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A new approach is used for the calculation of volumes
in phase space, using the saddle point approximation to
solve the integrals. Thermodynamic concepts of tempera-
ture, free energy, and entropy are used. Results are com
pared with the nonrelativistic, extreme relativistic, and
Ferml approximations. Applications are made to several
systems expected (by the Gell-Mann and Pals scheme) to re
sult from collisions usually produced in laboratory. A
rough emplrical method of caleulation 1is also given.
I. INTRODUCTION
In processes Ilnvolving elementary-particle reactions, where
the matrix elements are unknown, some information can nevertheless be
obtained by using the statistical model introduced by Fermi l. For
this modely the values of the phase space volume are needed. Up to
NnowW several‘approaches have been used for these calculations, Fermil
gives the volume in the non-relativistic approximation without or

with momentum conservation (this last case is referred to here ag the

# This work is part of the requirement for the degree of Doctor of Philosophy at
Solumbia University. Published in Physical Review, Vol. 105, 328, 1957.

7‘5+ Supported in part by the joint program of the Office of Naval Research and the
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I This work was done while the author was at Columbia University, with a fellow~
ship from the Conselho Nacional de Peagisas, Brazil.



328

as the N.B. approximation); and, for processes in which nucleons and
pilons result, he treats the pions as extreme relativistic and the nu~
cleons as nonrelativistic, and considers that only the nucleons satig
fy the condition of momentum conservation (this approach is referred

to here as F approximation). Lepore and Stuart Z do the calculations
for the extreme relativistic case with momentum conservation 3 (refer
red to here as E.R. approximation). Christian and Yang4 make calcula
tions of momentum distribution of pions for multiple meson production

where the phase space volume is calenlated by numerical integration.

In this paper a different approach is used. The particles
are treated relativistically and the momentum conservation is shared
by all particles. The approximation method used is to solve the in-~
tegrals by the saddle point method. This corresponds to Fowler's
statistical mechanics approach and is roughly equivalent to Stirlingss
approximation. 1In this way, thermodynamical quantities such as tem-
perature, entropy and free energy will be defined for the system.

The results improve as the number of particles increases. Comparison
of this ecalculation with the two extremes of energy approximation
(N.R. and E.R.) and with all values of energiles when only two parti-
cles come out {this case can be solved exactly), permits the intro=-
duction of a semi-empirical correction for small number of particles

resulting.

This paper is designed to facllitate these phase space
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calculations, and, therefore, the formulas are preparedfor numerical
evaluations. Thqs,-decimal logarithms (log) are used throughout, ex
cept in the derivations of the formulas in See. II where natural log
arithms ({n) are used. Several tables and numerical examples are
given. | 7

In Sec. VII the phase-space volumes are given as a fuhction
of the total kinetic energy of several systems of particles. Sec-
tions v through X are self-sufficient, in order that readers, not in
terested in mathematical derivations, can go directly to these sec=—
tions. Everywhere the pion mass 1s taken as the unit of mass and
¢ = 1l

The related problem 6f momentum distribution for one of the

particles coming out is treated in Sec. VI.

II. DERIVATION OF FORMULAS - A

If angular momentum conservation is disregarded the momen-
tum space volume per unit energy range, in the c.m. system, is
+oo-1€

aQy(W,0)/aw = (2m)~* _Ooﬁiéne“w | jf dp, exp -u pj-ihwj}(l)

where € is a small positive quantitye.
The last integral can be evaluated,a giving:

‘= 22’ A (1) 2 2.k 2H1(1)Em (AZ 52)%]
I —1 {Ho [~ (A= 6%) ] + (2)
™3

where ¢ = 1 and the H's are Hankel functions.

The ¢ integration in (1),
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+Q0 +00
f doy I, = 2r f aZda_exp{(Z {n1 )}
-0 j j -C0 ' j j
¢an then be performed by the saddle point method, which is given by
the condition: : - |
2., 9401,/ 86 = 0.
J J

The logarithmiec derivative of I j is proportional to & 4 so

this condition 1is satisfied by ¢ = O. The ¢ integration becomes,

after evaluation:

3/2 . -3 - 22 2
(2r) exp{zjﬂnlj anzj( 3 {’.an/ao‘ )}o'=0

If this last expression is substituted 1n the A inf:egral in
(1), it finally becomes, after the substitution iA = ,3:

aQy(W,0)/aW = =(2)~5/2 ifdp exp { pW.- pF}, (3)

where the function F is defined by

-pF'= {Zjﬁn I - gfénz;](- 2°8n Ij/ada)}d 0 (4)
| ir=p

The 8 integration in (3) can likewise be evaluated by saddle
point, given by the condition 8 (W =fF)/ ap = 0, Oor

W= 0(BF)/op=F + Par/ap. (5)

n

This relation gives the total eilergy W as a function of the
variables F and @ and permits the identification of f as the in-
verse temperature 1/kT, with k the Boltzmann constant and F the free
energy. The quantity k(W - F) = § is then the entropy.

The evaluation of (3) r'gives:: |

aQy(W,0)/aW = (2r)~2e5/%( 5 2g/x 2 32)2, 6)

To evaluate this expression the following functions are de-
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fined: : _

! (myp) = myf+ 3 Enp+ [¢n1 ]s-o Qn(l +mgp), (7)
. "N

bi(m;p) = ~p2(9% Ln1,/8 1A o - 1+ np), (8)

where‘the prime is here used to denoté the represented guantity mul-
tiplied by the natural logarithm of 10: al = « 4n10, for example,
and Dt = D(Q?le)Z; This device facilitates the use of natural
logarithms in this section, but e xpresses the final results with deg
imal logarithms and exponentiéls of 10, wh;ch are more gdqqﬁate for
numerical computation. All the tabulated quantities are those with~-
out primes, being simply related‘to the-quantities used in this sec-
tion. _
Substituting (2) in (7) ahd (8) 5 these become:

a*(myp) = ﬂn[z-rratmjp)z-[mo(l)(imjﬁ) -

- ZH]_'('l)(iij)/mj P} + ij-—‘% Rn(_l+mj|3) ’
| (9)

b myp) =3 -myp+mp/

(1)
-H, (dim,p) 2
i L } (10)

(1)(imjp) mjp
whose numerical values are given in column 1 of Table I and the w
column of Table II. These functions, as they are bounded and have
little variation, are very adequate for tabulation purposes. Besulté
for o{mjp) and b(mjp) with other values of mj can then be obtaingd
by interpolation. Those_of.b(mjp), correspon@ing to the particle
masses given in Table'V3 are tabulated in the other columns of Table

II.
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Then the new functions: _
At(mg® = or(myp) + gﬁnclmj_g), - (11)
Bf(msp) = br(myp) + 1 + my B, (12)

are defined and evaluated, the results being given in Tables IV and
VI for the related functions A and B.
Also the bounded function
. 2
are) =2 {[bt_(x_) +1]% x[2v4(x) - 3]} (13)

is tabulated in Table I, column 2 to facilitate the calculation of
the function )
Dﬂ(mj[s) = dn(mjp) + 15 m, Bsz2, (14)

which is tabulated 1n Table III for the set of masses given in Table
v. |
When (9) and (12) are substituted in (4), the latter be-

comes:

-pF = 2y {emgp 3 dn(m,p-n,B+ a1 + nyP)}

+ 3Qn[3-.- gﬂn{zj B'(mjp)} + BZjenma,
which, substituted in (5), gives for the kinetic energy:
PE = p(w -ijj) = Zj b'(mj fb) - ? +
+Zj D"Sm’ap){ZJB’(mjp) )
.and the expression (24) follows.-
The entropy will then be given by:

8/k =pE+ ¥ at(ngp) = 28n T, Br(m,@) - 3(N-1)Lnp,

and with the definition (25) of the function X , (5) becomes:
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dQu(W,0)/aw =
= (2r)%(1l0g e)? p~3N-L)10%( 5 25/x op2)t (15)
The la.ét term of this expression can be calculated by ob-
serving, from the definition of S, that
8% 8/kape = ~ 9E/3p
The exact calculation of &E/of from (1) will give quite
an elaborate e xpression for riumerical evaluation, but this can be

- approximated if the quantity § is defined by
B=%P, ana pE=(8 - o'@) (16)

The functions ﬁE and ('N - 1)b¥( f&) have curves of similar
shape and the above relation (16) adjusts the parameter ¥ so that
the curves intersect at the point of interest. If as an appz:oxima-
tion, we cohsider that they havé the same tangenf: at this point, or,

what 1s the same, that the parameter ¥ has a slow variatiori,-then

p2(2 /0PI~ - P A/BH [P /B, (17)

(a function of ﬁ_) is, dn_using (16)y the inverse of the function
b(x) of the argument P E log ¢/(N-1).
If we define the functions

PN, P). = Log { (log e)/2 BTN+ (y _1)_-%'} ,
(given in Table VII) and
V[RE log e/(N-1)]
= %-108 {‘Ea(a/é.ﬁj[b'(ﬁ)/é]} + J.og an?

{(given in Ia—t)le VIII), then the logarithm of expression (15) becomes
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the expression (26) without the last term. ,
The small variation of the function ¥ glves us confldence
in the above approximation, a&s both sides of (17) have the same

1imits for p—~0 or p—oo.

III. CORRECTION OF THE SADDLE POINT APPROXIMATION

The saddle point approximation method gives good results
for large N. For small N some discrepancy is to be expected. To
check @he error, it is posgible to comparerthe saddle point approxi-
matioﬁ fof all N with the N.R. and E.R. approximations and, in the
cfitical case N = 2, to‘compafe the saddle point approximation with
the exact calculation.

N.R. case = To get this approximation, the Hankel functions

SWanaw,mmﬂm

mast be replaced by their asymptotic expansions
formula worked out. The relation between temperature and energy be~-

comes PE~ ~1) as expected, an e volume in momen space 1is
Eg(n 1) ted, and th i fum 1

_ 2/2 :
ES = (2v)3(N'l)/2 I?Nmi| EsN/Z"5/2

N ' B/ 2) 1
. >, (3N/2-5/2)!

Cxr

H

which agrees with the direct caleculation on the N.R. limit except

for the correction factor:

o = (B3 Ve Lawe-3/2)
N -5 Ls(mwv2-3/2)
where AT;(N-+1) is Stirling's approximation (n/e)n(awn)i for the gam

ma function'I‘(n4ﬁl). The correction cN.R. approaches one for large

N and for small N has the values:
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N 2 3 4 5 6 7
Cx.R 0.957 1.014 1.013 1.011 1,009 1.008
These are quite good approximations; even for small N,
E.R. case -~ In this approximation (p—0), the Hankel func-

tions are substituted for by means of the expressions 6:

2§ (v)-2inX
ivHo(l)(ZXl) = ﬁo ' X 29,

(1)@
and T (v)+ y(v+1)-2LnX
--'rrHl(l)'(ZX_i;) =§E XZ. .X‘2
YV + 1))
where
Y(o) = -c,
Qﬂv):-c+1+%”,+%,

and C = 0,577 1s Buler's or Mascheronits constant.
The temperature-energy relation becomes PE = 3(N- 1), and
the volume in momentum space is

aQ. ‘__(‘17'_-) N-1 (an - 4)1EN-4
aw (2N -1)1(2N - 2)1(3N - 4) “E.R.’
which agrees with the direct caleculation on the E.R. 1limit, except for

(19)

the correction factor:

1y, 3/2 ;3N -4 3N-7/2 2N -1 2N~
) (3N 3) (ZN 2)

CE.R. ~ (

[san-3) T(2n) T(an-1) T3N-3)
T(an-3) T(an) T (a8 -1y T30 ~3)

This correction approaches 1 for large N, but for small N

it departs too muech from 1 to be disregérded, being 0.580 for N = 2,
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The function
SI(N) = log CEDR,(N)/lOg CE.R.(NiZ)

is given in Table IX.
N=2 case = In this case the formula can be analytically in
tegrated, giving:
ay/aw = (n/2)[(WPnf = nf )% anf mZZ]% {1-[(m3_2- m7 )/WZ]Z} .
(20)
Thejéxact calculation has been made for processes in which
the particles 27y Nmy AK, 7K and 2N come oute. The differences be-
tween log(d@Q/dw) = L calculated by this procesé and L caleulated by
the saddle, point method are ﬁlotted in Fig. 7 as a function of the
relation between the kinetic energy and the sum of the masses Ey’z:m;
These differences fall pretty well on the same curve n(E/ L.m). If
we assume that.-for other values of N the corrections have the same
functional dependence on E/)_ m, then with (20) these corrections are
given by n(E/2 m)=(N), which is the last term of expression (26).

IV. DERIVATION OF FORMULAS - B
If the total energy-momentum is,W’,fﬁ! # Oy the volume in
momentum space per unit energy range is

- P - - N =
aQu(W 1 Fr)/aw = [ 6(F - L 5,0 (T g -w ) 1143, - (21)

Under a Lorentz transormation in the X-direction:
1 T Oy TP Oy T <Gy = IVTY
'7'2 =] = v-Z = wa/p'j_la = (.wra- pla)/WIZ s

>

the product §(P+ - Z:Spjflﬁﬁﬁzjwj'-_W') and the ratio dﬁj[wj are

invariants, so (21) becomes
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2114 N LWy |
aqu(w,Fnawe = [8(X 58T wy - w) IT —Lap,
Thisy with the replacement of the § functions by their Fourier
transforms, and with
"ﬁ"—" W(H“VPJX) ’

becomes

dQN(,W','Ph!-)/dW' =_(27r)'4/dleiawfd6’

+.p
'Y(l - dpj exp{ ~10p ~ il\qu
| (22)
or |
dQN(W',f”')/dwt = 7N(2W)-4fd?\eilwfd6"
Jy : Jsd N
X 1-VZ-'..?.-.+VZ ik .o TII. (23)

where I; is defined in (2) ana

./E;-}E exp ' -ﬁi- iAWi} dﬁi .

In the 0 integration in (23), the terms depending on J; can
be taken out of the integral and evaluated at the saddle point, giv-
ing zero results. :Thg only remaining term i1s one independent of Ji’
and expression (31) results .

To obtain the correction to be applied to expression (31),
the e xact integrals of the terms depending on Ji must be evaluated.
It is then readily seen that the terms with an 6dd number of J's are
zero, and the result ié a sequence in even powers of v.

In the worst case of this saddle point apprOXimation, when

N = 2, the correction for (31) can be analytically integrated, giv-
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ing 7
dQ (W1 B )/aw = c(W1/w)2aQ,(W,0)/aw

where
2 z2 2 2_ 2 4
C = l-g (3) —

c
2 252

This result shows that (31) still 1s a good approximation.

V. THERMODYNAMIC DISTRIBUTION

In a system of N particles of masses my .q.'mj... Dy » vith )

a total kinetic energy E, it is possible to define an equilibrium
temperature > = 1/kT (k = Boltzmann constant) given by:

BElog e =Ejb(m,p)+2j}3{m P /2 jB(m,j )~ 3.909, (24)

where b(mjfi) ’ D(mjg) and B(mj B)are furctions given in Tables II,
III and IV as functions of B » with masses corresponding to several

particles as given in Table Vo8 Ihen the auxiliary function

X = BE log e + ZJA(me) - (3/2) log 2 B(m,p) (25)
can be calculated, with A(mj p) as given in Table VI.

The volume of the momentum space per unit energy range,

when the total momentum is zero and the tofal’energy is W, 1is given
by:

L = log[aQy(w,0)/aw] = @ (N:p)- p[BElog e/(N - 1] +

+ x4 n (B3 m ) I (W), (26)

where the functions @, y,5,, and n a;:é' given respectively in Tables
VII, VIII, IX and X.
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VI. NUMERICAL EXAMPLE

Consider the case where two nucleons and one plon come out.
Relation (24) gives p as an implicit function of E. It is then pre-
ferable to start with a value of p and get the corresponding E. The
choice of a convenient P can be facilitated by insﬁqction of Figs. 1,
2, and 3 where graphs of {3 B/(N ;-1) as a function of E/(N~1) are
given for several sets of outgoing particles.

For p = 0.2 we have:

Table Function Nucleon Pion
11 b = 0.973 1.224 Zb= 3,170
III D = 50460 4,577 2D = 15.477
Iv B = 1.992 1.745 2B = 5.729
VI A= 1.8%2 1.483 22A = 5.147
v m/m, =  6.73 1 Tm/m = 14.46

then formulas (24) and (25) yleld PE log e = 1,963 and X = 6.973.
From Tables VII to X we find:

Argumenté Table
N =3, B=0.2 VII g = 2.801
BE log e/(N~-1) = 0.981 VIII ¥ = 1.808
E/ 2,m = 1.56 X n = 0233
N=3 CIX == 0.624

Therefore, finally, with formula (26), we obtain L = 7.111
or dQ/dW = 1.29 x 107.

VII. APPLICATIONS
In the processes of collision of two particles, the 7 p,

T N, ﬂ+p, v+p, Pps and pn collisions are easily obtained in the lab-



340

oratory. Momentum space caleculatlions for all of the gets of two or
three particles resulting from such collisions and compatible with

the Gell-Maﬁn and Pais 9 scheme of selection rules are présented in
this paper. Célculaﬁions were extended for all compatible sets of

four particles resulting from the pn collision, as these are useful
in referenée to the antiproton production on the Berkeley Beva=-

10 Also calculations were made on the 2, 34 4, and 5=-pion sys=-

tron.
tems because of their interest as reference curves (since the pion
mass is here taken as unity) or for eventual calculations on annihi-
lation processes.

The relations between temperature and energy as célculated
by (24) are given in Figs. 1, 2, and 3 because they are useful as an
orientation for the choice of a temperature corfésponding to a con=-
venient energy range in any new process. |

The logarithms (decimal) L of the momentum space volumes
are given in Table XI, XIT as a correction to the NoRo'and E.R. ap=-
proximations, because this gives a better tabulation than the volume
itself; which 1s an increasing monotonic function of the energy. The
N.R. and E.R. approximations are given by formulas (27) and (28),and
the quantities s; t; qy and r for the different systems are given in
Tables XTI and XII. The results for two-particle systems are.includ-
ed, although these are calculated with the exact formula (19), be-
cause they’are useful as references. Figure 4 gives L for the sys-
tem of two nucleons and one pid@g the NnBo‘EoRog and F approxima-

tions are there represented by straight lines,
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VIII. ESTIMATION OF MOMENTUM SPACE VOLUMES

The logariﬁhms of momentum space volumes in the N.R. and

E.R. approximations are:

NeRe Lyp =s+tlogk (27)

BsRe Ly g = q+r log Ey (28)
where s = 3! + %M:

M = Ejlc:gm;j -~ lqg( Ejmj)g (29)

and s', ty gy and r are functions of the number of particles N.

These functions of N are (whenm = c¢ = 1)

N = 2 3 4 5
s? = 1,250 2,094 2.526 2,710
t = /2 2 7/2 5

q = 0,196 ~0.541 -1.986 -3.661
r = 2 5 8 11

For larger N, see formulas (18) and (19) with Cq p =1.
The energy of the crossing point between the two approxima

tions is then readily found from the equations:

N =2, logBy = M+ 0,703,
N =3, logB; =3 M + 0,878,
) K (30)
N -~ 4, lOgEi - 'g M + 00983
N =5, logh =3 M+ 1.062

If, as in Tables XI and XII, AL denotes the difference be
tween L calculated by saddle-point and by the N.R. and E.R. approxi
mations, then the curves of AL/(N=1) Vs E/E::L do not much differ.
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Figure 6 was obtained by taking a mean of all calculations in this
paper. If this curve is used for any other calculation, then a val
ue of AL and so of L is readily obtained. This method of using a
mean curve (Fig. 5) is inexact and the resulting calculation will be
reiatively crude. Nevertheless, this procedure represents an ime
provement over the N.R. and E.R. approximations. |

As an illustration, let us examine agaln the example '61‘
Sec. VI. Now we start with the kinetic energy E = 22.6. For two
nucleons and one plon, relation (29) gives M = 0,496, which, sub-
stituted in (30), gives lc.>gE-i = 1.126. Then in Fig. 5, with
log(E/E;) = 0.228, we get AL = 0.842, this difference being re=
ferred to the E.R. case. This approximation is LE.R.= 6.230, giving
(with the above value of AL) 7.072 or 4Q/dW = ll.8><106. This
value is to be compared with the saddle point result 12.9x 10%, the
E.R. result 1.70x 106, and the N.R. result 0.352 x 106. For the

same energy the Fermi approximation g;.ves 2643 X 106.

IX. MOMENTUM DISTRIBUTION

If the total energy-nomentum is W' ,T’"# 0, the volume in momentum
space dQN(w",I?' )/AW! 1s related to the volume with zero totalmomep

tum by a Lorentz transformation, which within the saddle point ap-

proximation, gives:

aQu(W B r)/awt .= (wr/w)Nagy(w,0)/aw, (31)
where . |

W= (W2 318y (32)

In the statistical model, Fermi 1.1 considers that the
square of the matrix element is simply proportional to (QA)N ,where
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V is the normalizing volume and () is the volume resulting from the
contraction of the sphere of interaction ﬂo = 4wR5/3. The Loréntz
contraction factor is (2/W") times the mass of the nucleon, with wt
the total energy and R the Compton wavelength of the pion (h/pe =
= 1.4><10”13cm)o With this assumption, the cross section for one

particle coming‘out with an enefgy W* and momentum p* in the range

dp* will be proportional to 11
SN(Wt,p*) = 4#(Il/h?)p*a(wt-w*)N“ldQN_l(W,Qdeg (33)
" where N
w= [t - w2 pf - p5H9)" (34)

and Wt, pt are the total energy and momentum of the system. The to

tal cross section is proportional to
st(®) = (/@) wbw)Nagy(w oraw, (35)

where W is given by (32) with W' substituted for W'.

X. NUMERICAL EXAMPLE

As an example, let us compute the cross section in the
center-of-mass {(c.m.), system for a nucleon=-nucleon collision at
the c.m. energy W° = 19,835 (2.2 Bev in the lab System), in which
two nucleons and one plon of momentum p* = mec result. With m_ =

*
= ¢ =1y we have: W = (p*2+ mvacz)% = 2,236, Whe w* = 17.599.

t

Since p~ = 0, ptw p* = -2. Then, also, from (34), W = 17.49,

10g(£) /h7)

log(2m; O o/h%i®) = 0.05918 - 2,

and, from Table XI, with E = W -~-E‘,;]m'j = 17.49 = 13,46 = 4,05 for two
nucleons: logE; = 1.229, 1log(E/E;)= =0.622, t = %, s = 2.040, one
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gets AL = 0,173, and L = s + ¥ logE + sL = 2.157. Finally, with
N = 3, log/h> = 0.5918-2, p* = 2, W = 17.49, W’ -W* = 17.599,
and L = 1qg[dQN(w,0)/dW] = 2.517, formula.(BB) gives logs =
= 0.401-2.

| In this way the curves S vs p*/m C for the production of
two nucleons and 1,2, or 3 pions'were'obtained. They are represent-
ed in Fig. 6, where each curve is normalized to unit area. .

Tﬁese_curves agree, within the precision of graphing, with

the ones obtained by Chrisﬁian and Yangws4 numerical calceulations
and serve as a check on thé*present approximation method.

| rpé author wishes to thank his sponsor, Professor Robert
Seber, for suggeéting‘this.prdblem and rbr his guldance and en-

. couragement during the course of the work.
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Fig. 1. Relation between mean kinetic energy [B/(N-1)
in m,e2 units and temperature (=1/kf; k = Boltzmann constant
as a function of the mean kinetic energy, for systems con-
sisting of: (&) 3 pions; (b) 1 nucleon and 2 pions; (c} 2 nu
cleons and 1 pion; (d) 3 nucleons. -
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: Fig. 2. Relation between mean kinetic energy [B/(¥-1)]
in mpe? units and temperature (=1/kp; k= Boltzmann constant)
as a function of the mean kinetic energy, for systems con-
sisting of: (a) 4 pions; (b) 2 nuclecns and 2 pions; (e)lm
cleon, 1 hyperon {Z), 1 heavy meson (K), 1 pion; (d) 4 nu-
cleons.
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Figi 3. Relation between mean kinetic emergy [E/(N-1)]
in m.c? units and temperature (=1/kp; k= Boltzmann constant)
as a function of the mean kinetic emergy, for systems con-
sisting of: (a) 5 pions; (b) 2 nucleons and 3 pions; (c) 1
hyperon (A or Z), 1 heavy meson (K), and one pion; (d) 1 nu-
cleon and 2 heavy mesons (K); (e) 1 hyperon ?ﬂ) and 2 heavy,
meso:(m)(K); (£) 1 nucleon, 1 hyperen (SorA) and 1 heavy me
son (K). .
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Fig. 4. Variation of L.= log dQ%H with logE for a
systen consisting of 2 nueleons ahd 1 pion, The straight
lines represent: N.R., the nonrelativistic approximstion;
E.R., the extreme relativistic approximation; F, the .Fermi
approximation, where the nucleons and picns are treated re-
spectively as N.R. and E,R. particles and only the nuclecns
share the momentum conservation.-
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~ Fig. 5. Variation of AL/(N-1) va log(E/E;), where AL=L-Ig.y.
for the curve marked N.R, and AL=I~Lg g for the curve marked E.R;
Ey is the total kinetic energy of the system for which Iy g.=LER
L = log dQ/dW; Ly R, and Lg g are the N.R, and E.R. approximations
of L. The values of AL in this figure are the average of all the
values calculated in the present paper and summarized in Tables XI
and XII, '
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Fig. 6. Momentum distribution of mesons for
nuclecn-nucleon collision at 19.835 mﬂc2 in the
¢.m. System (2.2 Bev in lLaboratory System). The
curves have been normalized to unit ares.
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,  Fig. 7. Difference m between L = log dQ/dW calculated
by the exact formulas and calculated by saddle point approx
imation. E=kinetic energy of the system, Em sum of part
cle masses (m,= ¢ = 1). The points are for the systems:(a
2 pione; (b) 1 nucleon and 1 pion; (c¢) 1 hyperon (£)and 1
beavy meson (K); (@) 1 hyperon (A) and 1 heavy meson (K);
(e) 2 nucleons.
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TABLE I
Values of the functions a(x) and d(x).

x a d x a |

0 1.400 4523 4 1.233 3.163
.01 1.397 4526 10 1.213 2,981
.02 1.396 4.531 20 1.205 2,907
.04 1.392 4.537 40 1.201 2.865
.1 1.380 4e453 100 1.199 2,846
.2 1.364 ho27h 200 1.198 2.835
o4 1.341 4.035 400 1.197 2.831

1 1.208 3.675 1000 1.197 2.829

2 1.259 3.401 % 1,197 2.829
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TABLE II

Values of the function b(p m) for masses of
- peveral particles

particles
B o Z A N K n H
0 1.303 1.303  1.303  1.303  1.303 1.303  1.303
.01 1.274  1.278 | 1.281  1.288  1.300 1.302  1.303
.02 1.231  1.238  1l.244  1.256  1.286  1.302  1.302
<04 1.i63 1.174  1.181 1.199  1.253  1.302  1.302
1 1.033 1,050 1.061  1.090 1.172  1.273  1.284
2 919 934 <947 973 1.081 . 1.224  1l.249
o4 8L .828 .838 864, .965 1,161 1,182
1 726 W33 738 U752 .825  1.029 1,072
2 691 .695 698 707 748 913 955
4 671 674 677 681 705 .812 847
10 658 659 661 .662 673 725 W43
20 656 .656 .656 .657 662 .690 .701
40 654 654 654 654 .657 671 678
100 652 653 653 653 .655 660 .661
200 651 .651 651 652 653 .655 .656
400 651 651 +651 651 .652 +654 +654
1000 | 651 651 651 651 651 652 ' .653
o 651 651 651 651 .651 651 ' .651 .
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TABLE III

~ Values of the function D(A m) for masses of

several particles

particles
£ e} 2 A N K i) d M
O | 4523 4a523 4523 4u523 4523 4.523 4523
sOL | 4e593 4596 4eS9T  4a60T 4590 4540 4e534
P02 | 4554  4e559 4568 4uSTh 4604 4559 4u548
O | 4eST9 4562 AuSST  4eSSh  4uST3 4594 40586
L 5039 44T 4eBT6 4TI 4T 4esOh  4.606
2 | 6,113 5889  5.752  5.460  4.810 4557  4.5T1
4 | 8564  8.059  7.754 .01 5.539 4,601  4.5TL
1 16.46 15.12 14.15 12.57 8.208 5.090 4+858
2 | 29.85 2716  25.51  21.99  13.06 6.330  5.664
4 56,74 51.35 48.03 40.97 22,97 8.821 T+554
10 | 1375 1240 1157  98.06 52.96 17.13  13.78
20 272.2 245.2 228.6 193.2 . 103.0 31.20 2L e bk,
40 | 5415 4876 4Shk 3836 2031 59.45  45.89
100 | 1349 1215 1132 9548  503.6 1443 110.4
200 | 2696 2427 2261 1907 1004  285.8  217.9
400 | 5390 4850 4518 . 3811 2006  568.7  432.9
1000 | 13470 12122 1191 | 9523 5010 1417 1078
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TABLE IV

Valuea of the function B([3 m) for masses of
several particles

Particles

p O o A N X )i R
0 1.737  1.737 1737 1.737  L.737  1.737  L.O37

.01 1,749 1749  1.750 1.751  1.749  1.740  1.740
.02 L748  L746 1747 L78 L7501 LJ745  L.743
.04 1,762 1.757  1.754 1.750  L748  L.753  L749

o1 | 1880 185  L842  1.816 1760 1750  L.751
2 | 2180 20112 2.07% 1,992 182 L5 L9
b | 2902 2,751 2658 267 2,014 1769 L8
1 5.294 4889 4638 4,109 2,796  1.897  1.836
2 9.3 8573 8.063 6987 4257 2,26 2.0
4 17:64  16.00 14,97 12,81  7.289  2.983  2.601
10 42.44 3831 35.7% 30,32 16,48 5.502 4478
20 83.78  75.53  70.40  59.55 3184  9.810 7737
40 166.5  150.0  139.7  118.0 62,59 1848  Lh42
100 | 445 373.3°  MUTT 34 1548 4he52 341l
200 828,86  T45.5 694;2 _ 585;6 308.6 87.95 67.11
400 1655 1490 1387 1w @60 1748 1331

1000 4136 3723 3467 . 2924 1538 435.4  33L.2
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TABLE VI

Values of the function A(Pm) for masses of

several particles

particles

B n Z A N K T K
0 1,400 1400 14400 1,400 1,400 1.400  1.400
.01 1440 1436 1434 1427 1416 1403 1405
.02 1478 1470 1465 1455 1430  1.409  L.408
.04 1.552 1.537  1.528 1,508  1.459  1.418  1.414
.1 1.732  1.704 1488 1,639  1.541  l.442  1.433
.2 1.957  1.918 1,893  1.832  1.661  1.483  1.463
VA 2.257 2,207 2,175  2.100 1.586  1.560  1.523
1 2,746 2,686 2,646 2,551 2,221 1.750 1.676
2 3.158  3.094  3.051 2,949 2.5 1.975 1.875
4 3.590 3.524 3.479 3.372 2,979  2.281  2.152
10 4eX74 4,107 4.06L  3.952  3.544 2,715  2.619
20 4e621  4o554  4.509  4.397 3,98, 3.188  3.021
40 5.070 5,002 44956  4.B46  4.430  3.620  3.447
100 5.666  5.597  5.551  5.441  5.023  4.205 4.0
200 6.117  6.048 © 6,002  5.891  5.473  4.653  4.476
400 6.568 6,500  6.453  6.342  5.924  5.102  4.924
1000 7.165  7.097  7.050  6.939 6.521  5.698  5.519




TABLE Vil

Values of the function @(N, p) for several
maltiplicities of particles

35686

3

p 2 4 5 6 7
0L | 3.457  9.306 15,218 21.156 27,107  34.068
.02 | 2.855  7.801 12,810 17.844  22.893 27.950
04 | 2,252 6,296 10,402 14.533 18.678 22,833
1| 1e457  4.306 7.218 10.156 13.107 16:068
) 855 2,801 4.810 6.844 8,893 16,950
o4 0252 1.296 2.402 3.533 4,678 5,833
1 4TI-1  o306-1 0218-1 .15641 .107-1 .068-1
2 855-2 8013 .810-4 o844~5 8936 29507
4 0 R52=2 0 2064, 402=6 05338 -678-10 -833-12
10 457=3 23066 .218-9 156-12 -107-15 ‘.068-18
20 .855-4 8018 810-11 84416 893020 .950-2%
40 oR52-4  .296-9 -402-14 +533-19 678,24 .833-29
100 457-5  .306-11 .219-17 <156-23 .107-29 .068-35
200 «855-6 .801-13 281.0-20 « 84427 +893-34 L950-41
400 | L2526 .296-L4  .402-22  .533-30 67838 .833-46
1000 4577 .306-16 .218-25 15634 .107-43 - 068-52




Values of the function ¥ (x)

TABLE VIII

356

v

x }P x x l x HJ_
651 14694  L7I0  1.720  .820 1.767  .960 - 1.804
655 1.687 o720 1,725 .830 1.770  .980  1.808
<660 1.691 730 1.729 .840 1.773 1.000 1.811
665  1.694 L7400 1.734  .850  1.776 1.025  1.816
670 1,698,750  1.739 .860 1.779 1.050  1.819
675 1701 .60  Ll.744  .870 1.782  1.075  1.823
680 1704 L7700 L.749  .880 1.784 1.100  1.825
685 1.707 .786  1.753  .890  L.787 1.150 1.82%
690  1.710 90 1.757 .900  1.790 1.200  1.833
695 1,713 L8600 1.761 .920  1.795 1.250  1.83%
L700 1,715 L8110 1.764  .940  1.800 1.303  1.834

TABLE V.
Masses of the particles as used in this paper
Particles n/m, m in Mev, Particles n/m, & in Mev.
O 9.52 1329 K 3.54 495
z 8.57 1195 w 1 139.5
A 7.98 15 @ .76 106
N 6.73 938




TABLE IX

Function =, (F) of the number of particles that multiply the
correction for the saddle point calculated value of
L{ = log dQ/dw)

[
[
[1]
li]

2 g8  .219 1L .22 20  .082
3 .62 9 .93 15 .16 25 .066
4 462 10 .173 - 16 .106 30 .058
5 .36l 11 .57 17 .10l 100 .03
6 298 12 . .143 18 .094 1000  .002
7 251 13 .130 19 .087
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TABLE X

Difference 1) between the exact value of L(= log dQ/dW) and
L calculated by saddle point in case of two cutgoing psrti
cles, as a function of the relation between the kinetic
energy E and the total mass T m of the system. For N # 2
this correction must be multiplied by,= (N), as given in
Table IX.

«24

E/Zm 7 E/Zn 1 E/Em T E/Zm

0 .000 026 100 -85 .195 5.0 .275
.02 o004 .28 104 .90 o200 5.5 o277
.03 .007 .30 L1090 .95 204 6 279
.04 012 032 113 1.0  .208 7 .282
.05 .016 .34 118 1.1  .213 & .28
06 .020 .36 122 1.2 .218 10 285
07 .02 .38 .126 1.3  .223 15 284
.08 ,028 40 .130 1.4 o228 20 .283
09 034 42 .135 1.5 .232 30 .278
.10 040 ol o140 1.6 .234 L0 274
<11 - (044 46 143 1.7 236 50  L.271
.12 .050 48 146 1.8 .239 60  .268
«13 .055 <50 149 1.9 .242 80  .264
14,059 052 o153 2.0 244 100 .260
15 064 <54 o156 2.2 247 150  .256
.16 068 .56 .160 2.4 .250 200 252
217 072 <58 .163 2.6 .253 300 .248
.18 .076 60 166 2.8 .25 400 .245
.19 .080 65 173 3.0 .259 600 242
+20 084 oT0  L178 3.5 .263 800  .240
.22 .090 .75 184 40 o268 1000  .238

095 +80 .189 4o 272 Q 0232




TABLE XI
Summary of momentum space volumes per unit of energy range. The loga
rithm L of these volumes is given by the difference AL=L- LKR(uhere
Iyp = 8+t log E is the N.R. approximation), as & function of there
lation between the kinetic energy E of the system and the kinetic
energy Ei’ for which the N.R. and the E;, for which the N.R. and the
E.R. approximations are the same.

359

Systen 2N 28r N2w 3w N2K Q2K NAK NIK ASr IZErm
'log ( E/Ei) AL =
04 970 1,152 1.198 .982 1.062 1.022 1.000 1.022 1.012 1,228
.08 2920 1,100 1.138 .92, 1.030 .980 .950 .960 1.152 1,180
012 .880 1.058 1.080 .866 .998 .930 .902 2904 1.090 1.140.
.16 842 1,000 1.032 .842 @ 968 .830 .868 .860 1.032 1.086
.20 « 804 2950 980 778 .942 .840 .822 .818 .980 1.042
o4, .T62 900 932 .732 .908 796 .74 JTTO 912 .988
.28 .'718 o850 .886 .688 .880 .754 .736 .738 .856  .940
.32 678 804 L8422 .650 .860 .718 .702 .698 .8l4 .900
.36 «640 JTI0 792 .618  .830 680 670 662 .762 .856
40 608 o730 754 .590  .802 644 638 624 .T726 .g808
o b, o 574 692  JTUL 554 778 612 602  .598 L6900  .T62
A8 «538 652 L6800 524 LT4B 584 .580  .564 .660  .724
.52 . 510 608 642 496 TR0 o552 542  .536 .62, .680
56 482 o574 604 470 690 .528  .520 504 600 644
.60 462 0542 578 JA42 660 500 496 282 576 .620
. 70 7 0412. ! 0470 0494 9388 @ 596 - 04-4:0 0438 0424— o 514 - 552
.80 «362 400 420 o342 524 360 382  .372 462 492
.90 0322 0330 o346 302 J458  .330  .330 o324 404 424
1.00 .282 0280  ,298 270 .398 .296  .292 .294 .358 .372
1.20 .218 0204 o220 220 L280 224 L222 .230 .264 274
1.40 .170 -150 .162 .16 .186 166 .172  .176 .198  .202
1.60 .130 <104 .120 .124 .120 120 .130  .134 o134 L140
1.80 .100 - 070 .084 .092 076 .080 .092 .09 .096 .096
2,00 070 <044 060 070 052 .058 064 062 .062 .064
2.40 .030 022 024 .034 .024 .03, .030 .030 .030 .050
2.80 .020 .012 .012 .018 .06 .022 .018 .018 .016 .O1é
log E; = |1.467 1.126 .821 .639 1.271 1.306 1.387 1.395 1.055 1.060
8 = 13.862 2.838 1.924 L378 3.372 3.339 3.620 3.646 2,624 2.640
t = 2
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1/2

12

System 2N Nr 2r 2K AK| 4N 2N2w 4w NZKw ZN3m 6w
-log(E/E, )| AL =
.04 o452 oTT2 2535 .582 .582) 1,392 1.725 1.428 1.689] 2.232 1.872
.08 o438 o751 515 o564 .560| 1.317 1.650 1.338 1.608] 2.096 1.740
.12 0399 o731 o495 o542 o540 1.254 1.563 1.263 1.539] 1.980 1.624
.16 <373 709 481 .529 .521) 1.200 1.497 1.197 1.464| 1.826 1.536
.20 o346 690 648 .512 .505| 1.116 1.428 1.134 1.395! 1.796 1.488
A 0321 LBT0 451 494 4B9| 1.050 1.350 1.050 1.326| 1.684 1.364
o 28 0299 648 G438 480 475 990 1.275 990 1.254| 1.596 1.280
.32 <280 024 422 468 458 .918 1.200 .930 1.197! 1.500 1.204
=36 0263 603 408 A J442| 849 1.128 .867 1.131| 1.404 1.128
40 0250 580 .393 .43% .430] .810 1.074 .816 1.080| 1.324 1.072
odd, 0236 .558 0382 o423 .412] .753 1.017 762 1.020| 1.248 1.008
48 0222 o538 370 o411 L400| .717 960 .720 .963| 1.168 .932
.52 2202 .521 .356 .398 .386] .663 .897 675 .912| 1.084 .872
.56 o190 500 o346 385 376 o624 737 .627 .855| 1.024 .808
.60 2180 o483 .332 .372 .368] .594 .780 .588 .810| .960 .760
.70 o151 440 o306 345 .344] -513 .669 513 .708] .204 .640
.80 2129 L3098 282 321 .318| 448 o567 WAhL .612] 680 .5L0
.90 2108 o350 259 .299 294 .366 480 375 o525 o560 456
1.00 2089 .306 .238 o274 L2700 .324 o393 o313 .453| 472 392
1.20 2063 .238 o201 231 .222{ .246 .282 .228 .345) .324 .284
1.40 046 178 170 .185 .180| .189 .198 .177 .243| .228 .196
1.60 2036 126 141 L145 o144 135 .126 132 .168] 140 .136
1.80 .030 082 .112 .112 .111] .099 .087 099 L1l4| .084 .100
2.00 ,022 059 .084 .08, .084] .072 .060 .066 .078| .064 .076
2,40 2020 031 .045 .039 .040f .033 .033 .,033 .036] .040 .040
2.80 019 .018 .025 .01 .013] .021 .027 .015 .021| .028 .024
log B, =| 1.229 .642 o401 1.101 1.092| 1.609 1.138 .781 1.319| 1.172 .887
8 = | 2,040 1.160 o798 1.848 1.834| 5.349 3.227 1.623 4.045| 3.370 1.662
t = 5

-
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TABIE XII

Summary of momentum space volumes per unit energy range. The

logarithm L of these volumes is given by the difference AL =

= L-L g g, (vhere Lg R = q+r log E is the N.Eapproximation)
as a function of the relstion between the kinetic energy E of
the system and the kinetic energy E., for which the N.R. and

the E,R. approximations are the sam%o

System 3 2Nw N2r 3w N2ZK (12K NAK NZK AZmr SKr
log(B/E 4 ) AL =
¢} 1.022 1.212° 1.268 1.042 1.096 1.090 1,058 1.090 1.270 1.296
04 976 1.152 1.220 .964 1,024 1.040 .966 1,038 1.220 1.250
eOS 0924, lo 100 10 170 0910 0956 0980 0896 0974- lo 176 llo 182
12 860 1.044 1,110 .836 .904 .910 .88 .910 1.116 1l.118
016 -808 982 1,052 L.782 842 450 .754 .856 1.070 1.042
.20 752  .920 ,998 o740 782 196 690 798 1.022  .976
o R4 oTI2 o862 944 690 728 .752  .638 .742 978 2930
.28 .668 816 .882 636 .682 698 .590 .682 .922 .878
.32 606 762 842 598 630 .656  .552  6LO .868 - 830
.36 <566 70 J792 0 860 o582  .620  .520 2598 ,820 o190
o 40 «530 678 750 o516 540 L5880  .448 .556 ,768 «'750
950 DMO 0578 o 654 04-38 DMB [} 520 0420 0460 0662 o 6“
.60 o348 498 .558 2360  .378 460 358,372 .550 2552
70 o296 422 470 0280 304 o418 302 o290 440 <460
.30 0R24,  .360 ,396 W36 256 368  ,252 242 364 - 384
.90 .180 .302 .338 0198 204 .330 206 0204 .302 «306
1.00 156 260 ,288 162 162  ,298 170 .178 L2500 + 254,
1.20 104 180 .,206 110 104  .232 102 .122 .160 «170
1.40 062 122 140 032  .070 180 .060 080 .104 .116
1.60 058 .08, .096 044 056 138 040  .058 .09 .078 |
1.80 052 .060 ..056 030  L.042 112  .036 044 .052 050
2.00 048  .054 .02 020 .036 .098 030 .040 .038 .036
log Ei = | 1,467 1.126 .821 2639 1.271 1.306 1.387 1.395 1.055 1,060
q = - 541
T = 5
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a1 8

AK

System 2N Hw KZ 4N 2N2r 4w NiZKm| 2N3m 57
1og(E/E,) AL=
0 479 2792 552 605 605 1.482 1.806 1.518 1.776] 2.364 1.976
.04 o451 W61 522 ,582 .588| 1.410 1.743 1.443 1.686] 2.260 1.886
.08 420 728 499 .558 .522| 1.317 1.677 1.386 1.593{ 2.164 1.804
.12 #3911 700 470 .52, .520| l.224 1.608 1.308 1.506] 2.060 1.704
.16 0368 H62 JAA0 491 489 1.140 1.548 1.233 1.416) 1.952 1.592
.20 o342 2631 411 462 JA460] 1.050 1.455 1.146 1.323] 1.844 1.472
o 24 o321 o598 o382 .429 .430] .978 1.362 1.074 1.233) 1.732 1.380
.28 2301 562 .358 .401 .401| .906 1.323 .993 1.167| 1.624 1.280
.32 #R285 o531 .332 371 .379| .843 1.197 .924 1.104| 1.528 1.188
.36 271 502 L309 .352 359 .825 1.116 .864 1.047| 1.444 1.100
40 «253 o471 o282 .325 L340 747 1.026 .792 .963| 1.364 1,016
.50 225 404 .238 .275 .29 .62, 900 .660 .813]| 1.204 .844
.60 .200 L343 .193 .228 .242| .513 .753 .53L .675] 1.040 .688
70 74 289 .162 L1899 .201| 420 633 .423 .558| 846 560
.80 0156 o243 135 159 J161| o348 510 .357 SAT4| T2 444
.90 JJ40 210 116 130 .132| 282 426 .297 .396| .596 .372
1.00 129 172 099 .109 .110] .231 .309 .243 .327] .484 .300
1.20 2102 120 LO71 .080 .080] .150 .195 .165 .219| .336 .196
1.40 .081 .081 .051 .059 .057| .108 .150 -.105 .147| .236 .132
1.60 062 059 .036 .044 .O4L| .090 .126 .069 .093| .196 .084
1.80 .050 .041 .022 .031 .030] .081 ,117 .036 .069| .100 .044
2.00 «045 .031 017 .025 .025| .075 .108 .027 .060| .064 .020
log B, = | 1.229 .624 .401 1,101 1.092f 1.609 1.138 .781 1.319| 1,167 .887
q = ° 196 —lo 896 -3 L] 661
r = 2 8 11




