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SUMMARY ¢

We look for s physical interpretation for the different terms appearing
in the expressions of the second order fluctustions already developed in
previous works. This is found to be possible by considering ths systenm
in question in c¢lose contact with appropriste surroundings of infinite
extension. These surroundings must be such that scme of the macrogeopic
congtants of motion of the system remsin unchanged, whersas the other ones
(called canonical) are allowed to fluctuate freely sround their  former
constant values, Other properties of the vanonical quantities related to
Fluctuation Theory are also considered.
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1. INTRODUCTION

A o]
rg 19 & (hepeafter guoted as I and II) we

(T,‘

In two previcus pap
have developed ai expression which can be used, under certain con-

he second order fluctuation AQAY'  where

@

[

ditions, for celeulasing
Q and Qv are ma~roscoplic guantities depending on a system of non-
interacting mixed gases. It has been proved in II that when one
knows the values taken by p macroscopic constants of motion this
expression can be written as & sum of p+1 termsy the first one
depending only on the meah disiribution of particles and the remain
ing p terms being related to the above-mentioned constants through

n

an one-to-one physizal corraespondence. The particular case where

the only comstants of metion are the number of partiecles anéd the
total energy was &glready discussed in I, where we have shown that
the first Tterm gives the fluctaation in the Grand Canoniecal Insemble
whercas the othar two ars respsctivel; —elated o the interchang

of particles and ensvpy befwesn Fho gy el and ite zurroundinzgs. The
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the more general sane in whish the initisl eonditinng ere riven hy

'
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any number of arbiirary physlezl quantisieg.

2. THE PEVSICATL MRARTHG OF THAZ FLUCTUATTON AXPRESSION

Let us consider an assembly of g+l weakly interacting gaS@Ss s
of them composing the system and the remaining gas the guriroundinge s
the union between system and surroundings being referred to as the
total system. This separation in system and surroundings leads

naturally-to the clascification of the physical quantities - of the
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total system into two different groupsj one containing the "closed"
quantities which depend only on the distribution of particles in
the system, and the other containing the "open" quantities which
depend on the distribution of particles in the surroundingsas well.
Since all physical quantities Qi considered here can he written

as a+1

Q; = > 4’13(19 p} pj(x, p) dxdp i =1, ?:... (1)
j=1

where pj(x,'p3 is the density of the particles of the'jth gas in
the one-particle phase-space, we see that a quantity Qi is ecloged
if and only if cbi,s +1= 0y otherwise it will be open. When the
surroundings are much larger than the system itself the open quanti
ties will be called canonical, this being an natural extension  of
the idea of Canonical and Grand Canonical Ensembles. The Canonical
Ensemble will be then described by a closed number of pérticles and
a canonical energy, whereas in the Grand Canonical Ensemble both

quantities will be cancnieal.

Let us now turn to the special case in which our knowledge
about the total system in guestion is derived through the values
taken by p macroscopic constants of motion of type (1); g of them
being closed (i= 1325005 q)y and the remaining p-~q (1=g+ 1y...p)
being canonical. According to IT the second order fluctuation
A_Q:A—Q_t of two physical quantities of type (1) is given by:

o (1,2,0“ p,p+r>
1589000 p,Pp+&

AQ. AQ, = " (2)

(1,2, p>
C ‘
1425000 P
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B3Djyooo
a%blyoo o
bsg..o and columns a’, bty ... of a certain matrix C, the elements

where C ( ) ig the minor determinant formed by the lines a,

of whiech are given below:

s*+1 [ Py Py
Cyy = S| e dxdp £, = 1y2g0.opyD+r Pty (3)
k=1 Py
1th P71 = =2 5 (u, (xyp) (P, is the mean density) and the lines
W k Oy Pt Y P

and columns relative to Qr and Qt being respectivelly labelled as
p+ra_ndp+t°

Since the surroundings contaln many more particles than the
system, the function P;il will have a large multiplicative factor
which eventually goes to infinity as we increase the surroundings
indefinitely. As the reader can easily verify from (1) and (3)
some matrix elements will be affected in this process, others no,
this depending on whether both subseripts 1 and j are or not related
to canonical quantities. Those elements affected will increase in-
definitely, the others remaining unchanged. Assuming Qr and Qy
closed quantities, and calling respectively C and c¢ the order of

magnitude of the big and small matrix elements we get from (27
G
1,2,000 q,p*t .
o ’ + 0 (22/C) (4}
1-’2’000 q
c
1,24000 4

the last term on the right hand side going to zero as we increase

AQ. DG, =

the number of particles in the surroundings.

On the other hand, as we have already referred to in the Intro=
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duction, expression {(2) can be written as a sum of p+1 terms, this

development being given by
1,2,000 PyP+T (1,2,.,.,2,p+r c 1,2, ... 0,041
®\1,2,... pyp+ 1t/ p-1 Cl1,2,...4001 1,2, ...0,p+t

= C -
1,2,000 D CAEER Sy o (Lr2reeeh {_1(1 (2yees B2+l
C\1,2,0.. 1 1,2, 00,4 1,2y 000 4,841

. 1,2,0-- (5)
where we have adopted the convention C(l’a’ i’)zl for § =0. Since
’ ’000

the last p terms of (5) can also be expressed as a con¢'tion  of

terms . of type (3) in the form

l,Z,oonLJp"_r ;,ay'ooul,l,“'l

o} 1 ,2, Ct . ' 1,2, 000
1,2, 000 hl41 1,200 0,p4 C( 2 )
| 1,2,

12,4300 3 }°.°‘a

I,Z,M.,,Q,il'l-l |
1,2,000 4,441 ) /o (1,2,,...£>
1,2,0044

we are naturally led to the following question: "Given a system
composed by s gase; with p closed constants of motion,; will it be
possible to find an appropriate surrounding for each term appear-~
ing in the develgpment (5) of (1) (Q, and Q, closed quantities)
such that the interpretation contained in (4) can be applied to
all them o" The answer to this question depends evidently on
proving whether the matrix elements'cij will or not be the samé
in both cases. In order to discuss this point we shall start from
the set of equations which determine the mean densities‘ﬁﬁ. These

" equations are 2

P
cLF) + 3T % b4y = 0 3= 1525000 (63
i=1 '
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where Gj is a function depending on the Statistic obeyed by the
particles in the jth gas and the 7§s are constant, the values of
which can be obtaiped through the substitution inte (1) of the
functions ﬁj obtained from (6%. Considering firstly the system
composed by s gases with p closed constants of motion we get:

s
%j Py Py cxdD T Qy 1= 1325000D0 (7)
When we wish to consider the same system in contaet with
adéquate surroundings such that the first g quantities are still
closed and the last peg are nc longer constants (open), we mast
of course know how to extend these p-q duantities to the surround
ings; i.e.: how they will depend on the distribution of particles
in the surroundings. For sake of generality we shall complete the.
jnitial conditions by introducing p-g arbitrary functions ¢h+135+19
The new partiele densiéies Eé =

¢q+295+1? °e® ¢pgs*1°
= 1424000858+ 1 will now be cbtalned through s+ 1 equations of

type (6): .
_s}_.s
Voo f == 1 .
Gj(Pj } #':Zsm r}/i éb&gj = @ 3 = 1325}n00g“&' 13 (8)
1
where the coefficients 7y’ must now satisfy
3 r ‘
n—ﬁ " . - -
STy Py axde = Qy 1= 15250000,
J=1 7
(9
s+l |
§ .0 . }
Z ¢i-i pj dxdp = Qi i = q+19conp o
=1

Since the first s eguations in (8} are unchanged, 55 and ﬁj
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for j=1l4230.08 will have the same structure, the only possible
difference between them being those eventually sxisting between
the 7; and the 719 However, by taking Qi Q+ J@is+1;g+ldxdp,i=
= g+1lye.ep (loe.: by taking the mean value of Z .H’ijp;} dxdp
equal to its former constant value Q) we see that Qi and 9 will
be egual, hence PJ = p; J = 13240048, and the matrix eclements ap-
pearing in (3) will be equal to the corresponding ones in (4).

Expression (5) can be then written as:

P (ARAQ) e, 8RR aa
(4 AQt>cg-(ﬂQ AU 2, i ’

2
z 1 (AQR)Q, ’.+1oeop (10)

where ¢! means ”closed" and the subscripts were employed %o indicate
the canonical quantitles (with mean values equal to the constant
values they had in the closed system). A point which deserves atten-
tion is the independence of (10) with the way in which the p-q gunan-=
tities were extended to the surroundings. This means that the second
order fluctuation appearing in (10) do not depend on the physical
propertles of the surrounding (e.g. type of statistics involved, mass
of the particles, presence of externsl fields) so far as they are
much larger than the system and the mean values of the "extended"
quantities are unchanged. Another interesting point, already stregsed
in I, is the physical interpretation of the matrix elements Cij“ It
we substitute the arbltrary quantities Q and Qt by‘é:: j¢ijpjdXdP’i
taking any value between 1 and p, we shall obtain from (5) and (10)

that Cij gives the value of AQiAQj when all quantities are

canonical, a result whieh agrees with our previous
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discussions .
The recurrence relation

o (l,ZQoaapgp"‘I‘) o (192300013“13]3‘4‘1’) " 1929ooopw19p+r o (1323uo};p=12p
132300.pyp+t 192900 0p=1yp+t 132300.P=13D lazsmop“l;p*t)

o]

=)

. 9
o (ng,ooop) c (19230“1){[) c (1323ooop=‘l) . lgz,qupmlgp
1923ooop lgagooop‘”l 132500013“1 132,ooop=~13p
_ (11)
from which expression (5) was derived (see IT) can also be interpreted

with the heip of our previous results. Defining the correlation
AQy AQ
between Qr and Qt by the usual expression r(Qrg Qt) = t:grtzgfnw 3
2 a2 \F
AQT AQt

we see that (11) can e written as:

ot

"'\;/(Mrjpmqt)p rpmrg Qp) rpxqt, Qp}, (129

(AQTAQtBCl = (AQrAQt‘}p

where the subscript p is again employed to indicate that the pth

quantity is canonical in the conditions already discussed. Expression
(12) is also a generalization of particular results obtained in I.
An alternative from for expression may be obtained with the help

of (23, (4) and (11). 1In fact, from (11) we get
o (1,2,ooop,p+r>
13299oupgp+t
<1’29ooop
C
j.jzgouop
192.300029134’:[‘ 1929ooqu£+l 7]

p-1 Clis2yeeedshtl) 0\ 14325000 §ypet

7

= 1=
P ypHE §=0 . (iaZsooolaP+r> c 13230004y b7
. 13230001‘913*'&; lgagoooxg/fﬂ'l p—

s (13)

which, with the help of (2) and (4) yields:
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rep O ) Ty p(QQy)

=
*

- — p
(A AQ ) = (AQ8Q.0; > T
el r Y pﬂili* Ty op (Q» Qt)

(143

3, IHE GEOMETRICAL MEANING OF THE CANONICAIL QUANTITIES

It has been shown in IT that the fluctuation expressions (5)
have a definite geometrical meaning if we assoclate to each quanti
e .
ty Qi a vector @i in an infinite dimension vector space. These

vectors are:

4211 ‘1’12 P
( 11 lz,oee ) s P i= 1’2°"p’pﬂ"p+t’
Z 8 (15)
with the usual definitions for the vector sum and scalar multiplica

tion; the scalar product being given by

5
(%3 §) =2 f Pe ¥y ¥ Oxdp = Cyy - (16)
k=1

Calling respectively %i(l,z,f,op) and ¢£(1,2,...p) (x=p+r or
p+t) the parallel and orthogonal component of %, with respect to
the subspace spanned by the vectors ¢1,¢é,,n. ¢p’ the following

relation then holds:
C 1’2,-oop’P4T
1’2}0 oop,p+t

. 1923020D
1,2,6»-1}

However, we have alyready shown that when all quantities are cano-

Aq, 4q, = @p+r(132,.o.p) Y _,_t(l,Z,o.-.pD (17

nical the fluctuation expressions reduce to their first term only,

according to (16) is equal to (¢%+r,¢§+t) . We then have
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(L, Ay o g = Wpars Poudd - (18)
Since<ﬁ5+rg Q%+;> 2(?%+r<1000p3 ¢%+t(1ooop§> +(?;+T(1000p3¢£;t<100;b,
by taking Q, = Q; we see from (179 and (18) that the square of the
component parallel tc the subspace spanned by the canonical constants
of motion must be zero for vectors representing closed quantities.
That is, the closed quantities tend to be orthogonal to the open
ones in the eahonioal 1imit. This can alsc be seen by direct Inspeg

tion as the reader will easily verify.

Eipression (173 ean alsc be employed to interpret geometrically
the different terms . (5J. Using the symbol A to denote unitary

vectors we may write:

o e 2 p=d It An &
ZXQ? ) <¢P+r(1922°°°p;> s<?5*;> :)%:5 ¢$+r(192’°°°£)?%91C“2“°i§

(197
which can be readily identified as & geometrical recurrence procedure
to find the square of the component cf a vector orthogonal to a

given subspace.

Another interesting expression is obtained by setting Qr::Qt in

(179 and (18). Comparing the results obtalned we get

<AQ§ ) @L: (AQg)lg&, ¢ o P @OSZ <q}?“§=‘11” ﬁiigegc ° op)> 9

where ﬁ(l,2,000p3 js the unit vector normal to the subspace of the

constants of motion. From {20% and (14} we finally get:
P
2( 2 =TT 2
cOs (%4_? n(1929000p3>n£zll E—‘:T‘) Booop(QT7 Qlﬂo

E
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