Theory for any
Gauge Proup.

A0024/79 Canonical and Functional Integral Quantization of
Yana-Mills Theory.



