CBPF-NF-021/82

FULLY ANISOTROPIC TRIANGULAR LATTICE
QUENCHED BOND-RANDOM POTTS FERROMAGNET:
ALMOST EXACT CRITICAL FRONTIER *

bу

Constantino TSALLIS

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Rua Xavier Sigaud, 150 22290 - Rio de Janeiro, RJ - BRASIL

* To be presented at the international Conference on Magnetism (Kyoto, Japan, 6-10 September 1982)

ABSTRACT

Through convenient duality and star-triangle-type generalized transformations, we obtain a (presumably excellent for $1 \le q \le 4$) approximate phase diagram for the fully anisotropic triangular lattice quenched bond-random q-state Potts ferromagnet. Several exact particular results are recovered; a small error is however present in one of the limiting slopes.

Session code 2F*12 Identification N9 4

FULLY ANISOTROPIC TRIANGULAR LATTICE QUENCHED BOND-RANDOM POTTS FERROMAGNET: ALMOST EXACT CRITICAL FRONTIER

(Running title: Triangular lattice bond-random Potts model)

C. Tsallis

Centro Brasileiro de Pesquisas Físicas/CNPq Rua Dr. Xavier Sigaud 150, Rio de Janeiro, Brazil

ABSTRACT

Through convenient duality and star-triangle-type generalized transformations, we obtain a (presumably excellent for $1 \le q \le 4$) approximate phase diagram for the fully anisotropic triangular lattice quenched bond-random q-state Potts ferromagnet. Several exact particular results are recovered; a small error is however present in one of the limiting slopes.

I. INTRODUCTION

A certain amount of effort is presently being devoted to the study of random models, in particular the quenched bond-random q-state Potts ferromagnet (characterized by the Hamiltonian $\mathcal{F} = -q \sum_{i,j} J_{ij} \delta_{\sigma_i,\sigma_j}$, where $\sigma_i = 1,2,\ldots,q$ for all sites and $J_{ij} \geq 0$) in regular lattices (see the excellent recent review by Wu and references therein). We are herein concerned with the phase diagram (or critical frontier, CF) associated with a quite complex model, namely that of the fully anisotropic homogeneous triangular lattice (only first-neighbour interactions are taken into account). To be more explicit we shall assume that the J_{ij} along the three crystalline axes of the triangular lattice are respectively given by independent distribution laws $P_k(J_{ij})$ (k=1,2,3). To achieve a proposal for the still unknown associated CF we shall follow along the (conjectural) lines we have recently established [2] for the fully anisotropic square lattice.

II. FORMALISM AND CONJECTURE

With a bond whose coupling constant is J_k , let us associate a convenient variable (hereafter referred as transmissivity)

$$t_{k} = \frac{1 - e^{-qJ_{k}/k_{B}T}}{1 + (q-1)e^{-qJ_{k}/k_{B}T}} \in [0,1]$$
 (1)

The equivalent transmissivities t_s and t_p of the elementary series and parallel arrays of two bonds (associated with t_1 and t_2)

are respectively given [2,3] by $t_s = t_1t_2$ and $t_p^D = t_1^D t_2^D$ where $t_k^D \equiv (1-t_k)/[1+(q-1)t_k]$, (k=1,2,p) (D stands for \underline{dual}). Further more the transmissivities t_Δ and t_{YD} associated with the three-rooted graphs indicated in Figs. 1.a and 1.b are respectively given [3] by $t_\Delta = [t_1t_2+t_2t_3+t_3t_1)+(q-3)t_1t_2t_3]/[1+(q-1)t_1t_2t_3]$ and $t_{YD} = t_1^D t_2^D t_3^D$. The laws $\{P_k(J_{ij})\}$ provide, through definition (1), the t-variable laws (noted $Q_k(t)$) and the t^D -variable ones (noted $Q_k^D(t^D)$). Finally if we decorate the graph of Fig. 1.a (Fig.1.b) with $\{Q_k(t)\}\{\{Q_k^D(t^D)\}\}$ in the places of $\{t_k\}(\{t_k^D\})$ we obtain an equivalent distribution $Q_\Delta(t)(Q_{YD}(t^D))$ given by

$$Q_{\Delta}(t) = \iiint_{k=1}^{3} dt_{k} Q_{k} (t_{k}) \delta(t-t_{\Delta}(t_{1},t_{2},t_{3}))$$
 (2)

$$Q_{YD}(t^{D}) = \iiint \left[\prod_{k=1}^{3} dt_{k}^{D} Q_{k}^{D}(t_{k}^{D}) \right] \delta(t^{D} - t_{YD}(t_{1}^{D}, t_{2}^{D}, t_{3}^{D}))$$
(3)

Let us now introduce the convenient variable [2,4,5] $s = \{ln[1+(q-1)t]\}/lnq \in [0,1]$, which coincides with t in the limit q + l, and sat isfies a remarkable property, namely $s^D(t) = s(t^D) = l - s(t)$; this fact stands at the center of the conjectural proposal we shall immediately present. A good approximation of the CF we are looking for is given by

$$\langle s \rangle_{Q_{\Delta}} \equiv \int_{0}^{1} dt \, s(t) Q_{\Delta}(t) = \int_{0}^{1} dt \, s(t) Q_{YD}(t) \equiv \langle s \rangle_{Q_{YD}}$$
 (4)

We are aware of the fact that stated like this, the above equation seems to be completely unjustified; let us however say that the set of particular situations (too lengthy to be recalled herein) analyzed in Ref. [2-5] very strongly suggests Eq. (4). In what follows we shall restrict ourselves to exhibit how this equation recovers a considerable amount of exact particular results.

III. PARTICULAR CASES

We shall consider the bond-dilute situation (J_{ij} either vanishes or takes an unique finite value, eventually different for each direction), which corresponds to $Q_k(t) = (1-p_k)\delta(t) + p_k\delta(t-t_k)(k=1,2,3)$ and for which a certain amount of particular exact results are already available.

(i) The anisotropic pure Potts model: (p k = 1, \dagger k)

Eq. (4) recovers the $\underline{\text{exact}}$ result [1] which can be rewritten as follows:

$$\frac{t_{1}t_{2}+t_{2}t_{3}+t_{3}t_{1}+(q-3)t_{1}t_{2}t_{3}}{1+(q-1)t_{1}t_{2}t_{3}} = \frac{1-t_{1}}{1+(q-1)t_{1}} \frac{1-t_{2}}{1+(q-1)t_{2}} \frac{1-t_{3}}{1+(q-1)t_{3}}$$
(5)

(we recall that the phase transition is a second order one only if q < 4).

(ii) The anisotropic pure percolation model: (T=0, hence $t_k = 1$, $\forall k$)

The associated CF is commonly believed to be one and the same for all q, namely that of the bond percolation problem, and is given $^{[6]}$ by $p_1p_2p_3-p_1-p_2-p_3+1=0$ Eq. (4) exactly recovers this relation. The same result can be

recovered through Eq. (4) by considering arbitrary $\{t_k\}$ but $q \to 1$ (Kasteleyn and Fortuin isomorphism [1]); in this case we obtain the following (exact) result: $\prod_{k=1}^{3} p_k t_k - \sum_{k=1}^{3} p_k t_k + 1 = 0$.

(iii) The isotropic bond-dilute almost pure percolation model: $(p_k = p > p_c \text{ and } t_k = t_o < 1, \forall k)$

Eq. (4) recovers the $\underline{\text{exact}}^{[7]}$ (or believed so) derivat $\underline{\textbf{i}}$ ve $\det_0/\det_{p=p_c} = -q \ln q/p_c(q-1)(q \le 4)$ where p_c satisfies $p_c^3 - 3p_c + 1 = 0$.

iv) The isotropic bond-dilute almost pure Potts model: $(p_k = p \le 1)$ and $t_k = t_0 \ge t_c$, $\forall k$

The value t_c satisfies Eq. (5) for $t_1 = t_2 = t_3$. The following derivatives [7] are believed to be exact:

$$-\frac{dt_{o}}{dp}\Big|_{p=1} = \begin{cases} 0.3473... & \text{for } q=1;\\ 0.3028... & \text{for } q=2;\\ 0.2720... & \text{for } q=3;\\ 0.2494... & \text{for } q=4. \end{cases}$$
(6)

Eq. (4) provides instead

$$-\frac{dt_{o}}{dp}\bigg|_{p=1} = \begin{cases} 0.3473... & (0\% \text{ error}) & \text{for } q=1;\\ 0.3040... & (0.40\% \text{ error}) & \text{for } q=2;\\ 0.2750... & (1.11\% \text{ error}) & \text{for } q=3;\\ 0.2539... & (1.80\% \text{ error}) & \text{for } q=4. \end{cases}$$
 (7)

IV. CONCLUSION

conjectural grounds, we have proposed an (namely Eq. (4)) for the still unknown critical frontier of quite general and complex bond-random q-state Potts ferromagnet in the anisotropic triangular lattice. Although the proposal is not exact (small errors have been detected for q > 1 in the ymptotic slope when we approach the pure Potts model the isotropic bond-dilute problem), we believe it is an approximation (at least for 1 < q < 4) as it provides the results in the anisotropic pure Potts and pure bond percolation limits, as well as in the low temperature neighbourhood of the isotropic bond-dilute problem; furthermore the present proposal fully preserves the $q \rightarrow 1$ Kasteleyn and Fortuin isomorphism [1] In a forthcoming paper we shall give more details (as well supplementary checks) on the present conjecture and owe perform a natural transformation in order to cover the honeycomb lattice as well.

I acknowledge with pleasure fruitful discussions with A.C. N. de Magalhães as well as a Guggenheim Fellowship.

REFERENCES

- [1] F.Y.Wu, Rev. Mod. Phys. <u>54</u>, 235 (1982)
- [2] C.Tsallis, J. Phys. C 14, L85 (1981)
- [3] C.Tsallis and S.V.F.Levy, Phys. Rev. Lett. 47,950 (1981).
- [4] C.Tsallis and A.C.N. de Magalhães, J. Physique/Lettres
 42, L227 (1981)
- [5] A.C.N. de Magalhães, G.Schwachheim and C.Tsallis, to be published (1982)
- [6] M.F.Sykes and J.W.Essam, Phys. Rev. Lett. 10, 3 (1963)
- [7] B.W.Southern and M.F.Thorpe, J. Phys. C 12, 5351 (1979)

CAPTION FOR FIGURE

Fig. 1 - Triangle (a) and star (b) three-rooted graphs; o (e) denotes terminal (internal) sites (see [3,5]).

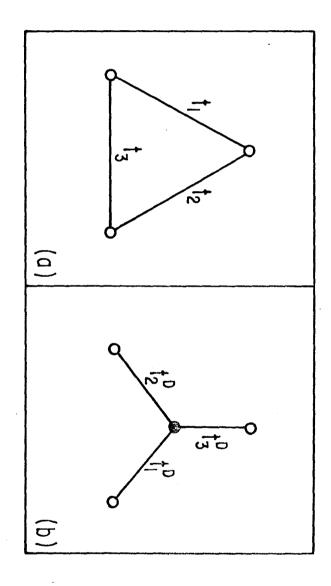


FIG.