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In this paper; we develop a causal interpretation of the Pauli

equation, in terms of the model of a fluid having a characteristically

new property of "intrinsic angular momentum", arising from the spin of

quasi~-rigid bodles, of vhich the fluid is assumed to be constituted.

The two-component spinor appearing in the Pauli equation
in terms of a specification of the density of the fluid,
Euler angles representing the orientations of the bodies

in space. We thon show that vwith these assumptions, the
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Implies that the spin angular momentum always points along the principal
axis of the body. The cquations of motion of the spin are thcn scen to
take a rather natural form, involving a coupling.befween the translation-
al and rotational motions of the bodies. This coupling is produced by

a spin dependent addition to the "quantum potential' of a simple type
that lcads to a tendency for the spins of neighboring bodies to become
parallel. The torgues resulting from this term are such that the con-
dition.that the algulér momentum shall always point along the principal
axis of thc body is preserved automatically by the equations of motion

as a consistent subsidiary condition.

I. Introduction

In various presvious napcrs , Scveral new intervretations of
the non-relativistic quantum theory without spin have been proposcd.
Although thesc new interpretations differ in various details, they all
have in common that they explain the quantum theory in terms of continu-
ous and casually determined riotions of various kinds of entities such as
fields and bodies, which are assumed to exist objectively at the micro-
scopic level. Thus far, those interpretations which have been carried
far enough to demonstrate in full detail their ability to explain causal-
ly all featurcs of the Schrddinger equation without spin have followed
-one of two general lincs of approache.

The first of these general lines, initiated originally by de
Broglie‘l, and later carried to its logical conclusions by one of the

authors of the prescnt paper3 , involves the notion that the Schrddin-

ger wave function,\&f(x,t), represents an objectively real but qualita-
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tively new kind of ficld of force that influences the motion of a body,
which latter has a well defined location, 3 (t), varying continuously
and in a now causally detcrmined way with i%e passage of time, This new
ficld of force produces no important offects at the macroscopic level,
but at the atomic level it is, as has been shown in various papers re-
ferred to above, able to cxplain the characteristic new quantum-mechani-~
cal properties of matter, which manifest themselves strongly only at
this level.

The second general type of causal explanation of the quantum
theory is along the lines of the hydrodynamic model; proposcd original=-

2, and later extended by Takabayasib‘and by Scthberg7,

ly by Madelung
In this model, lk}) I2 rcpresents the Vdensity of a fluid, WhileVS/m
represents its local stream velocity (where LV?—-&@‘ ~ ). In another
paperB, this model has been completed with the aid of the postulate that
there is a stable particle-likec inhomogeneity in the fluid that moves
with thce local strcam velocity. This inhomogeneity plays a role analo-
gous to that played by thc body in the interpretations initiated by de
Eroglie, while the fluid plays a role analogous to that played by the
}L{ field,

; In the present pgper we shall find it convenient to work in terms
of the hydrodynamic model, which we shall extend with the aid of various
new postulates to the Pauli equation describing an electron with spin.
We shall thereféro now summarize a few important aspects of the hydrody-
namic model without spin, in order to facilitate the description of the

new features that are needed for the treatment of spin. We first writc

Schr8dingert's equation in thec well-known form
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In terms of the iladelung interpretation, cquation (1) then re-
presents the conservation of fluid, while (2) rcpresents the cequation
which determines the velocity potcntial,:s e, in torms of thec classical
potential, V, and the ”quantum potentlal"

U=- £ 7R /R = [(V'OV - VBp]

As shown by Takabayasi * and by Sch&nberg7 , the quantum potential can
be interpreted in terms of a kind of internal stress in the fluid, which
depends not, however, on {3 itself, as is the case with pressures'and
other internal stresses in an ordihary macroscopic fluid, but rather,

on derivatives of D .

In one of the paners referred to previously Q the additional as-
sumption was made that the fluid is in a state of irregular fluctuation
resembling turbulent motion, in which the actual dens1ty'F> and the
actual velocity 3/, fluctuate more or less at random around IT%71 and
‘7f;/m respectlégay as means. In thesc fluctuations, it is permissible
to assume that 15 has vortex motions, which however average out to ZGro.
As a result of these fluctuations, elements of fluild on any onc of the
mean lines of flow associated with the Madeclung fluid are continuallw
moving in an irrecgular way to other lines of flow, and this process to:
to producec a more or loss random "mixing" of the fluid. ILike one of

the fluid elements the body-like inhomogeneity, which is carried along
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by the fluid, follows a very irregular path. It is then quite easily
shown that a statistical ensemble of such systems with an arbitrary
probability density, ‘P(x), of inhomogeneitics eventually decays into
one with P = ](V}e. Thus, the irregular fluctuations in the motions o-
the Madelung fluid providec a model explaining in a naturai way a posg-
sible physical origin for the statistical distributions of the quantum

theory 9.

2. Introduction of "Intrinsic Spin" in Hydrodynamical Ilodel

In the prcsent paper (and in a subsequent one), we shall extend
the hydrodynamic modcl to a treatment ‘of tho Pauli equation for a spin-

ning clectron. Now, the Pauli cquation is 10

{CJ%—~~“(V%CA/C) (a%vq/%'el U}f)(l'ja,

Adimc ™

where lpk_represents a two component spinor with index a, while A is
the electromagnetic vector potential, V, the total external potential -
onergy (electromagnetic and otherwise), and'yﬁ;the magnectic field.

As in the case of the liadelung model of Schr8dinger's ecquation
we must define a fluid density and a fluid velocity. Now, it is well
known that the Pa.uli equation admits a conscerved charge and current given

(except for a factor of e) by

‘0:: L}IU/’ (la)
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Writing § = f)v WG may then definec the velocity as
~I

vk (UTU-Yy®) e
= 3 mt ‘1+f' zifl C ”*

It is then %gidently consistent to assume that the fluid density is giv-

en by f):l+ﬂ%f, since the conservation equation obtained from the Pauli

oquation can then be interpreted as describing the conservation of fluid.
fD and EC do not, however, permit a complete definition of the

physical meaning of the 1#/ function; for since Lpris a spinor, it con-

tains fowr independent quantities, as indicated below

_s0,+4b

Y= <0+1d )
where the a,b,c,d arc recal. On the other hand, (La) defines only
f> = 82+ b° + 02 + a2 while (Lb) defines only the derivatives of the
a,b,c,d.

In order to define all parts of'qf'more directly in terms of

physical properties of the fluid, we shall therefore have to assume some
new properties for the fluid., Now, since the Pauli equation deals with

the electron spin, it seems natural to assume that our fluid should have

a new property, vhich wo may call in intrinsic angular momentum connccted

with the spin. By this, we mean that the total angular momentum density
of the fluid should include, in addition to the "orbital" contribution

, s . ; " ; _ ey
of MP(L X}{)an additional contribution depending on some parameters
connected with the internal motions of cach fluid element. To obtain a
possible physical picture of where such an intrinsic angular momentum

could come from, we may supposc, for the salke of discussion, that tho
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fluid is constituted of molecules, and that the spin motion of the con-
stituent molecules may contributec to the total angular riomentum of the
system. On the other hand, the same rosult could be achieved in a much
more general way. For if the fluid has an inhomogcneous structure, then
these inhomogencities will in general have a certain inertia, If a fluid
clement is turning, the inhomogeneities will turn with it and contribute
to the total angular momeontum. Such inhomogencities mizht, for oxample,
be stable or semi-stable pulse~like structures formed in the fluigd ite
self, or they might be small highly localized vortices or eddies. As fapr
43 our purposes in this paper are concerned, however, the origin of the
intrinsic angular momentum of the fluid is irrelevant. All that is
rclevant is the assumption that, for onc rcason or another, such an ine
trinsic angular momentum exists. In order to have a convenient model

in terms of which we can work, however, we shall assume in this paper
that the intrinsic angular momentum is due to thc turning of very small
qQuasi-rigid bodies of which the fluid is supposed to be constituted
(just as ordinary macroscopic fluids arc constituted of molecules). ‘o
shall sec that this simplified model is adequate for giving a causal cxn-
pPlanation of the Pauli equation. On the other hand, therec is no reas-n
inhorent in the model why the bodics must always be regid; or, indeed,
even why the inhomogencities must hecessarily be regarded as arising in
distinct bodics out of»which the fluid is supposecd to be constituted.
Hevertheless, under the conditions in which the Pauli equation applics,
we shall assume that the fluid acts so nearly as if it were composed of
distinct rigid spinning bodies, that we may use this model as a simpli-

fying abstraction, as one, for example, frequently simplifics the treate
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ment of atoms by replacing them by idealized mass points even though

they really have finite sizes.

3¢ Kinematic Description of Rotations

We shall now procecd to develop a kincmatic description of the
rdtations of a body, which is particularly easy to apply to the Pauli
equation, becausc it worlis in terms of spinors of the samc kind as ap-
pcar in this equation.

The first problem is to spccify thec state of rotation of a body.
This can be done in terms of the three Euler angles, 0,4 and QJ , whero
® represents the angle of the first principal axis with a Z axis fixed
in space, ¢ represents the angle that the projection of this axis makes
on the X-Y plane, and QJ'ropresents the angle of rotation about the
first principle axis relative to the intcrscction of the plane of the
second and third principal axes with the X-Y plane.

We wish now, however, to connect these anglcs to a spinor. To
do-this, let us imagine that we always start with the pgdy in a stan-
dard orientation, in which its first principal axis is directcd along'
the Z axis, which is fixed in space. We then make a rotatian,R(G,¢,Q))
which carries the body from its standard oricntation to its actual oricne
tation. This robation can be carried out in three steps. First, we
make a rotation, R'(\V) through an angle q} about the Z axis fixcad in
space (which is at this time also thc first principal axis of tho body).
Then we make a rotation Ra(e) about the X axis, of an angle, 6. Then
we make a rotation R3(¢) again about the Z axis fixod in space (but thi-

time the principal axis of the body is no longer parallel to thc Z axis.
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If the reader will drav a diagram, he will readily convinece himself
that these rotations give just thosc described by the Zuler anglesll.
Let us now carry out these operations mathematically. e shall
assume that the state of the body at rest is to be represented by what
we shall call the standard unit sp:‘.norl2 lgo: ((')) » lihen We carry oub .
the rotations described above, we shall see that a rotation involving
arbitrery engles, €, ¢, can lead to an arbitrary unit spinor (such
that P“(} =1 ). Thus, any unit spinor can be interpreted as a specifi-

cation of the angles of rotation of a body. In terms of spinor nota~

tiony the first rotation R,( \P ), is represented by the matrix
{G. - ' ' .
ey = {05\1)/2~;—( 6, sin /2

Applying this to the standard unit spinor, we get
R | (QP)P =€ \o/= € °
We now apply the rotation, /{"Z: e(G;( Q/Z :'CDS*Q""‘{ij"’ _g_

W t P
¢ ge t (,l//z 056/, ( Sin 8/ (os Q/L

R’-R'(g"’: 6‘ - \2<inb2 coes 8, (.50-’19/2
R},: e(.%d)/Z y we get

L.

G

>0

(7

Applying

(Y+9)/2

; '(4)59/2, e (8)
b =Rpo (z:me/z o (V-0 | F

_ E,+1b,_ ”
P“(bj‘i‘it’% (d).

e get



= b ¢ SW..._t_d_).) b :CC’S—@—- Sm(u_fifb}
b,”cosz o = 2 5 5
‘ (W (8v)
b.=-sia @ sia W) be= sin cos ¥-9)
‘The bi evidently satisfy the rclation,
2 X 2 2 '
E"F By *’L)s +’L34 = 4 (9)

The bi arc just the well-known Cayley-XKlcin parametors of thc rota-
tion groupl3, of which evidently only threc arc indcvoendent. By speci-
fying the by we can solve for thc Euler angles G,d,LF’. Indeed, the
specification is two valucd, in the scnse that therc are two valucs of
the b; for cach sect of Euler anglos.

Thus, we see that a unit spinor can bo interpretcd as dofining
the orientation of a body in space. We shall thereforc tentatively in-
terpret the spinor apvearing in the Pauli equation in this way, and

then show that a consistent interpretation can so be obtainedlu.

74, Canonical Relations for the Cayley-Klein Parametcrs

Now, we shall sct up a classical canonical formalism, in which
the Pauli cquation is used to definec the equations of motion of the
Cayley-Klein parametéfs, and therefore thc equations govofning the ro-
tations of the bodieé making up the fluid.

Our fifst step is to write down a classical Hamiltonian from
vhich the Paull cquation can be derived. This Hamiltonian is formally
the same function of the~spinor"QI as that which appears in the Hamil-

tonian from which the Pauli cquation is derived in the usual form of
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the quantum theory. Thig is

H = ('ﬁ

Zwm

(V-Ce A/ P VP VL Wo Phiax o

The above Hamiltonian will lead to the correcct egquation for nro-

vided that we assumec the classical Poisson bracket relations

r

A (X)W(X:{:b;\g( X') (11)

A P
%

For then we obtain just the Paull eguation

f'tla:*%f- dﬁl[Hl//] L{V Ze ’f\,,c)w +V
g LR CH AN

2wl
where we have used the fact that the Poisson bracket of q/a, with an

integral such as H is defined with the aid of the well-known functvional

carivativese. Thus

. F] SY SFOSH SF SH SF SH SF

, + — (12)
,_.). * % /
64; c@i SUI' by 4 SWZ E 7

l"
o
C/\r‘

*

In order to simplify the treatment; we now split the wholc spaco
into volume elements so small that W docs not change apprcciably with-
in them. Ve may then define (P(iw) as the mean value of LL/ in suvch a
rcgion, ccentering on the point 29%, By iategrating equ. (11) over

- { '
small regions of /f, and 7(_ centered respectively at X and Xh and
~ ~ AT ~4
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dividing by ( ZXV)Z we get

* , Ur ¢ ] - éllg S;(ZS“\‘ZSV\>
[qja (Xw)’%bﬁx“)j E (Av)

(h

¢ shall now find it convenient to introduce a new spinor

X‘J’RAV KP o

e obtain

[X: (Xw)> Xb(/?&n)] = 10, 5(Xm™Xy) (1)

t.e then writec

\

/o, +la, ‘
X ) (15)

- \[z Q3+{'CL4

From the Poisson bracket rclations, (1li), we then deducc that

[o,,a,] =1 ; [Gy,a,] = 1

1 _T - i 7 =
[a’ta’3J:[ana'4j = La’l)QBJ - ]:a'l)c{’ll_J =0
Thus @E.is the momentum canonically conjugate to (o and.CQ_3 is canoni-
cally conjugate to Ctbf The A i arc evidently pfoportional to the Cay-

ley=Klein parametefs k}{ (givon by cqu. (8a) ). Thus, we have found the

canonical relations among the(}i, implied by the Pauli equation.

5. Definition of Spin Angular lorientum

In order to motivate further steps in the interpretation of the
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Pauli equation, let us recall that in the usual quantum mechanics, the
A * ‘ ’

total spin is ziven by <éE grpy'c7(+7 d X This sugnests that

4 % - ~ 4 *

—2—_— Wg: 'Ql] is a spin donsity, and that S = 5 ({:Er o tﬁ{) AV is the

total spin in the small cleiient of volume [&\/. Expressingt%Jin terms

of )( throuch cqu. (13), we get

A /o

s = = (X2 o

2= 7\
The total number of particles in this rcgion is just
% - *’ E
Anv= Yav = X X /A (28)

Thus, the spin per particlec is

(19)

- s

4 XX w oy
TTaxXx o2

T4

gy

Yty

¢ sce then that thc maximum spin per body in a given direction is ﬁ/EG

This is in agrecoment with what one gets for the spin "obscrvable" in

15
the usual quantum thcory .

with the aid of thce P.E. rclations (11), it can be shown by

means of a simplc calculation that the components of the spin vectors
o

i
\—}
—~

, Satisfy the cyclical rclations, characteristic of angular moment:

o
o

S
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Thus, the Polsson-Brackct rclations obtained in the derivation of the
Pauli cquations from a hamiltonian arc just what are necded to lecad to
the correct P.B. rclations for the angular momenta defined in cqu. (17).

In the present theory, the basic spinor
| | QL ‘f'{a,z\
)< RN (ﬁla + ((L4,/
contains only two cenonically indopendent variables; ‘¢ shall now scc
the physical meaning of this rcduction of the number of basic variables'
to two. To do this, we fincd it convenicnt to go to a new set of canoni-
cally independent variables which we take to be two of the Euler anglocs
kp and ¢. In terms of the Cl{ these arc (as can casily be seen from
cq. (8b)

— i i - a
b= fan -1+T(1 I&_‘f d; tan f.(\ Far ,_f | (21)

.,

a 4y 3

By means of a simplc calculation, we prove'that the quantity canonical-
{

1y conjugate to = E? isfStL, which is proportional to the total number
1

of particles in the region (Sec equ.(1l8) ), while the quantity canoni-
c¢ T conjugate to=- ?; is Sz’ which is equal to the z componcnt of the

totar -gular momentum of these particles. Thus, we have

.

e T U, *Cl +Ql +-Cl \ - ~/
1i'rfﬂ'?. /.]4:§( > 2 44}) ¥ﬂ Clz ;?j)j ::7

(22&)

) (s —as-al) g aia, -1 g ,
(%7 ]l i H“‘ ol =

Qs
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But now we can show by a simple calculation that ;4 is also equal

to the angle g{ ! made by the projection of the angular momentun vector,
S on the X-Y plane. Thus _ , .
~ ’/0\' _ /;v((;'\/ o _;.1) » Oy +A'QZ
{ ,

7} i k3 vl 4 _ 1 H p ' = .
tam @'~ Wgy v ;%3 ’LQ")\J— C/\U T a, %y -G

! a, -AQ 1 0/ \a; +iog

Now, from eq. (21)

/

; _a _a/ / a, az XA -A; %y
J(av\/@f_ fa, ;/%/ t+ 2 3

77 WY
Gy Qg 143 T %

/
/
c
Thus we sec that @” = (0. Moreover, the co-latitude angle, (3 ',of the
/

angular momcntun vector, is defined by

i - z z Tz Z
Cos 8 . Dz _ & +G7; = i -Gy
- g 7 -d 2 Z .2

2 a, +O.Z +a5;+u4

But from cqe (8b), we can calculate the angle, ©, madc by the prin -
cipal axis (1) of the body with the z axis. This is given by

2z z _z 2
Cosb - Oy +0; =4 -&y

5 2 z T 2

Thus, @ '=0Q.

We conelude then that in the Pauli theory, the angular momentunm
Q/ y 1s always pointing along the principal axis (1) of the body. Such
a special oricntation of the angular momentum cannot be maintained for
the most general kind of torque that may act on the bodys In the fol-

lowing scction, and in o subscquent paper, we shall scc, however, that



wlbe-

the Pauli oquation implics a spceial kind of’"qﬁantum-mechanical.torque”
that permits this condition to be maintained as a consistent subsidiary
condition.,

The special rclation betwoen the dlrection of 55 and the prin-
cipal axis (1) is what permits us to reducc the numbor of indepcndent
canonical variables in the theory, "hen this rclation exiats, our th@bry
bececomes equivalont to a thecory of the angulér'momontum of a point di-
nole,  which has alrcady becn trcatecd by scveral other authors.16’17’18.
In the subscquent maper we shall see, however, that the theory devclop-

d here can be zoneralized to troat cascs in which gé'does not nccessar-

11y »oint along the pPrincipal axis.
6« Rclationship Between Spin and Veloeity

Let us now rccall that cq. (lic) defincs thevvolocity of a parti-
cle in tefms of our spinor. Sincc thc spinor is alrcady interprcted
in terms of thc orientation of a Spinning body, eqs (lic) clearly implics
& certain rclationship betwcen ths spin and the velocity. Ve shall now
study this rclationship anfl show that it can be understood in terms of
a rcasonable physical model.

Yic begin by cxprcssing our spinor (with the aid of eqe (7) ) as

/CD'J 6/2 e"'(‘?’*‘f"’)'/z
= R T Whero R is real

15ing e (V=¢)/2

Using this valuo of Uf in cqi (he), we rcadily get

(ku(;@v:b)———A -

“’ Ln«
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The above, is however an cxprcssion of the vclocity in a fornm
that has alrcady long becn familiar in classical hydrodynamics., Indccd,
in classical hydrodynamics, it is shown 19 that an arbitrary vclocity

ficld can always be cXpresscd as
-ys+Evn - £ / | (2l;)
Vs > 1 C fi

whore 5,%,72 are scalars, called the Clebsch parameters.

The curl of the vclocity is then

VXY =vExvn-£9xA (25)

(This is qu1to a diffcront exprossion from the morc common form
VfrrVX E>- — fs in the sense that S' and S arc diffcront func-
tions, sinece d1v(§§7q) is not in general cqual to ZCroj.
The Clebsch parametcrs have rceently been used by Diracao and

others21

to treat a theory of a classical eloctrificd fluid cther,
They have also beoen used by 1:':11«:abayaswlL to treat possible vortlces in
the Medelung fluid, and by Séhﬁmbcro in a morc gencral context.

In order to ecstablish a basis of comparison with the Pauli theory
we shall first trcat the ordinary classical hydrodynamics of a chargod
fluid, capablec of maintaining a pressure gradicnt, in terms of the
Clebsch para.cters. One of the advantages of these paramcteors is that
thoy permit the formulétion of hydrodymamics in terms of a variational
principle. Indéed, if fD is the density of the fluid, then thc Hamil-
tonian is just cqual to the total kinctic plus potential cnergy of the

fluid (ineluding thc potential cnergy due to compression).
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[ (V *“/7) 'é)"'?efﬁﬂ—){(ﬁ)]c[?\(’ (26)

‘where A is the vcetor potential, ¢, the scalar potential, e the ratio
of charge to mass for an c¢lemcnt of the fluid in question, argd f(l,O )
defincs the prossure through /0 = 9{/8})

Now if we adopt ossentially the same Poisson Brackets as were
derived from the Pauli thcory, i.c.,

|

{ ~ |
[POOs (X)) = §1x-x) ;[ p§0, N = Eo-x) @n
then we obtain the followinz cquations of motion

Sa-le+CJ’V,P'(VS-Ze-éw"%vn):s—-f«;»c/tvplf';—:Q (28a)

; ¢ f £ 1 & S ;
*»%(}{-\7)77+ (vw’:‘im“ c4) - ;%—c‘b* 97(/3/0 =0  (26b)

25 o _ fl__-_{_(z 2 ‘ | : (28¢)
5’[ T (N \7)5 T4t “ |
lJ”(}V['-V)}?: %—2 = 0 | (264)

Combining (20b) and (284d) wec ~ct
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ot /at 2 v T"h’\QP at: -

Eq. (28a) is just thc equation of conscrvation of fluidl Lq.
(28b) (and therefore also (28¢) ), is a genoralimation of the equation
for the vclocity potentiai, S, which cnables uUs to take veracity in-

to aceount (thbrough 3 and Vl). Eqse (28c) and (28d) arc very intcrest-

ing, for they say that if we follow a moving fluid cloment, % and V\
arc constants of the motion (but not at a point fixed in space). Thus,
the surfaces %(x,y,z,t) = const. and 1(‘ = V’{(J{,y,z,t) = const. definc
the tubes of flow of thc fluid.

To understand the motion in morec detail, ltt us focus our atten-
tion on eq. (286c). This is analor~ous to a Hamiitonian-Jacobi equation
but the cquation involvcs, in addition to the clectromaznetic poten-

2
tials, and thc prossure potontial ( — { #)

, & sct of cquivalent poten-
tials that arc functions of the Calebsch ?érametersag. In fact, the
Clebsch parameters contribute an addition of ? 9“ to the scalar.poten-
tial and - %‘Vll to the vector potential. ‘ic may thus conclude that for-
mally they contribute to the equation of motion of a fluid olement &

"pseudb Lorentsz force", given by
= (] ’+1”x9{) - (29)
= (E+17K)
where the "pseudo electric" and "psoudo magnetic" ficlds are given by
% 3 /Q‘V'() é;% VN - %l[xﬁ %
3
')L \/ /oot ! otV

A r’-v-vvx(?'v“’z): VXV



Thus, for the additional force, we get

o .
Fesrum-2ly  —yx (VExvy) (30)

P Jt /
Writing
VX (VEXTY )= (}\{‘.\7;5/\71(-(}5 \”UV;
we obtain
g1 3
— d? /\Ir —~\ L \ /&'” /A~ l[ dg C‘q
= + V - I -4 M | = —L —_——
Fe(5e W0 v)5)- (5 (v at -3t Vs
Since from (28c) and-(28d) we have = Z~ 0 and 5¥%= 0, we get F'= 0.
dt a

Thus the Clebsch paramctcrs Tormally add to the veetor potential a set
of quantities that producc a pscudo-cloctromaznetic ficld for which
the pseudo-Lorcntz-forcc vanishes. Therefore the Clebsch bParanctcrs
appearing in equation (26c¢) do not slter tho cquations of motion of a
fluid element 23. What they do is to cnable us to considor in a canoni-
cal'formalism an enscmblc of trajectories for the fluid elements which
have a vorticity that docs not come from the effcects of the electromag-
netic vecbor potential,f% « Thus, they makc possible a generalization
°f the Hemilton-Jacobi theory; for in the latter, we consider only
ensembles in which‘hxgl~§~f5 is derivable from a potential (equal to
the action function).

Let us now rcturn to the Pauli theory. Our first problem‘will
be to comparc the classical Hamiltonian (26) with the Pauli hamiltonian
(10) By mocans of a simple calculation, we obtain the recsult that the

Paull hamiltonian can be written as the sum of the following three terms:

H= Hr + Hg + Ha
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where we have

4i- "(NY % e -
a2l = LA LB YR _E A Y A3
H/ dm V2 ¢ 2 C p\,) L (31a)

g {o' o (31b)
n

] . : ; A

[ ' Vo, 2] el g
( (,‘C = /i VQ; Tt GV ?/' /+—-— (@59# P (31c)
J }' Loy N / ZwmC ‘

+ Sim Qw:(p};/x + 500 Zin (,Lﬁf//)] f(/)\(j
and vwhere )% is the magnetic field.

In the above equations, wc have, as in cq. (L), dcfincd

| ple iR =g
where }3 is the density of bodiecs.

In order to compare the ‘Pauli hamiltonian to the siﬂplo hamil-
tonian, lc, of classical hydrodynamlcs, we note that f; is canonically
conjugate to - \U’( P cos 8)fo -é%. Thus, if we roplace byf)
and write

.. e =Y
;?:!60569>/ %{'— = Ej ) 72 2

then f{ becomes equal to kinetic energy term in cq. (26).

(32)

The terms that are left over in the Pauli equation arc then /%
F’sp. We shall see in eq. (3lb) that fk leads to the "quantum-potontiai®
term of the Madelung fluid, Thus, thec two terms, H7-+ H% represent the

energy of a charged Madelung fluid, in which fortex flow as well as po-



w2l -

tential flow arc talrin~ placc.

As for thc third tcrm,?ﬁP » 1t 1is clear first of all that it con-
tains a part cescribing the cnergy of a spinning dipole 4in a magnctic
field/H + The magnctic moment of this dipole is ¢l/2me.

‘va We assume that our bodies have a radius of the order of the
classical clectronic radius, B = ez/mc2 = 2.8 x 10-130m, then the mag-
netic moment is/ﬂtf>\eﬁ>9é, where V' is the velocity of rotation of
the ‘body at its periphery, and where )\ is a constant of the order of

unity depending on the charge distribution in the body. %e then obtain

a 4i 137

< Amer, T X

Thus, the body must, at its periphery, be moving much fastcr than Light,
1 a non-relativistic theory, such as we arc discussing in the prescnt
peper, this of coursc lcads to no difficultics. 1In a later paper, con-
cerned with the extcnsion of the theory o the Dirac cquation, we shall
scc that the spin motion bcceorcs closcly connected with thc mass motion
of the fluid, so that a spin angular momentum of eh/2mc for the body is
possible, even when the spced of motion of its periphery does not excced
the speed of lighé, because the fluid motions arc further connected
with the body rotations by a spin-orbit coupling, no prescnt in the non-
relativistic theory. |

As for the rcmaining vart of H sp? this represents an interaction
between the directions of the spins of’neighboring bodies, which functiong
¢ssentially as a spin-dependent addition to the "quantum potential,
To obtain a more definite model for this part of the spin energy, we may
let 5,4 represent the total angle between two spin vectores, separatcd

by a distance, S;(. Then, by going tc spherical polar coordinates in the
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Space of the spin vecbors, we can show that i
' & . e - L
SAI"=v6-5X| +5in8]ve-S X

Thus, thc encrgy, Hsp is just an average of le |2, taken over a small

rogion that surrounds the body and weighted with the density, f). Yo

/
can therefore intcrprct F physically as the result of an assumed

| sp
short-range interaction botween bodies, which tends to linc up the di-
rcction of their spoins. For cxample, thc energy of two neishboring
bodies could be proportional to

0y
= —tos§A = —1+(8A)/2

Interaction (33)

-—

Let us now obtain the cquations of motion that follow irom our

hamiltonian. To do this, it will be convenient to write }/ as

H= j( Vs+Zvy /‘)H T J((V-F Clx +[FH G’X

where

.- 3 2
4 (vers ndofopitle £ 4 f’__ZVfJ._@/“ e, |
Hf[:: L(Ve) +n (V) _;«&——%e» j i~ !_1_;2 ,(1/)\\77].}4&%15:?
The equations of motion then becomec
’ ‘
a@—g f (hvf) =0 (3h4=)
95 SV mer & (VLP NGk BT
—— - + - t2 / =
1 ™ L 4m ID P) (3lib)
It
d§ 5 H: |
dE =7 ‘5}"2 (3he)



ot ; (34a)
Eq. (3Lia) is then Just thc conservation cquation while cq. (34b)
i1s the pscudo Hanilton-Jacobi cquation for a fluid with the usual quan-
tum potential 1o, 2 ! o
P ’ Kowte 1 (V)
-"Laﬂk L’

b/l
ant a spin dependent quantum potential

Ho- S(V-v)9

/
Eas. (3lhe) ena (3ld),

- A 7
vV
~ ’

which tell us how thec snin direcctions
change vi th time arc in prccisely the same form as that of the cquatio
cxpressing the torque acting on a point dipole
Sch8nberg 18 in a purcly classical problcm.

derived previously by
~C may now, howevcr, obtain another instructive form of the cqua-
tions for the spin variables by

form

noting that h
4%1

p can be written in the
P ¢ /( \‘Z- i 1
HsF Z\’\\.T;{\ag./r‘mcr\"\' >
-~
Joting that O g{é;i s Wc also obtain the exprossion
Y , 2/
(T4 5 /25.\°/ e ¢ 4 (35b)
Hothsp= || 7= L A550) JF T e (R
JLawm i § toXp

We can obtain the equations of motion for

L

/- 5 by writing
4=S F and using the P.B. rclations for thc angular momentum. Ve get
(with the aid of eq. (35a

£ _A .5 9

oY= [ A X /H
b —T” \"é)x.) ﬂ‘&\‘AJ
P 4 2)(, ¢

(36)
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Thus, the spi? vector precesscs about the"magnetic field, with angular
frequency, %ﬁ; and there is an additional Preccssion with angular. velo-
city ‘ Y- o 3/5

"FCTW <pay
which results frox the torques produccd by the ncighboring spins. In\
Some ways, one may think of this extra torquc as due to a kind of "quan-
tun-mechanical® addition to the matnetic field. But to make the analogy
correct, one must think of the naznetic ficld in a polarizablc medium
whore cach dipolc intcracts stronzly with its neighbors.

Finally, we shall discuss the motion of an clecment of fluid.

This is best donc in terms of the c¢xpression for the cnergy-momcntum-
stross tensor. To derive this tensor, we start with the lagrangian
loaving.out the vector and scalar potentials, which cdo not altar the

problem in any esscntial way

s . ey L (U A
;:(P [ESA: .%ﬂ),ff.(wuf‘\m)—-—w-i(w) MG(W’)_{lem)
L. ! A M 7 4 K 2

It can casily be shown that this lagrangian leads to the correct can-
onical relations (27) bctwecn} and Y] , and between 0 ' and §., and

that it leads to thc Pauli hamiltonian (10).
2l

Now the canonical cnergy-momentum stress tcnsor is glven by

Q% () o uwfu\ax )" éi{‘) Sk
- ) 3(5{%} 3X3 : (at, ] a(at / )

wherc the -F“ rcpresent all the possible ficld quantitics. Toj re -

presents thc momentum density, and Too the cnergy density. e regdily
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obtain

U,QS 9‘?\
Too=P (¢ 5 50,

o A5 < 9’] (36)
T =01 22 s

(—*—-"“g“‘"}‘ "““_-F*'—'f(“——%fl” b,

wherc ; and'q arc given by cq. (32).

xs a
The encrgy Pcr particle is then g—é- + 33:’1 s ¥nich agrecs with

what we obtain with the "Hamilton-Jacobi™ cquation (28e¢). The momcntum
per particle is Just;E:§75+§fh% in agreement with what we have becn as-
suming. The stresgs tensor,,Tij contains three parts. The first part
is just}upv}vi s Which is just the usual term rdprésenting the effects
of mass m;tion. The second part corrcsponds to the quantum potential
and the third part to the effccts of the intcractions between the spins
of neighboring particlcs. The cquation of conservation of momentum
can then bc written as

.i(f.\“t:‘;/'-l—z__ -a—-)—(—-z = L

J 4

With the aid of the equation for conscrvation of particles, and the

reclation L AL
v2 adp ey 3 (VFT) 22U
7 pax3(f’a¥« i) P J X;

We obtain

b (av (V-v}v*
ot ot ~

Q
e S
M

- | 9 (5. |
-VU—-F§>~(—N§,N (39)
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where
L _00 20 ... I0 J¢
=5 = +511r B — —
e see then that the fluid element moves under the action of
the "quantume~mcchanical® stress tensor

20 ap
4’)!1)0‘: aX, &Xj
hich leads to thc quantumn potential, and an additional quantum-mecchani-
*al contribution to the stross tensor, arising from the intcraction of

neighboring spins.
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