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* Abastract

The problem of the exact diagonalization of the Hamiltonian of
an assembly of N bilinearly interacting bosons is discussed in what concerns
the eigenvalues as well as for the expression of'the new bo?on operators in
terms of the old ones. The method is equivalent to the standard equa;ion—of-
motion appgoach, neveftheless sensibly more concise. Three sets of opera-
tional rules are indicated, and their use is exhibi;ed in some examples. In
some particular cases of practical importance (far example, when all the
coefficients of the Hamiltonian are real), the research of the eigenvalues has

been compacted as much as possible.

Resume

Le probléme de la diagonalisation exacte de 1'Hamiltonien d'
une assemblée de N bosons en interaction bilineaire, est traité aussi bien
en ce qui concerne les valeurs propres que pour l'expression des nouveaux
opérateurs de bosons en fonction des anciens. La meéthode est equivalente 2
1'approche standard avec 1l'équation de mouvement, cependant elle est sensible
ment plus concise. Trois ensembles de régles operationnelles et leur usage
sur quelques exemples sont indiqués. Dans quelques cas particuliers d'impor-
tance pratique (par exemple, lorsque tous les coefficients de 1'Hamiltonien
sont reels), la recherche des valeurs propres a &té compactée autant que

possible.



1 ~ Introduction

It is well known from long date (at least from the date of Bogo
lyubov's paper[l] on superfluidity in 1947), that the Hamiltonian of an assem-
ply of N bilinearly interacting bosons (or fermioms) is susceptible of  exact
diagonalization, in terms of new non interacting bosons (or fermions). The
standard method used to pérform such a diagonalization is the so called 'equa
tion-of-motion approach", proposed by Bogolyubov and Tya.blikov]:z’3’9:J in the
years 1947-49 and by Bohm and Pines[51 in 1953. This approach is formally /
presented (see for example Refs. [6] and[7]) and discussed[é’('a by several
authors. It is equally useful for fermion problems[lo—ljl (see Refs.[i4] and

[1’16_18] (phonon—phonon[16] .

[18]

[15] for supercondutivity) and boson problems

photon-optical Phonon[w] , magnon-magnon L16,17] in

R phoﬁon-pseudomagnon
teractions, etc.) Because of the wideness of the applications of this diagona
lization problem, we thought it was worth while trying to put it in compact /
operational rules, and this is the purpose of the present work. However, /

only the boson case is extensively examined, as in the fermion case, the ca

nonical transformation between old and new fermioﬁs is given by an unitary
matrix with no further complications. This is not so for the boson case, /
where the canonical transformation is governed by a matrix related to not /
necessarily positive metric, a fact which introduces a certain amount of '"pa

thology" in the case.

In Sect. 2 the Hamiltonian we are going to deal with is pre-
sented; in Sect. 3 appear the basic ideas of the diagonalization, which 1lead
t o the three sets of operational rules of Sect. 6; in Sections 4 and 5 appear
a particular canonical transformation and the treatment of particular Hamilto-

nians respectively; we conclude in Sect. 7 by a practical comparison between



the three diagonalizing methods exposed in this paper; finally in  Appendix

are treated the cases N =1, 2, 3 (N = 1 corresponds to the historical form

of Bogolyubov's transformation).
2 - Hamiltonian

Let us consider an assembly of N bilinearly interacting bosons,
which might be particles or quasi-particles The most general* quadratic

Hamiltonian (whieh needs not to conserve the number of bosons) might be

written as follows:
ZM ZN 2wy b: b4t bt Vs bib yen
A‘rf: Pl w,{‘s A J+ A‘J A J AJ A J
= §T

1 A
where factor 2 has been introduced for future commodity; OJkS, ‘%{j and \ZB

are complex number, and the creation and annihilation operators satisfy

Lo, b ] :[B’;,b}] =0 vii,i) 22)

E ‘o; , \o:] = S,{" = Kroenzcker's o\e“‘a v ("/J) (2b)

Our final purpose is of course to present this Hamiltonian in

the form

* Eventual terms linear in boson operators can be easily removed by defi

. p . d
ning new boson operators related to the old ones by d= ‘:H-/u. and at= Er-l-/lA)
where A € € . Additive constants in Hamiltonians are not going to be ex

plicitely written is this paper, because of their simpleness and quite fre

quent irrelevance.



N

where the {L: should be known real positive functions of the previous para-

J

meters, and the new boson operators known linear combinations of the old omes.

i 32
Let us use the notation w/ \) and V= for denoting the ma
3 4 z -
trix {(*)AJ / \>4\\ and \>A" respectively. Because of commuta-— -
tion rules (2a) we may always consider V! and Qlas symmetric matrix.
Furthermore, hermiticity of M implies hermiticity of W as well as
\)2»: vi= V , where (%) denotes the complex conjugate. Hence (1) may

be re—written as follows:

S A

where Q) =w?t and V= v ((+) and (T) denote the adjoint and

1 g ...+ .. ,* . t o + f‘ ?‘: Al '
M:%{wub;LfwubAbJ+QQBALJ+QA lg,.bdj an

the transposed matrix respectively). Let us now introduce the nomenclature

[ b

‘b}E i ;(blglb>+:(b—|t/*“/ 7’/)"'/""/&)"’)




Remark that if M conserves the number of b-bosons¥, then
\):’ O . The Hamiltonian (1') and the commutation rules (2a, 2b) may be

written as follows:

3P = <b|H|b> am

loy (bl (167> <6"1)'= T =[A0s On_ -

where |... PR | means the matrix direct product, and 1~ and ON

denote the N x N unity and zero matrix respectively. Remark that

|6 > #]Yt

3 - Diagonalizing method

Let us first of all state a basic property: the Hamiltonian gi
ven by (1') will be diagonal in b's operators (this is to say\) =0 and W

diagonal) if and only if

[J—i‘(’,bi]:—Zw&i k- YV A

A

The proof is straight forward once we have remarked that in general

[;H’,L,;] =-2§-{wasbj+\>;jbz} VAL

* In any case H is going to conserve the number of B~bosons, which are

to be introduced.



This is the property we shall use to find the new boson operators B's which

put J“? into diagonal form, this is to say
qf = (B|Ho| B @

where HD = A1 : -~

— T n -

w0 =

O O s [y ~_(7_w

To perform the diagonalization let us propose

{B]=<b|lT and 1B>=T1|bD

' +
where T is a 2N x 2N matrix to be found. In order to have that BJ be the

adjoint of B; s T  must have a particular form:

[}
T Ta
T =|---+---- @

T

As we want the B's to be boson operators, they must also satisfy the commuta-

tion rules

‘B><B|-(\B+>< B+I)T= J (5)



which implies (once we have remarked that IB+> = T* l b'+ 7 ) that
_— - — .
THYT TJT=1,  hence T '=JT°J SR

We see as a corollary that the modulus of the determinant of _r.equals one,
It is also easily verified that the ensemble of matrix T satisfying (4) and

(5') constitutes a Lie group (in general non abelian). Relation (5') may

be rewritten

T -TTT = e 5"

T -T R* = Ou (5"

To be sure that J*F is diagonal we impose

4

[4.8;] =-20;B; v}

or more compactly

ALY

Iy

-2 J Hp| B> ®
Taking into account that

[46,185] <[, T (2] = THH ] = -2 T TH L) |,

relation (6) immediately implies that



T*TH=JH,T* h

hence T-i HJ- T = HDJ (6")

where we have used relation (5'). And taking into account the particular form

of T » (6") may be rewritten as follows

,\DH :RH ,Q_:OM

—_— =~

- R:g-?ir ON :""..G.

where

BT o T+RT*T-TVL-TVT =P ¢

Rez TTwTht WW T TWTTRVT, = Ry oy

Let us formulate in another way what we are doing:

= (b|HE) = LBUTT)H(IF(T(INT)T)]6>
= (<BIT)(THRITI)(T T T)6>) =<B| Ho| B>

where we have used relation (5') in the last step.

Before going on, a few words about a frequent particular case,
namely when \) =0. In this (and only this) case the solution is given by

1'2 :ON » and we have to deal with a standard N x N diagonalization pro-
blem:

TwT = wiTh T T, =1y



10.

Let us now turn back to the general situation. The secular

equation of our diagonalization problem is given by

1 k]
det (HJ __QS 17_“) = N-th degree polynome in ..O-J =0 VJ (7N

where the fact that only even powers of i}l appear, will soon become clear.
So our problem will be practically solved if we find a matrix | which simul
taneously diagonalizes the matrix HJ and satisfies restrictions (5"a , 5"b).
The discussion of the existence and unicity of such a matrix T is beyond
the scope of this paper. However let us point out a very suggestive fact:
the number of unknown real quantities is exactly the same as the number of
real relations between them*. We have indeed (4N2 + N) real unknown quanti
ties: 2 N2 for the complex matrix"r., 2 N2 for the complex matrix ‘Ti and
N for the real diagonal matrix ). . On the other hand, we have

(4 N2 + N) real equations to solve: N2 for (5"a) (motice that the concerned
matrix is hermitic), N(N-1) for (5"b) (notice that the concerned matrix is an
tisymmetric), N2 for (6'"'a) (notice that the concerned matrix is hermitic),
N(N + 1) fom (6"'b) (notice that the concerned matrix is symmetric) and

finally N for (7).

Let us now prove that in the secular equation (7), only even

powers of (L. appear. Relation (6') may be rewritten as follows:

A

* This is not a sufficient condition for the existence of the solution,

therefore strictly speaking it guarantees nothing beyond a strong suspicion.



11.

HIT =T HpJ

or, more explicitely,

i i / 1

|
"‘\> Ti'Tz T.:Tz ‘ﬂ';ord

in other words, the j-th columm of the left-half of T is nothing but  the
eigenvector associated to the j-th eigenvalue of _fl.(namely _flj ), while
the j- th column of the right half of | constitutes the eigenvector associ
ated to (- ilj). Then we see that the eigenvectors associated to ;{ll and to

(-'llj) are intimately related, and that the segular equation (7) contains only

T
powers of ﬂl -

Let us assume we found a particular solution¥* (noted T) of

equation (6'"b). If we write now

pnd . =1 +
T=TS9 with ST =J ST
relation (6'') may be rewritten as follows

— | Q Q.0
S(FurT)s-s {2t s o 21
C)N V-(; : ()A, :‘211.

where

* Equation (6'"b) admits of course a great number of solutions, from which

only one (independent) satisfies simultaneously (6'"a).
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—

= T T * =+ T RTT 9= +
QH-E ‘|*wl]+T:-Tw*T:L -T \)T‘;.—Tz QT;:QH-
The solution S may be written as follows

i

S\ ! ON
S =({-—-+--- (8)
*

l
Oni1 S,
therefore S:‘ GH S] = ‘(7-
St = S)

with

In this way our problem, as in the case \) = O has been reduced to a

standard diagonalization problem of the N x X hermitic matrix QH' The matrix T

will be given by

In all usual* physical Hamiltonians, we want the {.ﬂ.&} to

be real (and positive) numbers, therefore
N 2
det(H) = ‘lT| Qi >0 )
J:

We can also see that

]
F E(H’J)Z: .f'.;,_‘.:_;'..
FLF: Fl*

* Hamiltonians adapted to describe displacive phase transitions might

constitute an exception.
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=W VYV = R
where F. = W -\) = )
RV ALY --FRT

If a matrix T diagnonalizes HJ necessarily it diagonalizes also F (the

opposite is not true*), therefore

7.:0

T (10)

T FT ‘( HD I) - T2

ON i .O.
It follows then that all diagonal elements of F1 are positive, this is to say
{"C&)u _] ' j>0 Vv A (11)

It is clear that conditions (9) and (11) are necessary but in general not

sufficient.

The general form (4) for T leads to

T’F : F

W

i Bz TRT-TTR L+ TR T-TTR =T
ReZ TV ET - T 4+ TR -Ty A* T, " -Rp

T'FT=

* The reason is that the eigenvalues IﬂJ and -“Ql\‘ lead, in F, to

a degenerate bidimensional subspace related to the eigenvalue ﬂJ . It 1is
‘ *
clear that \?*Oﬂand VW -wy = ON are compatible (an example is given in

Appendix II).
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and relation (10) may be rewritten as follows:

2 (10'a)

Po-Q

Re = On

If we assume we found a particular solution* (noted ) of equation (10'b),

(10'b)

the matrix | may be written as
T=-T5S
with S given by (8) and satisfying
S7'Qe S, = L
3;' = S\+

2

where
R E Erex=Ex = =, = *= t
Qe = T RT- TR L TR A TR T < O
Two immediate corollaries are

=Q°
Qe H . . .
and det (F) = [det (QF)] ~ [det m)] o TT ﬂA

.
™

The preliminar reserch of | might be of practical importance: 1-"}f3'1—
might be not diagonal, but is expected to be much easier to diagonalize than

HJ.

r—
r——

* Every T is also a T , but the opposite is not true.
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4 - Particular solution T :

Let us discuss in this Section a general way to construct a
particular solution T of equation (10'b). We shall first of all treat the

general case N = 2, Let us use the notation

‘FN ‘:l‘l. c (@) -ﬁléﬂ
F. = and 2 ~ i
£ {:zz -f.e do O

where FH,‘F‘L‘L, ‘FIL and 9'1 are real numbers and let us propose the

i)

w—
—

following form for | ¢

e = iXn O 1
*::C.L) ‘\')n_ 0 | BV)J T;.:e— 3)"%7. | O

bl

; with \Vn_ and X”— being also real numbers. We verify that restriction
i (5') is automatically satisfied, therefore it is enough to impose (10'b),

which leads to the solution

Xu =P
2.
£aa - fu

dmd f"\ 2 ‘PrL ~

——
~e—

We see however that our proposal for | is not satisfactory

if -F“': ‘F?.?. » 80 let us make another one for this particular situation:

i ©O T A 1 O
W Toze Myl

—%i = C\f\ \'\"7. "'"l

o |

where q)l?. and Xlz are again real numbers. Restriction (5') is again
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satisfied and relation (10'b) leads to the solution

X = g)n.
2{n
‘rn.-i'fn*

We see that we have again troubles in the particular case of

. . . > . 1 .
Fn_ being a pure imaginary number (let us note ‘F\‘L = A l‘l' ) simultane~

and th 2 Yoo =

ously with F" = ‘F’L‘L . In order to be complete let us treat this case

by making a new proposal

o i O = ';‘X'z \ O
T, = ch g, amd  T,=ae shy,
o | o |\

where ‘Pu_ and Xn are once more real numbers. Once more restriction (5')

is satisfied and (10'h) leads to the solution

Xn. = }Pn.

and th 2 ¢ - GT:
12

" ~
Let us finally say that if ‘FI‘L vanishes also, then -Fn_

S
must vanish, otheryise Q. should become a complex number*. So we may

- }

choose T = '14 as F will be diagonal by hypothesis.

I

We are able now to make a porposal for T for any value of N.

* If -F“ = ‘F‘L‘L and .Fn_:o the secular equation for F leads to the
3 , . 4
roots ‘Q'Iﬂ.: ‘Fu i rn. .



Let us use the notation

,—Cu ‘F\l N e FIN\
[ U XY

g
N

17

( 0 < . .

~ a¥n .

‘g\le— O "
.2] . .

3
(©

)
+

=
o

will be

r—
om—— —

where we have |i N(U‘d) factors and each

pending on two real numbers (namely \Pﬂ\ and X‘j) and its form is

by

are real numbers. Qur proposal

= = =InED 24 =N = N-LN (12)
T=T"T TTT l T

TY is a 2N x 2N matrix de~

given



A
2
il

I

3

and

“J:e, ‘s]n \.P,;.\

to

. LY -

O eeo

o\..o

O O-tos

18

(13)

(14)
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where the central matrix C is given by

"-XA"J

Ty = T =0 aud T =< s'n "P‘J (14a)

N ‘ .
© ff fu hemehz{uwﬁ-kr-lwm‘-mmlvy«l‘}#=o;
=1

A XA
d
T-I‘L =0 avd Ty=- 'C-,_z = S]n LP‘“\S (14b)

if Lﬁ 2‘{;.\ and {:'L\ is not a pure imaginary number, hence
N ‘ * ”*
= { ik COug kodki k- Vik Phi- ik Vhs | #0 ;

&=\
. AN

; (1l4c)

if 4&. = -33 and ‘L‘J is a pure imaginary number.
T

It is easy to see that in all cases, satisfies  automati-

cally restriction (5'). On the other hand relation (10'b) leads to N(N-1)

real equations which in principle enable us to find the N(N-1) unknown

quantities {Wij} and {X"l} .

5 - Particular cases

We entend to expose here a few particular situations which
deserve attention because of their practical importance. Let us express the

matrix | which diagonalizes HJ in the form

T = LX
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with L =

--== /

]
Z 1y

|
}
!
I
[}
!

Y
therefore T"‘ HIT T = X“ M. X
(@ w")+(\) V") W)= (V477

where MLE -—-— - - - -~

2 (W +u” f(\)'f‘\)*) ‘(Co -w%) - (\) V*)

lent to a standard diagonalization of M,_ , whose secular equation is given by

det (ML-)\ 47_”) =0 (15)
Now, if w+w*: i(\)-‘- \)") this leads to

dee ( (W- W™ V-V*)L 4 2 ,) =0

where we have used that the determinant ofimatrix is invariant through transposi

tion. Our work is now simplified as we have to deal with a N x N matrix.

. . . . - *
Another relatively simple situation occurs when W= (W awd

O:: \)* , @8 in this case equation (15) leads to

)\'1” ‘I~OO-\-\> _

- -
._‘-_,_.._-— .

~w-v A

A simplified method for calculating such a determinant is given in Appendix IV.
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Let us now turn to another situation. We shall now express

T as follows

i
with K = {'-l—_,- - ,-1-~_ ':-&4_”
Z - rd

Al 4y

therefore T_' R T = y"l MK y

(@W-w*)=L[(P4V%) 1VZV)+4 (Wtus®)

"‘-——-.._.—n--_—-_.Q

with MK':':&—-—-""“'"

(V*-V) =4 (w+w*);(w~w") +A(V+V)

As before, and only for the research of the eigenvalues, we may use the ge-

cular equation

(16)

det (Mk -2 1) =0
In the case \)*-\?: tA(C\) + ‘-O*) this leads to
det(((-e)-a(207)= 43 ) =0

which again is a simples problem.

Pinally, if W-w*= P+ V¥= 0y , equation (16)

" leads to
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—  amm e

Ay 1 VAW

—
o—

This determinant can be calculated with the method indicated in Appendix IV.

Let us recall that the cases (W= = Vv vX = ON are very fre-

quent in physics.

6 - Methods

From the ideas developed in previous Sections, gperational methods emerge,
which are exposed here. In all of them we must, first of all, present the

Hamiltonian to be diagonalized, into the form

= <b[HIbD>

which defines the 2N x 2N matrix

w |V
fou) I _..' - ;—
»

Vo, W
The problem will be considered completely sqQlyed if we attain the knowledge
(as functions of W and \> ) of the N real eigenvalues {‘Q,]_} (which
define the diagonalized Hamiltonian I-LD), and of the 2N x 2N complex matrix 1
(which defines the new boson operators <B| = <b| T in terms of the old

ones). We recall that |  has the form

it Tk
T={--~="7

LT
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- al

which gives also the N first eigenvalues {T:) } by the N x 2N matricial

relation
T\ — = ?
- - = Tl lz. .-t ”
7"
where ’ . 4
:.\
- _| &
Tj =B B
A
2N
£
il

So the knowledge of T impligs in the knowledge of 4n? real numbers (only
2N2 if T is real). We recall that

1y 1 Oy
J=t---t----

|
On "'"1”

Method I:
1) Find the roots of the secular equation

S
det (HJ-A 1?.“) = N-th degree polynome in A =0

then ’Q;\:])\Jl G=1,2, ..., N)



2)

2"

3"
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Write, for each value of 'j , the set of 4N real equations (only 2N if

T is real)

(:(HJ ﬂ"ZN) ‘]k=o k=1, 2, ..., 2N)

where by [l.. ];?e are noting the k-th component of the vector. Then

eldminate an arbitrary one between them and replace it by the real one

s [tf]"- = |4

a7
&‘Nﬂ
We have in this way a set of 4N independent real equations (only 2N if
.T_ is real) which in principle leads to the knowledge of the 2N complex

numbers { {;S 3 associated to the chosen value of j. An example of use

of this method is given in Appendix I.

aw—

Alternative possibility for step (2): Find a particular solution T  of

the equations

(T W |z+ T, W T~ TOT-T™V T;_).,”O 4‘>/J>

where by (.,.%j we note the {j-th element of the matrix, and where

the norm relation (17) must also be satisfied.

Calculate the matrix
+ T A T
Qu=T T+ T, - THWYL T, VT,
and solve the standard diagonalization p;oblem

57! L= Q.5
( QHS,)A:J Q5



_.\ -
with 5‘ = S‘+ and &Az Kroenecker's delta.

4') T 1is given by

— = o
'T_; :_-'—]-‘ g‘ 3V\0! T = \7. Sl
Method II

1) The same as step (1) of Method I

2) Calculate the matrix

L'u i “‘:"J

.

F‘_E . T : :CO‘L—Q\)*

*
‘:m e =" (:NN
~ A Y T
{ 0 ‘Fn.e <« fw e':{)
~ R ~ AVIN
-g_-ne:?n 0 o= T ‘Fule‘

o
hj

S0 & My )
\'gm)e ‘g—we - -0
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3) Write, for each one of the _;:NY(N—I) values of (ij) (ij = 12,13,...,1N,

23, 24 ..., 2N, ...,(N-1)N),the 2N x 2N matrix

‘1_. is given by expression (13), and
T;_ is given

by expressions (14) and (l4a) if 'F‘»‘- #‘:ﬁ ;
by expressions (14) and (14b) if L;,{ = ‘F_“ ‘ercl @(":“J)¢O )

by expressions (14) and (l4c) if F'i i F‘h QMJ @(EJ):O .

4) cCalculate the 2N x 2N matrix

?: :_F'n ?13 =T|N ?rzs ?zq | :Iiw —?—'n-p,n

which will be now expressed in terms of the N(N-1) real numbers { q"‘\g

X . . Then present =|= in the form
K

mll

——
“a—

which leads to knowledge of and _[; separately.

and



5)

6)

7)
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Determine {\P%} and {X"Jj by solving the N(N-1) real equations given

by the matricial relation

= = ErerT*
TR TR TR R+TRR-TE L =0y

I

Substitute the solutions in the expression of T obtained in step (4), which

- NS
will now be a function of .F .F .. and L.? .
S D I L 4
Calculate the N x N matrix

—
mp—

Qg = TT FTa T T FT?. TTFI T

Proceed to a standard diagonalization of the hermitic matrix Qg by a uni

tary matrix S, presented in the following form:
iy

I L S I

4

[(QF"Q}S 1u)§j]h=0 (k=1,2, ..., N)

then eliminate an arbitrary one between them and replace it by the real

equation

iy

| 5;,“-'=4

The solution of this set of 2N real equations (only N if S4 is real)

\ >
~gives the vector Sj'



8)

N

Method III:

— et

28

Calculate the matrix
_— = ! *
ll = T: S' 'QMJ TTL = ‘T'z S'

and then
i

T / _r'} : T.;':
T ()

Calculate the matrix
1 | - []
H =(T') RIT'J

and enter in step (2) or step (2').of Method T.

An example of use of this Method is given in Appendix IT.

This Method is applicable only for the research of the eigenvalues

{‘{)‘J} and only for some particular cases:

st

17" case: W+ = ,t(\>+\?*)

Find the roots of the secular equations
- 1
det((w“‘w +\)«-V*)-/U.,'1N) =0

N ‘o
then .Q_J_ .2.[;{.\ GG=1, 2, vn, N)

2nd

’ case: W +wWF= Lk\)‘\)*)

Find the roots of the secular equation
2 ,
det (((w~w*)— L(\>+\)*)) - M 4N) =0

| f =
then _.Q_d ,im (j 1, 2, ..., N)
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case:

Find the roots of the equation
N M N=-m
:E. Q-() C:NI/J‘ =0
m=9o

where C, is given in Appendix IV with

A=-wW+V and Bs-w-V

and then ‘O’i: m (G=1, 2, «e0s V)

4th‘cas'e: w~w*= V+ \))":O”

Find the roots of the equation
N A N-m
= () CM/u. =0
M":O

where C_ is given in Appendix IV with

i

A= V-aw and B= viaw

and then 'Q:S: 71: G=1, 2 vouy M)

Examples of the use of this Method are given in Appendix III.

7 - Conclusion

Let us conclude by saying that the exposed method for diagona
lizing any Hamiltonian of N bilinearly interacting bosons is absolutely equi
valent to the so called '"equation—of-motion approach'". However systematic
exploitation of the peculiar boson properties had led to a concise mathematic

formulation which allows for the establishment of operational rules. We have
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talked all the time of N bosons; nevertheless the method is equally aplicable
to N families (or branches) of bosons, by simple identification of the boson
operators (b‘ = bﬂ’ / ’01 = g Q.‘t'c.) as it was done, for
example, in Refs. [1], [16]1, [17] ana [187.

Finally let us compare the different methods presented in this
paper. Method I (steps (1) and (2)) should be considered the most standard
way of performing the diagonalization, however if the matrix H is rather com
plicate (low symmetry, no zeros) the more delayed procedure indicated in Me~-
thod I (steps (1), (2'), (3') and (4')) could be preferable. Furthermore,
if H is very complicate, the highly delayed procedure indicated in Method II
could be worth while. If we are interested only in the eigenvalues (as it is
frequently the case in Statistical Mechanics), there is no doubt that Method
III should be adopted if we are in face of one of its four cases; if not, the

problem will be solved by Method I (step (1)).

We acknowledge with pleasure early and fruitful criticism from
J. Tavernier as well as useful discussions with R. Tabensky, J. W. Furtado

Valle, R. Feijoo and R. Lobo.
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APPENDIX I

Let us treat, by the Method I, the cases N =1 and N = 2, For

N=1we have w € R and v = l\)lelsoe C . The secular equation is

w = A -[¥] <9 A
=0  hence =X (‘«0."’\)'2) hence

-n =
vle™¥ o -2
T iy
ﬂ_:(&) -’Vl ) . We see that it must be @ > [\)I Let us propose

fﬁ:ohxf and 'T;:e.;‘xshtp

therefore (performing step (2') of Method I)

X = avd th(y:'Pl/_w
hence :-l: = | (UJ-l- dwl']pll)‘/z-
'z (w‘-]vlz)v"

A g
— e,g) (N‘JCU"'-"\)P‘)Z

and —r‘L =
Z  (wv-|v])%

. 2 . 2 . .
We may then verify that QH =Jyw - l\)l , as it is matural. In this case,

obviously T = T.

For N = 2 we shall only find the eigenvalues. The most general

situation is given by
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with wn s 0322 being real numbers and the rest being complex. The secular

equation is given by

1
=N-gXN+C =0

* * *
\>( \ Olz "(J“ -2 =Wy
* ¥*
Vi Viu - 12 ~Wym A
where

(S Wy F Wy, 'f'Z)wlz\L"lVlll\.‘i sz]L-'ZWn\l

and

o = wh ooty e~ 2uwrefua- of P -l V]
-2 (@t [l Dl + |9 el + | Vi)’
-2 R0 WVu) =2 R (VD VT ?)
+ b, Ro(200 0T V2) + U i R (w1 V1 V)
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i
therefore QO |2 = 4| — j‘_ —_— Cz

We see that it must be

Z .
C"7/O awd Cl 24(:2)/0 .

The particular case Vi, SV T 0 and Wy, = \)12 € R appears in Ref. [18:[.

On the other hand, if we assume that w,, =w,, =V,, = Vi, = 0, we reobtain

the case N = 1.
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APPENDIX II

We shall treat here the case N = 2 in the particular case

= = = = W = 1
w w 1, Vi, Vo 0 and 12 =V, €ER. The eigenvalues have

already been obtained in Appendix I:

-O—l,‘l. = v'( Tt 2w,

therefore it must be |w,,]| < %% We verify immediately that F, =0, ,
hence T = 14 , therefore
4 2 Wy,

Qe =F, = and H = H.
2 Wy, A

Now we enter into step (2) of Method I. The equations to determine T are

[ rers 4u):ﬁ]f0 (k=1,2,3)
W) +(48) - () - (1) = 1
[(H3~\ll~zw.z 4u)ﬁ]k:o (h=1,2,3)

(1) (&) - (8) - (82) =1
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The solution (attained through very boring calculations') is given by:

ot _[E
-T- = éb14 1=
e -t £ -t
with
N Y s Wy |+ W=+
gt e
. | W Dy
+! l'@tz‘ .t W\, -l+°~3n_+{]-'zuln
) o — 2 =
Dz / lb)n_\ Dz

, 1%
‘D\Sﬁ[wl‘;“’(l“‘wlz—dl—r'zwn) 1
5 23
'D—L":-E[w\;—-kl* '\Qn_"“\l l"pzwn.) ]
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APPENDIX TIIT

We shall treat here, by Method III, the case N = 3 for w and

V real matrix. The secular equation can be written as follows

Y Ay e i

z 1 * A 2 2 L
where  Cy =@, ‘\'wuf‘*);:s‘\)n -V, ~-V33+2 (wf;_fwﬁ»rw;},-\?.z- Viy ‘\)?-3)
. | R ‘ 2
Ca= (‘Ju WtV \)Lz'wnz‘on.) "Q‘)n Vo + 022Vl =2 ITS \)¢2_>

- L
+(u)Z‘L ()~)33 + \)ll \>33> ‘(J;%" \):3) - (w.zz 035 + 0333 \>ZZ "2 (;\)23 \)13)
; L \&
+ L‘-’Sn L’*\’3b + \)N \)33“(5&‘\%2)’((0” \>33+0332, \)u -2Wp \)13 )
A

1'2[(“‘5\1 b.‘)z:s‘l‘ \>\| \)2_3 -G QQE" Il‘%’})) - @ll\)z}“l’\);, Weg "(’Stz_ \)L‘l,“ Q)3 \)l?)

2 2
+ (‘sz ‘-‘3\3 T sz_ 0!3 ~u n")zs"on\)z;> -(@zz \)B + pzz‘*‘nz 'Qtz‘)u ‘“Ju\)n)

KA

T
+ @33“!21'\)33 V-l W1 sz) - <U3339.L+ VW~ Va-We ‘)ts)

W~V Wi~V Wiy~ |y, Wit Witz
Cyz{Wp-viy, QDu-Va Wu-Vu W5, tVh WatPa Witk

Wa-V3 Wy-Vin  Wp-val[Saivs WptVy Wu+vy
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The eigenvalues are given by

Q- ='+{/z (;\:(/2/3)'

If we take in the present secular equation the particular case W, _ =V, =

33 33

Wy, =W, =v,,=v,, =0 , we verify easily the consistence with the secu-

lar equation obtained in Appendix I for N = 2.



APPENDIX IV

We want to calculate the determinant

where
Au u.-A]M
i : T
A=l - ~ = A

b o « « b
%
BE . Q‘ . =BT

LY ©

- bun

’

by »

with {aij} and {bij} being complex numbers.

inductive process leads to

; 2(N-m
A:%k"()mcm)k |

A
(:‘ = 2%% :iu\l34~ *':Z. :Ei :l L3

AT A‘A

c, = = o((M) !
" {all w;'mors} ( )

= |Al|®]

N
o
]

38

A long, but not complicate,

([m] +e~ms)
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n) _ . . . .
a( ) = determinant of a n X n minor of matrix A, constructed without touch-
ing the positions of the elements aij'
n . . . . , . .
B( ) = determinant of a n X n minor of matrix B, which is obtained by making

(n) )

a,. >b.. in a
1] 1]

In order to clarify the use of this method, we present here the

results for N =2 and N = 37

N O,
O A Ap Ay
by, by X O
by bz O A

I

Ay 3\7.' Bn bz

4 ' , X
M | +
= N\ kan\onfénbn‘\‘zanbn)) 3 3| b b2
dy B

0
N O dn 3 Iy
O hN dy 31} A3

]




1) .
= >\ ‘>\Ll(au bu+311Lu+aggl)33+23nloh+2Q,z L)'z + 2 23 L)Zl)

+>\7~ 3 32_3 bl?. LZ} + Al‘ 35 .bu bg Ay l))/ bn_
A3 Afbyy by 33 33| by bis| 31, 2| |by by
Az Jyllbiz bus] an ||br by 4 \bn bn\
2 2 - +2
13 dnjlloy b|  |dg duflby bl 3y dufibiz b

A I ’3\3 bu L’rz. \"‘3\
~an Qv d|lbn ba ]07.3
33 A I*d bn, ba ba)
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