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§ 1. Introduction

[
T.S. Wu and C.N. Yang have pointed out, by cons-

tructing a specific example, that in non-abelian gauge theories
the ?ield tensor Fuv does not determine the potentials Aﬁ, not
even locally and not even up to a gauge. |

In their example one of the potentials corresponds
to a magnetic monopole in three dimensions, the other being
proportional to a pure gauge. One may then ask if their result
is valid only in some pathologicalkexamples or in some other
cases as well.

We intend to show in this paper that there exists
a more general class of field configurations displaying that
property. Specifically we will show that to any element U of
the gauge group we can assign a one parameter family of fields:

F (%) = g(1-0) (3 U 0.0 - 5.0 5 U),

uv H v v W

each member being derived from two different potentials, not
related by any gauge transformation, unless U satisfies an
"integrability condition'.

Further, for three dimensions and the group SU, ,
we shall show that the example given in reference [17] is a
particular case within a whole family of fields. Each class of
the family being characterized by a unit vector field
ﬁ(f) (§f§=1)- For a given n(r), the gauge field B (dual of Fi')

J
has the form



1}_(“) = a(l-d) VaAVo ; g = 0°n
and can be derived from two different potentials not related by
a gauge transformation. Wu and Yang's example is the class

corresponding to the election n = r/r.

§ 2. Relevant -theorems

Let us call

k

xk being the generator of the corresponding Lie group.

Let ¢u and wu be two vacuum potentials, i.e.:

(2) 3,0y, = 3,0, + [o .0,] =0
(3) : Ay AW, ¥ [\bu N B
then:

Theorem 1. The potentials A&u) and Aﬁl—u) where

I

(4) A&“) = q ¢u + (l-oc)w11 (o = arbitrary constant)

All"®) < -0y 4 v e v,

give exactly the same field Fﬁv'



Proof:
Eov = 0f - A+ A A ]
= a(3;¢v - 900 * (1—a)(a;w\, - A% ¢ az[tbu v 4y, ]
+ (-’ Cvy o0, v aQ-a)(Co, 0,0+ Lo, 00,
Eliminating the curls by using (2) and (3) we obtain

(5) Fav = -0=0) Do, = v, (6,9 )T

As (5) is invariant under the interchange o pa (1-0), the theorem

is proved.

Corollary 1. By taking wu Z 0 in theorem 2, we see that
A(l"'O‘}
o

A&“) = ¢, and = (1-a)¢  give exactly the same field

(6) F“"'é. a(l-o) E¢u v 9, = a(l-a) (3,6, = 3,0,)

Theorem 2. Theorem 1 is invariant under any gauge trans-

formation.

Proof. Under a gauge transformation U:
(7) Al =1 A U+TU 3, U,

and substituting in (4) we get:



Al o g? (a6, + (1-a)y,) U+ U™'a U =

L

a U 1gb'u'U + (1-a)U ‘wpu ' aU 1auu+(1-a)u 3,0

. _ '
@ 6 ¥ (1 a)wu

and

Foy = -a(l-a) [ (o) - %)) . (o, - ¥,) ] Q.E.D.

Corollary 2. It is always possible to find a gauge transfor-

mation which brings theorem 1 into the form of Corollary 1.

Proof. wu being a vacuum potential it has the form:

(8) wu =V au V  for some V.

-1
By performing the inverse gauge transformation (V )
wu is taken to zero, which together with theorem 2 completes the

proof.

CoroHary 3. The gauge of Corollary 2 determines a group

element U such that

(9) 6. =U 3 U

(10) : A&“) =a U 35 U

The field va common to both potentials (Aﬁa) ,Aél-a))

takes the form

(11) F£3)= aclfa)(BuU-lavU _ BVU-IB}JU) = Fuvcl‘a)



Proof. From Corollary (1):

(o) _ _ _ -1 -1 A -1
(12) Fuv a(l-a) (U auU U avU U avU U auU)
Using now
(13) s U+ 3 UT'U =0

H M
the corollary follows immediately.
Theorem 3. According to the definition

. - ~U
(14) i, = Fu\) + EAH’Fuv]
we have, in the gauge of corollary 2

(15) jéa) B a“F}ES) * aEq)u’FWSS)'j

-~

Then, from corollary (1) we can deduce the following theorem:

(16) jga)_ j\El-oc) = a(l.-ot)(Z‘oc-l)[d)u,[':@u,d)\;]]‘

17) (05070 _ 5uea)ts Tone. T+ 20% B e, T
’ v v B [T PRV 2 > AV

(18) jéa) + jél—a) = Sa(l-a)jv 2

The latter formula follows from (15) (for a = ~%), and (17).



Corollary 4., If j

v is zero, then for any a ,

jSa)= _ jél-a).

Theorem 4, If jga)is zero, for some particular value a,,
then, for any other o it is proportional to the divergence of

. (o)
the field Fuv .

Proof. From (15), with jsao)= 0 and (6), we deduce

(19) CooCoyn0,00 == 2 " 0o, 00,7

1]

Replacing now (19) in (15) (remembering (6)), we have:

jla)_gupla)_ o qupla) _ (1_9_)3%1(1%)

v Hv oy PV o,

which proves the theorem.

§ 3. Gauge independence of A(a), A“_u)

Up to this point we have given some general theorems
on different potentials giving the same fields. One can now rise
a natural question: Could it be that these potentials are not
essentially different, but in fact one of them is the gauge
transform of the other?

In order to answer this question let us take again

(a) .
Au = 0 ¢

" where ¢u is a vacuum potential.



Suppose now that A(a) and A(l-u) are related by a gauge trans-

formation, i.e.
g1 _ | . e (-
(20) V o ¢uV +V auv (1 a)cbu

where V depends on a. As the corresponding fields are equal, it

follows that

(1-0) =t _ 5 (1-a) _ ; (a)
(21) v FuV Vo= F = F,,

It follows from (20), with o = 0 that
(22) . o, =V AV
where V, = V(a)la==0 .
Using (11) in (21) and (22) we get

-1 -1 -1 -1 -1

(23) ' Vo(a_uVo BVVO - vao auVO)V0 = auvo avvo - BVV0 BuVO
_ -1 -1
and, as Voapvo = -(auVO)V0

-1 -1 -1 -1,
(24) BuVOBvV0 - BvVOBu V0 -BuVO BvVO - BvVO BuVo

which is a necessary condition for the potentials to be connect-

ed by a gauge transformation.

We will show now that there exist vacuum potentials



which do not fulfill (24). We shall particularize with SU(2),

for which the general form of V  is

(25) v =e 0 here g = éb. n , |n| =1

and 01 - are the Pauli matrices.

) ’ *

From (25), we have:

(26) v, = cos £+ i o sen f

-1 . .
V0 = cos £f -1 o0 sen £,

and
27 ' = i £ o+ i
(27) BuV iV, o au i sen f au o

3V =-civigsf-isenfd o
) 0 u u

from which we deduce

: -1 - -1 -1
(28) (BuVOBvV0 - BvVOBUVo ) - (auvo BvVo - SvVo Bu Vo) =

. 2 )
= 4 i sen f(aufavo - Byfauo) ,

showing that the condition (24) is only satisfied if (25) ful-
fills

(29) aufavo - avfaua = 0,



This is a necessary condition for the existence of a gauge trans-

formation.

In the special case of three dimensions and taking
oo g -1
n = ﬁ% i.e. = —F— =0_. , we can write (20) in the form
(30) vE A Vo, = 0.

1 T
As Yoy =y (@-op )

r

(31) VEAg -V AT = =0

By a scalar multiplication with r, we immediately
deduce

and so, in (31) we must have

L

(32) vf = 0
l.€.,
(33) f = constant.

When (33)'13 satisfied, the gauge transformation relating
' -ifo ifo _
é(a) =ae 've T , and é(l-a), is

A ivo,
(34) V=e 3 tgv = (1-20) tgf.
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§ L. The case of three dimensions

We have just seen that in three dimensions (and SUZ)
the integrability conditign (29) is only satisfied with a cons-
tant f in which case Q(a) and é(l-a) are not physically different
aqe to the existence of the géuge transformation (34).

Let us take f = %% , for which (25) gives v, = ioc ,

and

(35) - é(a) =qo Vo ; o =g en

~

It is easy to see directly that V, = 1o transforms é(a) in Q(l—u).

The field corresponding to (35) is: (B is the dual

of F..)
B=YAA+ANA
(36) ) B = a(l-a)Vo A Vo

In order to construct another potential (not equivalent to (35))

for the field (36) we will first prove the following

Lemma:

(37) K =Vo AVoo

is an ordinary vector (free from Pauli matrices) having zero

.divergence.
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Proof.

Ki = &55% 95

o ak o0
K < 35k 95 By O My (Oap * iap 99 Mg
The Sab-term dQéS'not contribute as
(38) n_ 9. n_ = 0.
We are left with:
K. =1 9. n

i T 1855k 35 Dy %% By Eape Pallge * iEgce %)

This time the term in €dce does not contribute as

(39) €abcfdce - %aebd ~ %adlbe:
Then
(40) Ki =i Eijkajnaaknbnceabc .

proving the first part of our lemma.

We now take the divergence of Ki'

9:K =1 855k 35 Ba ¥ M ¥ D¢ Eape



In this expression,

Bj na Bk nb ai nC

(41) fabc - €ijk

is a completely antisymmetric tensor of the third rank. Due to

(38), this tensor is totally erthogonal to n

The tensor (41) belongs to a two-dimensional sub~-space (orthogo-
nal to n). But we know that a completely antisymmetric tensor
cannot exist when the rank is greater than the number of dimen-
sion. So fabc is identically zero and the lemma is prbved.

As an immediate consequence of the lemma, we have:
(42) Vo A Vo = i(IY.A a

for some Vectorvfield a(r). -

It is easy to see that
(43) {o ,Vo} =V o =0.
So that, ﬁrom (42) we deduce
(44) Vo A(Yo A Vo) = (Yo A Vo) A Vo

.We are now in a position to prove the following



Theorem 5. The potentials é(a) ) é(l—a) - (given by (35))
and

— (o)
(45) A =

1 o9 -ie-5)" oa (asatisfying (42)),

give exactly the same field (36).

Proof. Let us compute the field due to A(a).

- . 2
VoA A(“).= %? Vo A Vo - i(a-%%)z Vo A a - 1(a-;%) oV A a

Using (42),

- - 1.2 . 1.2
(46) VoA é(u) = [:%% - (“'"7§) :] Vo A Vo - 1(&-—72) Vo A a
—_— —_ : - .2 i
(47 ﬁ(a) A'é(a) = - é% Vo A Vo - -%(a'-—%) (oVo A%o-rgo A oVo)

Both terms in the last parenthesis of (47) are equal and opposite

to Vo A %. Then, when we add (46) and (47) we find

AN SR S LCIAT

(48) 5(®)

a(l-a)Vo A Vo = ia(l-a)o VAa

which coincides with (36) and proves the theorem.

It is not difficult to calculate the currents

corresponding to (35) and (45). We only give the final answer
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(49)  3®) =54 (1-0) (1-200V0 A Y A a + ia(1-0)o ¥ A ¥ A a
50) 3 =i a(l-a)o T AV A a
It is eaéy to see that V= ic transforms j(a) in j(lna)..(=

o j(a)o). On the other hand, no possible.gauge transformation
relating (35) and (45) can exist; for such a transformation would:
commute with o (as B is invariant); but then it would also

commute with g(a) (cf. (50)), leaving it invariant.

When V A a is curless

-

(s1) -~ 70 =g (if VAV Aa=0)
while
(52) j@ oy @ (1-a) (1-20)¥0 A ¥ A a = - 5(1-0)

The example of reference [C17] belongs to this class with
r - » -

"V Aa=—=. We would like to point out that (45) is a kind of
r .

"magnetic" potential referred to the n isotopic direction,

and for which a plays the role of the usual vector potential.

In fact we have

g(u) = —% + ia{l-a)o a

2 —
gVo - i(a—%%) oa = 5(0)

As E(O) is-a vacuum potential (see (48)) it can be eliminated
by an appropriate gauge transformation V. The new potential is

-1 ’ 0

—— ' —
é(a) = ia(l-a)oa ; where o =V oV.

The corresponding field and current are (see (48) -and (50))
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[ ]
() ia(1-a)0 V A a

3(&) = ia(l-a)c YV AV A a

From which it follows that ¢ is a constant matrix.

. ivo
Further, under a gauge transformation e vo

-ivo =+ _ivo -ivo ivo

A =ce Al e +-e Ve = A+ ioVv
(53) A" =igca’

"= 3 - ¥ —Y
where a a V Si-a)

while B and j remain invariant.

§ 5. Example in four dimensions

Let us consider the following example:
X

. 0 N
: i arctg — o X + icer
(54) U=e S
X
From whichf
‘ S o X
(55) Al =g Uty U =-2ig YUY
U o N .
. _ 1 = 4
with Uij = =5 Eijk Gkv and 014 = = ci.
The field corresponding to (55) is:
(56) ple)  _ 4ia(l-a) (X 0. X -~ X0 X + X0
uv x* WvpTp VoupTp Uy

for which the current is:
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g, X
(57) (0 = gig (1-0)(1-20) HER - - (1)
u X u
() |
We see that ju = 0, so corollary 4 is in force.

In this example two equalland opposite currents give raise to
the same field Fﬁg). In this case it is possible to show direct-
ly (without recourse to (24)) that a gauge transformation relat-
ing A(a) and A(l'a) cannot exist. In fact, such a transforma-
tion V should commute with Fuv and anticommute with (57). The
last condition is easily shown to imply the anticommutativity of

V with all three Pauli matrices.
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