
CBPF-NF-021/03 1

Central extensions, classical non-equivariant maps and residual

symmetries∗

F. Toppana

aCentro Brasileiro de Pesquisas Fisicas, Rua Dr. Xavier Sigaud 150,
22290-180 Urca, Rio de Janeiro (RJ), Brazil

The arising of central extensions is discussed in two contexts. At first classical counterparts of quantum
anomalies (deserving being named as “classical anomalies”) are associated with a peculiar subclass of the non-
equivariant maps. Further, the notion of “residual symmetry” for theories formulated in given non-vanishing EM
backgrounds is introduced. It is pointed out that this is a Lie-algebraic, model-independent, concept.

1. INTRODUCTION

We discuss here the contents of two papers, [1]
and [2], where two definitions have been proposed
for two different phenomenons which are both re-
lated with the arising of centrally extended sym-
metry algebras.
In [1] the notion of “classical anomalies” has

been introduced to describe a classical coun-
terpart for the well-known notion of quantum
anomalies. It can be said that a classical anomaly
is present whenever the Noether charges of a given
theory, endowed with a classical Poisson brackets
structure, no longer close the original symmetry
algebra of the action, but only its centrally ex-
tended version. Classical Poisson brackets are al-
ready sufficient to produce such an effect (i.e., it
is not necessary to introduce a full commutator
algebra for quantum operators). Perhaps the best
known example is the Liouville theory [3], whose
stress-energy tensor, even classically [4], satisfy
V ir ⊕ V ir, while the original conformal symme-
try algebra of the classical action is Witt⊕Witt,
the direct sum of two copies of centerless Virasoro
algebras. Even simpler examples can be given [1].
It is worth to point out that a “classical anomaly”
is a very peculiar type of classical non-equivariant
map. Indeed, it is a non-equivariant map associ-
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ated with the Noether charges, i.e. the symme-
tries, of a classical action.
The second topic here discussed is the no-

tion of “residual symmetries”’ introduced in [2].
These ones correspond to the surviving symme-
tries once an external (for sake of clarity let’s
take an electromagnetic, not necessarily constant)
background is turned on.
Previous works such as [5] investigated this

issue for very simplified field models (e.g., in
[5] a U(1) free massive bosonic field in 1 + 1
dimensions, minimally coupled to the external
EM background was considered). On the other
hand, as shown in [2] and discussed in section
3, the notion of “residual symmetry” is purely
Lie-algebraic and model-independent. Any orig-
inal Lie algebra, or better a D-module realiza-
tion of it, admits its associated residual symme-
try. To give an example, for a generic constant
EM background, the Poincaré algebra in (2 + 1)
dimensions admits as residual symmetry the 5-
generators Lie algebra Pc(2)⊕o(2), where Pc(2) is
the two-dimensional centrally extended Poincaré
algebra discussed in [6]. According to the relative
strength of the external electric versus magnetic
field it could be of Euclidean or Minkowskian
type.
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2. CLASSICAL ANOMALIES AS PECU-
LIAR NON-EQUIVARIANT MAPS

The class of systems under consideration here
consists of the classical dynamical systems which
admit both a lagrangian and a hamiltonian de-
scription. It will be further assumed that the
action S admits an invariance under a group
of symmetries which can be continuous (Lie),
infinite-dimensional and/or super. The conserved
Noether charges are associated to each genera-
tor of the symmetries of the action. When the
hamiltonian dynamics is considered, the phase
space of the theory possesses an algebraic struc-
ture given by the Poisson brackets. The exis-
tence of such a structure makes it possible to
compute the Poisson bracket between any two
given Noether charges. In the standard situa-
tion, the Poisson brackets among Noether charges
realize a closed algebraic structure which is iso-
morphic to the original algebra of the symme-
tries of the action. It turns out, however, that
this is not always the case. Indeed, it can happen
that the algebra of Noether charges under Poisson
bracket structure close a centrally extended ver-
sion of the original symmetry algebra. Mimicking
the quantum case, the following definition can be
proposed for a classical dynamical system. The
system is said to possess an anomalously realized
symmetry, or in short a “classical anomaly”, if
the following condition is satisfied: the symmetry
transformations of the action admit Noether gen-
erators whose Poisson brackets algebra is a cen-
trally extended version of the algebra of symme-
try transformations.

Therefore a classical anomaly is a very specific
case of “non-equivariant map” (for a discussion
in a finite-dimensional setting see [7]). Not all
non-equivariant maps discussed in the literature
are classical anomalies. For instance the one-
dimensional free-particle conserved quantities p
(the momentum) and pt − mx generate a non-
equivariant map (the Poisson bracket between p
and pt−mx is proportional to the massm). How-
ever, despite being conserved, they do not gener-
ate a symmetry of the action and for that reason
they are not Noether charges.

On the other hand, infinite-dimensional non-

equivariant moment maps were constructed in [8].
In those papers the only explicit application con-
cerned the dynamical systems of KdV type (clas-
sical integrable hierarchies). Such systems, in
contrast with the examples discussed here, admits
a hamiltonian description, but not a lagrangian
formulation. Even if conserved quantities can
be constructed, they can not be interpreted as
Noether charges.
The possibility for a classical anomaly to oc-

cur is based on very simple and nice mathe-
matical consistency conditions, implemented by
the Jacobi-identity property of the given symme-
try algebra. Let us illustrate this point by con-
sidering some generic (but not the most general)
scheme. Let us suppose that the (bosonic) gener-
ators δa’s of a symmetry invariance of the action
satisfy a linear algebra whose structure constants
satisfy the Jacobi identity, i.e. [δa, δb] = fab

cδc,
while [δa, [δb, δc]] + [δb, [δc, δa]] + [δc, [δa, δb]] = 0.
The associated Noether charges Qa’s are further
assumed to be the generators of the algebra, i.e.,
applied on a given field φ they produce

δaφ = {Qa, φ}, (1)

where the brackets obviously denote the Poisson-
brackets.
The condition

[δa, δb]φ = fab
cδcφ, (2)

puts restriction on the possible Poisson brackets
algebra satisfied by the Noether charges. It is cer-
tainly true that {Qa, Qb} = fab

cQc, (which cor-
responds to the standard case) is consistent with
both (1) and (2). However, in a generic case, it is
not at all a necessary condition since more general
solutions can be found. Indeed, the presence of a
central extension, expressed through the relation
{Qa, Qb} = fab

cQc+k∗∆ab, (where k is a central
charge and the function ∆ab is antisymmetric in
the exchange of a and b), is allowed.
Indeed, since the relation

{Qa, {Qb, φ}}−{Qb, {Qa, φ}} = {{Qa, Qb}, φ}(3)
holds due to the Jacobi property of the Poisson
bracket structure (which is assumed to be sat-
isfied), no contradiction can be found with (2);



CBPF-NF-021/03 3

the right hand side of (3) in fact is given by
{fab

cQc + k ∗ ∆ab, φ} = {fab
cQc, φ} = fab

cδcφ,
due to the fact that k is a central term and has
vanishing Poisson brackets with any field.
This observation on one hand puts restrictions

on the possible symmetries for which a classical
anomaly can be detected; the symmetries in ques-
tion, on a purely algebraic ground, must admit a
central extension. This is not the case, e.g., for
the Lie groups of symmetry based on finite sim-
ple Lie algebras. On the other hand one is warned
that, whenever a symmetry does admit an alge-
braically consistent central extension, it should
be carefully checked, for any specific dynamical
model which concretely realizes it, whether it is
satisfied exactly or anomalously. This remark
already holds at the classical level, not just for
purely quantum theories.
Some further points deserve to be mentioned.

The first one concerns the fact that the quan-
tization procedure (which, for the cases we are
here considering, can be understood as an ex-
plicit realization of an abstract Poisson brackets
algebra as an algebra of commutators between
operators acting on a given Hilbert space) can
induce anomalous terms for theories which, in
their classical version, are not anomalous in the
sense previously specified. It therefore turns out
that the occurrence of classical anomalies is a
phenomenon which is “more difficult to observe”
than the corresponding appearance of quantum
anomalies since it occurs more seldom.
A second point concerns the fact that the al-

gebra of Poisson brackets, as an abstract alge-
bra, is assumed to satisfy the Leibniz property.
This is no longer the case for its concrete realiza-
tion given by the algebra of commutators. The
Noether charges are in general non-linearly con-
structed with the original fields φi (which collec-
tively denote the basic fields and their conjugate
momenta) of a given theory. For such a reason it
is only true in the classical case that, whenever an
anomalous central charge in an infinitesimal lin-
ear algebra of symmetries is detected, it can be
normalized at will by a simultaneous rescaling of
all the fields φi involved (φi �→ α · φi) and of the
Poisson brackets normalization ({., .} �→ 1

α{., .}),
for an arbitrary real constant α. In the classical

case any central charge different from zero can
therefore be consistently set equal to 1. How-
ever in the quantum case a specific value of the
central charge is fixed by the type of representa-
tion of the symmetry algebra associated with the
given model and is a genuine physical parameter
(the role of the Virasoro central charge in label-
ing the conformal minimal models is an example).
The above argument is not, however, (at least di-
rectly) applicable to non-linear symmetries, such
as those leading to the classical counterparts of
the Fateev–Zamolodchikov W -algebras.

3. RESIDUAL SYMMETRIES IN THE
PRESENCE OF AN EM BACK-
GROUND

Let us discuss in detail for the sake of sim-
plicity the case of the residual symmetry for
generic Poincaré-invariant field theories in (2+1)-
dimension, coupled with an external constant EM
background. The generalization of this procedure
to higher-dimensional theories and non-constant
EM backgrounds is straightforward and immedi-
ate.
In the absence of the external electric and mag-

netic field, the action S is assumed to be invari-
ant under a 7-parameter symmetry, given by the
six generators of the (2 + 1)-Poincaré symmetry
which, when acting on scalar fields (the following
discussion however is valid no matter which is the
spin of the fields) are represented by

Pµ = −i∂µ,

Mµν = i(xµ∂ν − xν∂µ), (4)

(the metric is chosen to be +−−), plus a remain-
ing symmetry generator corresponding to the in-
ternal global U(1) charge that will be denoted as
Z.
It is further assumed that in the action S

the dependence on the classical background field
is expressed in terms of the covariant gauge-
derivatives

Dµ = ∂µ − ieAµ,

with e the electric charge.
In the presence of constant external electric and

magnetic fields, the Fµν = ∂µAν − ∂νAµ field-
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strength is constrained to satisfy

F 0i = Ei, F ij = εijB, (5)

where µ, ν = 0, 1, 2 and i, j = 1, 2. The fields Ei

and B are constant. Without loss of generality
the x1, x2 spatial axis can be rotated so that E1 ≡
E, E2 = 0. Throughout the text this convention
is respected.

In order to recover (5), the gauge field Aµ must
depend at most linearly on the coordinates x0 ≡
t, x1 ≡ x and x2 ≡ y.

The gauge-transformation

Aµ �→ Aµ
′ = Aµ +

1
e
∂µα(xν) (6)

allows to conveniently choose for Aµ the gauge-
fixing

A0 = 0,

Ai = Eit− B

2
εijx

j . (7)

The above choice is a good gauge-fixing since it
completely fixes the gauge (no gauge-freedom is
left). It will be soon evident that the residual
symmetry is a truly physical symmetry, indepen-
dent of the chosen gauge-fixing.

Due to (7), the action S explicitly depends on
the xµ coordinates enteringAµ. The simplest way
to compute the symmetry property of an action
such as S which explicitly depends on the coor-
dinates consists in performing the following trick.
At first Aµ is regarded on the same foot as the
other fields entering S and assumed to transform
as standard vector field under the global Poincaré
transformations, namely

Aµ
′(xρ′) = Λµ

νAν(xρ) (8)

for xµ′ = Λµ
νx

ν + aµ.
For a generic infinitesimal Poincaré transfor-

mation, however, the transformed Aµ gauge-field
no longer respects the gauge-fixing condition (7).
In the active transformation viewpoint only fields
are entitled to transform, not the space-time co-
ordinates themselves. Aµ plays the role of a fic-
titious field, inserted to take into account the de-
pendence of the action S on the space-time co-
ordinates caused by the non-trivial background.

Therefore, the overall infinitesimal transforma-
tion δAµ should be vanishing. This result can
be reached if an infinitesimal gauge transforma-
tion (6) δg(Aµ) can be found in order to compen-
sate for the infinitesimal Poincaré transformation
δP (Aµ), i.e. if the following condition is satisfied

δ(Aµ) = δP (Aµ) + δg(Aµ) = 0. (9)

Only those Poincaré generators which admit
a compensating gauge-transformation satisfying
(9) provide a symmetry of the S action (and
therefore enter the residual symmetry algebra).
This is a plain consequence of the original as-
sumption of the Poincaré and manifest gauge in-
variance for the action S coupled to the gauge-
field Aµ.
Notice that the original Poincaré generators are

deformed by the presence of extra-terms associ-
ated to the compensating gauge transformation.
Let p denote a generator of (4) which “survives”
as a symmetry in the presence of the external
background. The effective generator of the resid-
ual symmetry is

p̂ = p+ (. . .),

where (. . .) denotes the extra terms arising from
the compensating gauge transformation associ-
ated to p. Such (. . .) extra terms are gauge-fixing
dependent. The “residual symmetry generator”
p̂ can only be expressed in a gauge-dependent
manner. However, two gauge-fixing choices are
related by a gauge transformation g. The resid-
ual symmetry generator in the new gauge-fixing,
denoted as p̃, is related to the previous one by an
Adjoint transformation

p̃ = gp̂g−1. (10)

Therefore the residual symmetry algebra does not
dependent on the choice of the gauge fixing and
is a truly physical characterization of the action
S.
The extra-terms (. . .) are necessarily linear in

the space-time coordinates when associated with
a translation generator, and bilinear when associ-
ated to a surviving Lorentz generator (for a con-
stant EM background). Their presence implies
the arising of the central term in the commutator
of the deformed translation generators.
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The residual symmetry algebra of the (2 + 1)-
Poincaré theory involves, besides the global U(1)
generator Z, the three deformed translations and
just one deformed Lorentz generator (the remain-
ing two Lorentz generators are broken).
Within the (7) gauge-fixing choice the de-

formed translations are explicitly given by

P0 = −i∂t − eEx,

P1 = −i∂x − e

2
By,

P2 = −i∂y +
e

2
Bx. (11)

The deformed generator of the residual Lorentz
symmetry is explicitly given, in the same gauge-
fixing and for E �= 0, by

M = i(x∂t + t∂x)− i
B

E
(y∂x − x∂y) +

e

2
(Et2 + Ex2 −Bty). (12)

The residual symmetry algebra can be easily com-
puted. The U(1) charge Z is no longer decoupled
from the other symmetry generators. It appears
instead as a central charge.
The 5-generator solvable, non-simple Lie alge-

bra of residual symmetries admits a convenient
presentation. The generator

Z̃ ≡ BP0 + EP2 (13)

not only commutes with all the other ∗ generators
[Z̃, ∗] = 0, (14)

for E �= B it is not even present in the r.h.s.,
so that the residual symmetry algebra is given
by a direct sum of u(1) and a 4-generator al-
gebra. The latter algebra is isomorphic to the
centrally extended two-dimensional Poincaré al-
gebra. Such an algebra is of Minkowskian or Eu-
clidean type according to whether E > B or re-
spectively E < B. This point can be intuitively
understood due to the predominance of the elec-
tric or magnetic effect (in the absence of the elec-
tric field the theory is manifestly rotational invari-
ant, so that the Lorentz generator is associated
with the Euclidean symmetry). We have explic-
itly, for B > E, that the algebra

[M,S1] = iS2,

[M,S2] = −iS1 (15)

is reproduced by

M =
E√

B2 − E2
M,

S1 = P0 +
B

E
P2,

S2 =
√
B2 − E2

E
P1, (16)

while for E > B the algebra

[M̃, T1] = iT2,

[M̃, T2] = iT1, (17)

is reproduced by

M̃ =
E√

E2 −B2
M,

T1 = P0 +
B

E
P2,

T2 = −
√
E2 −B2

E
P1. (18)

In both cases the commutator between the trans-
lation generators S1, S2, and respectively T1, T2,
develops the central term proportional to Z which
can be conveniently normalized.
The residual symmetry algebra of the (2 + 1)

case for generic values of E and B (the special
case E = B is degenerate) is therefore given by
the direct sum

u(1)⊕ Pc(2). (19)
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