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ABSTRACT

We introduce a procedure ("break-collapse method") which
considerably simplifies the calculation of (two - or multi-
rooted) clusters 1ike those commonly appearing in real space
renormalization group (RG) treatments of bond-percolation and
pure and random Ising and Potts problems., The method is illustrated
through two applications for the g-state Potts ferromagnet.
The first of them concerns a RG calculation of the critical
exponent v for the isotropic square lattice: we obtain numer-
ical consistence (particu]ar]y for g»0) with den Nijs conjec-
ture. The second application is a compact reformulation of the
standard star-triangle and duality transformations which pro-
vide the exact critical temperature for the anisotropic trian

gular and honeycomb lattices.



Within the framework of various exact or approximate pro
cedures (e.g. real space renormalization group (RG)) to calculate
statistical equilibrium properties, the central operational
stage consists in performing traces over all the possible
configurations of what we may call the internal degrees of
freedom of a (usually finite) cell or cluster, while what we
may call the external or terminal degrees of freedom (of the
same cluster) are maintained frozen in convenient particular
configurations The central aim of this paper is to present a

new method (referred from now on as the break-collapse method

(BCM)) which considerably simplifies the performance of such
tracing for all conventional d-dimensional uncorrelated-bond-
percolation and pure as well as bond-random -%— -spin-Ising
and g-state-Potts models (the latter contains, as it is well
known [1], the other two as particular cases); the cluster
might refer to a regular lattice or not, isotropic and homo-
geneous or not, in the presence or absence of external fields,
etc. The BCM reformulates and extends (in several senses that
will become clear further on) the "deletion-contraction rule
[1-9]; it demands the introduction of convenient variables

(transmissivities [10-12]) and graphs which reformulate and

extend the "pair connectedness" dintroduced by Essam in 1971[1,3
-9,13]. Though the BCM finds its most immediate applications
within the RG framework [9-12, 14-16], it has in fact no
particular relation with it, and can be used in other con-
texts (e.g. duality arguments, cluster expansions, etc).

Herein we present (without proof and mainly through illus



trations) the basic properties associated to the BCM and per-
form two simple pure Potts ferromagnet applications: isotrop
ic square lattice through RG and anisotropic triangular (and
honeycomb) Tattice through duality arguments.

Let us consider the i-th g-state Potts bond of a <certain
array; its Hamiltonian is given by H1= -q Jiso,c' where Ji
is the coupling constant and o and ¢' are the Potts random var
iables respectively associated to the two sites of the bond.
Once we assume that one site is in a given configuration, the
(conditional) probabilities p? and p? for the other site to

be respectively in the same configuration (sites"connected")

or in a particular different one (sites "disconected") are

given by

eqdi/kBT

e99i/kgT L g-1)

and

d 1
p. = ;
1 qu1/kBT + (q_-l) (2)

We define the thermal transmissivity ti as follows:

d =G/ Kk, T
t.= p?-p. - 1-e 1B (3)

1+(q-1)e 9957/KgT

(for q=1 we recover the isomorphism [1] between t and the bond
occupancy probability of perco]ation). If we have 'two bonds
(with transmissivities t] and tz) in series, the equivalent

transmissivity t_ is given by (see also Ref.[17]):



t, (4)

For a parallel array we obtain

_ t]+t2+(q—2)t1t2
t = (5)
P 1+(q-1)t;t,

which can be rewritten as follows [10-12,18,19]

where

D 1-t.
I : (i=1,2,p) (7)
T T+(g-1)t,

(D stands for "dual"). The generalization of Eqs.(4) and (6)
for N bonds is obvious, and enables the calculation of the e-
quivalent transmissivity (noted G({ti})) of any two-terminal
array or cluster (connected two-rooted graph) whose topology
is reductible in serjes-parallel sequences. The BCM extends
this procedure to any two-terminal cluster (reductible in se-
ries-parallel or not). Let us be more specific. If we have a
general two-terminal cluster whose bonds have respectively trans-
missivities {ti} then
N({ti})

G({t;})= —-——————D({t x (8)
i

where both numerator N and denominator D are multilinear func



tions of the {ti}o If we choose the j-th bond of the set and

"break" ("collapse") it,i.e. we impose tj=0 (tj=1), we will have

b

a new equivalent transmissivity noted Gj (G?) and given by

NP fe. 1)
G?({ti}')= g ! (9)
Dj({ti}l)
and
NS({t,}")
65(1t;3") = — (10)
D?({ti}')

where the set {ti}l excludes now tj' The multilinearity of both

N and D Teads to

N({t;}) (1—tj)N?({ti}')+th§({ti}') (11)

and

b ' o '
D({ti}) (1—tj)Dj({t1} )+tij({ti} ) (12)
The sequential use of Eqs.(4), (6), (11) and (12) is what we
call the "break-collapse method" and enables, with consider-
able economy of effort, the calculation of any Potts cluster,
i.e., the tracing over all the internal degrees of freedom is

automatically performed through the simple algorithms and top

ological operations just mentioned. Let us illustrate the pro
cedure on the example of Fig.l.a (b=2 Wheatstone bridge), whose
broken and collapsed clusters are respectively indicated in

Figs.1.b and 1.c where we have operated on. the central bond of



Fig. 1.a; we obtain (by using Eqs. (4) and (6))

eb(r)- M LE) . 2tPe(a=2)t (13)
D7(t) T+(gq-1)t
and
G(t)= NO(t) _  4t%+4(q-2)t°+(q-2)%t" (14)
DE(t) 1+2(q-1)t2+(q-1)2t"

therefore (through Eqs. (11) and (12))

2t2+2t%+5(q-2)t"+(q-2)(q-3)t° (15)

G(t) =
1+2(q-1)t3+(q-1)t*+(q-1)(q-2)t°

which coincides with a particular case of the expression reproduced in Ref.
[17] and for q=1 (g=2) recovers those appearing in Refs. [9, 14-16 and
20] (Refs. [10-12 and 21]). We can verify on Egqs. (13),(14)and

(15) a general property, namely

Z(numerator coeffs.)= x(denominator coeffs.)= qK (16)

where k is the cyclomatic number [22]and is given by

k = (number of bonds) - (number of sites) + 1 (17)

Furthermore, for q=1 and any graph, D equals unity. An useful

corollary of Egs.(11) and (12) is that

26(1t}) Ng({ti}')-N?({ti}')—G({ti})[Dg({ti}')-Dg({ti}')]

ot D({t.})
J i (18)



Another 1nteresting property concerns planar arrays and
duality,and extends Eq.(6). If we consider any pair of dual
clusters (i.e. superimposable 1in such a way that each bond
of one cluster crosses one and only one bond of the other;
see Ref, [23] and references therein; in Figs. 1.b and 1.c
as webll as in 1.e and 1.f we present two such examples; the
clusters of Figs. T.a and 1.d (b=3 Wheatstone bridge) are
both self-dual) and we respectively note G and GD their e-

quivalent transmissivities, we verify

1-G({ty})

eP(tlyy -
! 1+(q-1)6({t,})

(19)

Let us now perform our first application, namelya RG cal
culation of the critical point tC and corre]ation lTengh crit
ical exponent v of the 1sotropic homogeneous pure Potts fer-
romagnet in square lattice. We renormalize Wheatstone bridges
of order b(renormalizing linear expansion factor) into a sin
gle bond. This choice is particu]ar]y well adapted to the
square lattice as it recovers its selfduality for any value
of b (for q=1,2 see Refs. [9-12,14-16,20,21]and for any q and

b=2 see Ref. [17]). The recursive relation is given by

t'= ty(t) (20)

where tz(t) equals G(t) given by Eq.(15) and



ta(t) = [3t3+8t"+(8q-6)t°+(459-82)t°+(249*-50q+16)t”’
+(2q%+62q2-223q+198)t°+(34q°-37q%-270q+422)t°
+(4q4+123q%-952q2+2287q-1814)t¥+(66q"“-593q>
+2098q2-3430q+2157)t™(13q°-144q"*+671q°
-1646q2+2115q-1126)t2+(q®-13q°+74q*-237q°>
+451q2-482q+224)t 5]/ [1+(4q-4)t3+(4q-4)t"
+(2g2-2q)t°+(8q2-10q+2)t®+(2192-43q+22)t’
+(10q%+q%-62q+51)t®+(329%-107g%+101q-26)t”
+(7q%+51q3%-394q2+722q-386)t %+ (57q"-445q"
+1275q%-1565q+678)t1+(13q%-135q“+559q°
-1143q2+1138q-432)t2(q®-13q°%+71q"
-207q%+337q2-287q+98)t " ] (21)

We have calculated t4(t) as well but is too long to be repro-
duced here. The recursive relation provides, for all b, the
(unstable) fixed point t=tCE(1+/TT)'1 (besides the trivial ones
t=0 and t=1) which is the exact answer [24]. The RG approxi-

mation for v is given by V= 1nb/1n(dtb(t)/dt)t=t . We have
c

obtained
dt o ¥2
2 8+21 18ag+5
- . q _+106g+>q (22)
t=t, 8+15q1/§+8q+q3/2
dts _ _576+2668qY2+5143q+5323q¥2+3173q2+1078q72+190¢°+13q72 (23)
dt |, _
t=tc  576+1964q¥242711+1955q¥2+789q2+176972420q°+q 72

and an expression for (dt4/dt)t=t which is too long to be re-
c

produced here. The associated {vb(q)} are represented in Fig.



2 (see also Table 1) and compared with den Nijs conjecture
[25] (both branches [26]) and Klein et al conjecture [27]. Al-
though v is defined only for q<4 (the transition is known to
be a first order one for g>4) we may formally calculate v(g> =)

as follows:

v(g+e)= Tim Tim vb(q)=1im Inb = ;

broo  gooo bso  In[b2+(b-1)2]

(see Ref.[26] for a possible physical interpretation of this va
7U€j§££ for g»0): We have not been able to discuss the Timit g>0 for
b>4 but for b<4 we have obtained vbm1//a(this is probably true
for all bB: this result coincides with den Nijs conjecture [25] ,

namely v= 2/3[2+n/(arcos ﬁ? - m)]~ m/3/q in the limit g>0.With

in this respect let us remark that numerical analysis of vb(q)
for b= 2,3,4 and gq= 1,2 suggests that the present RG approx-
imation converges (towards the exact result) faster for small
values of q.

Let us now perform our second application, namely a com-
pact re-calculation of the critical surface of the fully ani-
sotropic homogeneous pure Potts ferromagnet in triangular(and
honeycomb lattice. We essentially follow along the lines of
standard duality and triangle-star transformation [28,29];they
are however reformulated within the present framework.We must
now use three-rooted graphs but this does not increase the
operational complexity as the BCM holds as stated before for
any n-rooted gr&ph with the convention that the collapse of
two terminals or of one terminal and one internal site mwvﬂms

a terminal, whereas the collapse of two internal sites pro-



vides an internal site; furthermore internal and terminal sites

are strictly equivalent if the point is an articu]ation one

(its deletion separates the graph in two or more pieces;with
in the present context each piece must contain at least one
terminal site) and the transmissivity of a graph with one or
more isolated roots vanishes, Let us first consider the graph
of Fig. 1.9 (noted GA) and operate on the t3—bond. The broken

and collapsed transmissivities are respectively given by

t,t

b 172
65(ty,tp)= — (24)
and
to+t +(q-2)t t
65(ty,ty)= ——2 1°2 (25)
1+(q-1)t1t2
therefore, through Eqs.(11) and (12),
) t]t2+t2t3+t3t]+(q-3)t]t2t3
6, (tysty,tsy)= (26)
1+(q-1)t tyty

We consider now the graph of Fig.lh (noted G and operate on

v)
the tg-bond. The transmissivity of the broken graph vanishes
and that of the collapsed one equals t?t?/], therefore,though

Egqs.(11) and (12),

/1 (27)

w o

t

Ny O

t

D . .
where t. is related to t. (i= 1,2,3) through Eq.(7). The simul

taneous performance of duality and star-triangle transformations leads



to

D ,D

6y (tystysty)= Gy(tysty,t (28)

v( 3)

which, through notation changements, reproduces the exact [28,

29] critical surface we were Tooking for. Consistently the ex-

act critica] surface associated to the honeycomb lattice is giv
D ,D .D,_

We have presented herein the basic operational rules of

the"break-collapse method", which considerably simplifies hu-

man or cumputer effort (no counting of configurations is needed)

for the calculation of bond-percolation (g=1), Ising (q=2) and
g-state Potts clusters (with two or more terminals exempted
from the statistical tracing operations), and have i]]ustrated
their use through two simple applications. We are presently
working on a certain amount of other properties and exten-
sions of this formalism,

We are indebted to G.Schwachheim, A.C.N. de Magalhdaes and
E.M.F. Curado for many valuable discussions; one of us (C.T.)
also acknowledges useful remarks from A.Aharony, M.Berry, M.E.

Fisher and D.Ruelle.
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CAPTION FOR FIGURES AND TABLE

Fig. 1 - Examples of planar clusters. The solid (open) circles

TABLE 1-

denote the internal sites (external sites or roots).

The RG correlation length critical exponent v as a
function of q (solid and dashed lines); the exact Ising
value (x) and Klein et al [27] (o) and den Nijs [25,26]
(dotted and dashed-dotted lines) conjectures are indi-
cated as well. |

RG  values of v; vy~Aq” 7" if g»0 and v,~B, (1+C q” ")
if g»~. The values with (*) recover values appearing in
Refs, [10-12, 14, 15, 17, 20, 21].
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