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We discuss the bosonization of a relativistic very dense Fermi gas in a magnetic field and the

consequent Bose-Einstein condensation of the resulting relativistic vector gas of charged particles.

The model may be applied to paired spin-up electrons and ρ or ω mesons. We show that such

systems may maintain self-consistently magnetic fields of order 1010 − 1019 Gauss. That pairing

could be the origin of large magnetic fields in some white dwarfs and neutron stars. But for fields

large enough (∼ 1013 for white dwarfs), the system becomes unstable and collapses.
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I. INTRODUCTION

Recent experiments [1] on extremely cold

atomic Fermi gases indicate that a bosoniza-

tion occurs and a Bose-Einstein condensate

appears at sufficiently low temperatures. A

background magnetic field is present. If we

assume that this mechanism is universal,

we expect that for superdense objects like

white dwarfs and neutron stars, which can

be considered extremely degenerate Fermi

systems, the same mechanism would oper-

ate. This would lead to the arising of very

strong magnetic fields as a consequence of

condensation in presence of lower magnetic

fields.

On the other hand, in the paper [2, 3] it

was shown that a relativistic Fermi gas un-

der the influence of a magnetic field B of

order of the quantum electrodynamics limit

of m2
e/e ∼ 1013 G for densities N ≤ 1030

cm−3 becomes unstable and collapses, since

the pressure perpendicular to the field van-

ishes. Physically, the system, infinitely de-

generate with regard to the orbit’s center

quantum number, becomes otherwise one

dimensional, all the electrons falling on the

Landau ground state n = 0. The magnetic

”Bohr radius” being of order
√

h̄c/eB =

10−2Å. Its spectrum looks equivalent to

that of a free one-dimensional particle mov-

ing along the external field. Because of the

spin-B-field coupling the system is unable

to exert a transverse pressure under these

conditions.

Looking at the problem of bosonization

of the Fermi gas from another side, in the



paper [4] it has been shown that an elec-

tron gas confined to the Landau ground

state cannot be in β-decay equilibrium in

a neutron star due to an incompatibility

among the spin orientation of the particles

involved. The suggestion is given in [5] that

a bosonization of the electron gas must take

place.

II. THE ELECTRON VECTOR

PAIRING

We will discuss here the behavior of a

gas whose constituent particles are relativis-

tic bosons, which we assume to represent

the electron pairs, under such extreme con-

ditions of confinement to the n = 0 Lan-

dau ground state. As it is known in nor-

mal superconductors, scalar pairing conden-

sates occurs in absence of a magnetic field

(Cooper pairs). When a magnetic field

is applied, the superconductivity (conden-

sate) is destroyed at some critical magnetic

field, (the Schafroth critical field). But if

the magnetic field increases largely enough

to force a significant fraction of the sys-

tem density to occupy the Landau ground

state, it has been suggested that some sort

of superconductive behavior reappears, i.e.,

the condensate reappears as a consequence

of the arising of a spin-one vector pairing

mechanism [6]. This would lead to a be-

havior superconductive-ferromagnetic. We

shall assume that this happens in the rela-

tivistic electron gas placed in a sufficiently

strong magnetic field.

Such particles would carry twice the

charge of the electron and an effective mass

which in principle we take of order twice

that of the electron mass (some correc-

tions must be introduced however, due to

effects coming from the large density and

the magnetic field). Then the system may

be treated by following the same formalism

used in previous references [2, 3], [7]. As

a consequence of condensation the system

would behave as ferromagnetic and under

the action of an external field H , a mag-

netization M arises, leading us to define a

microscopic magnetic field B = H + 4πM.

The interesting point here is that, due to the

positive character of M it may occur that

B ∼ 4πM, or H � 4πM i.e., the micro-

scopic magnetic field be produced by self-

magnetization [3].

We shall assume that the relativistic

paired electron system behaves as a vec-

tor particle with energy eigenvalues [7],

ε0(p3) =
√

p2
3c

2 + M2c4 − 2eBh̄c, (where

we take M = 2me, me being the electron

mass) for the Landau ground state n =

0, εn(p3) =
√

p2
3c

2 + M2c4 + 4eBh̄c(n + 1
2 )

for the excited states n = 1, 2....We ob-

serve that the magnetic field introduces

an effective mass for vector bosons M0 =√
M2 − 2eBh̄/c3 in the ground state such

that as B increases, M0 decreases. This

leads to an effective magnetic moment in the

ground state m = eh̄/2M0 c. The magnetic



mass is Mn =
√

M2 + 2eBh̄(n + 1
2 )/c3 for

the excited states, which increases with B

and n.

In [7] we have shown that Bose-Einstein

condensation, in the sense of a large popula-

tion in the Landau ground state having its

momentum along the magnetic field equal

to zero or very small, occurs for scalar and

vector particles in presence of a strong mag-

netic field. We name n±
0 = [exp(ε0 ∓ µ)β −

1]−1 the density of particles and antiparti-

cles, respectively, in the ground state. We

expect then most of the population of parti-

cles to be around the ground state, since for

low temperatures n−
0p is vanishing small and

n+
0 is a bell-shaped curve with its maximum

at p3 = 0. We will define µ′ = µ − M0c
2

and and recall the procedure followed in [7].

We call p0(� √−2M0µ′) some character-

istic momentum. Taking by symmetry the

density of particles minus antiparticles (the

latter will vanish as −µ′ � T ) we have in a

small neighborhood of p3 = 0,

N0 =
2eBT

2π2h̄2c

∫ p0

0

dp3√
p2
3c

2 + M2
0 c4 ± 2eBh̄c − µ

−
∫ p0

0

dp3√
p2
3c

2 + M2
0 c4 ± 2eBh̄c + µ


 2eBT

2π2h̄2c2

∫ p0

0

(M0c
2 + µ)dp3

p2
3c

2 + M2
0 c4 − µ2

−
∫ p0

0

(M0c
2 − µ)dp3

p2
3c

2 + M2±c4 − µ2

=
2eBT

4πh̄2c

2µ√
M2±c4 − µ2

∼ 2eBT

4πh̄2c

√
2M0

−µ′ (1)

where N = N0 + δN and δN is the density

in the interval [p0,∞]. Actually as µ′ → 0,

N0 → N and δN is very small. We get then

µ′ 
 − e2B2T 2M0

2π2N2h̄4c2
. (2)

We observe that µ′ is a decreasing func-

tion of T (because of the minus sign in front

of this expression) and vanishes for T = 0,

where the ”critical” condition µ = M0c
2 is

reached. As shown in [7] in that limit the

Bose-Einstein distribution degenerate in a

Dirac δ function, which means to have all

the system in the ground state p3 = 0. From

(1) we may write the thermodynamic poten-

tial as

Ω =
eBT

2πh̄2c

√
M2

0 c4 − µ2 (3)

III. THE SELF-MAGNETIZATION

From (3), the magnetization is given ap-

proximately by

M = − ∂Ω
∂B

=
eNh̄

M0c
. (4)



One can then state the condition for self-

magnetization, by writing the equation H =

B − 4πM = 0. One has,

B = 4πM = 4π
eNh̄

M0c
(5)

Let us assume that N ∼ 1030−32 cm−3.

Then M ∼ 1010−12 G and B ∼ 1011−13 G.

The condition for self-magnetization is sat-

isfied. The system becomes a giant mag-

net, whose stability is determined by the

transverse pressure condition P⊥ = −Ω −
BM [2, 3]. However, the estimation of

the value of Ω would depend on the frac-

tion of paired electrons. Let us name Nu,

Np = N − Nu the density of unpaired and

paired electrons, respectively. If Nu ∼ Np

then the dominating pressure comes from

the (unpaired) electron gas contribution,

Ω ∼ NM0 ∼ 1024−26 erg/cm3. This inter-

val partially overlaps the interval BM ∼
1021−25 erg/cm3 leading to the vanishing

of P⊥. Thus, one can assert that for the

self-magnetized star for fields in the inter-

val B ∼ 1011−13 G, and densities in the

region N ∼ [1030 − 1032] cm−3, for some

specific values of these quantities there ap-

pears consitions of instability and the white

dwarf collapses (the star may be stable for

other values of N, B ). But if Nu � Np

so that the dominant pressure comes from

the paired gas the collapse is unavoidable in

any case, since as Ω is positive, its contri-

bution to pressure is negative. We conclude

that the stability requires from a Fermion

background.

There is another point to be considered

when eB approaches to M . As M0 de-

creases with increasing B, the magnetiza-

tion M increases with B, and would diverge

for M0 → 0. For eBh̄/c3 close enough to M

one expects the main contribution to B be

produced by M. We get an equation similar

to the one discussed in [2] for the W conden-

sate. Let us write 2eBh̄/M2c3 = x2 where

0 ≤ x ≤ 1. For x = 1, we have the critical

field Bc = M2c3/2eh̄ 
 8.82×1013 G. Then

we can write M0 = M
√

1 − B/Bc. We eas-

ily get

x2
√

1 − x2 =
8πe2h̄2N

M3c4
= A. (6)

By simple inspection we find that it has real

solutions only for A < 2
√

3/9 = A1. This

means that N ≤ 1032 cm−3. By solving the

cubic equation (6), we find that for A � 1,

these real solutions are x1 =
√

A + A2/2

and x2 =
√

1 − A2. The first solution means

that B increases with increasing N , (up to

the value Bmax = 2/3Bc). In the second

solution B decreases for growing N , and its

limit for N → 0 being Bc. The last result

has only meaning if interpreted as indicat-

ing that the expression for the magnetiza-

tion (4) is incomplete. Actually, it must in-

clude the contribution from Landau states

other than the ground state, which lead to

a diamagnetic response to the field. The

decrease in population of the ground state

is compensated by increasing the number of

particles in Landau states with n > 0. Their



contribution would compensate the increase

of the self-consistent field with increasing N

to keep B < Bc.

IV. CONCLUSIONS

We conclude that a very dense electron

system, as for instance, a white dwarf, in

presence of a very strong magnetic field,

may bosonize and create conditions of self-

magnetization. The possibility of a collapse

is highly increased as the density and mag-

netic field grow. The star is hardly stable at

fields of order or greater than Bc: the one-

dimensional world created by the so large

magnetic field is unstable.
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