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ABSTRACT

Using planar Dirac delta-functions to describe the coupling of magnetic layers to an
electron gas, the interaction between the layers is calculated. Both the bound and free
states give contributions which are shaped by the range of the bound states. Due to a
remarkable cancellation of terms the combined result does not show this shape. In fact,
it differs appreciably from the weak coupling limit only when the binding energy of the
bound states is comparable or larger than the Fermi energy.
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1 Introduction

It is well known that a potential represented by a three dimensional Dirac delta-function,
6(x), has no bound states while a one dimensional §(z) has one bound state. The first is
often used to describe point interactions of spins to conduction electrons and the latter to
simulate a planar distribution of spins. A planar lattice of spins in an electron gas leads
to a bound band. So far treatments of magnetic multilayers[1]-[6] have not introduced
these bound states explicitely. This is consistent with the use of lowest order perturbation
theory[1]. Nevertheless, typical exchange couplings and spin densities in layers produce
bound states that extend over distances that are relevant for multilayer physics. This pa-
per discusses the contributions of occupied bound and free states to the coupling between
magnetic layers.

2 Bound states

In one dimension the Hamiltonian for an electron coupled to a point field is

H1 = - — (5(2) Oy, (1)

where o, is a Pauli matrix. Let § > 0. Then a spin up electron has one bound state with
orbital wave function and energy

04(2) = (1/Vlo) e, By = —e/2 (2)
where
lhy = h2/(ﬁm), € = ﬁzm/hz. (3)

The quantities /[y and ¢y are natural units of length and energy in this problem. As an
example, with # = 0.3 eVA, Iy =24 A and ¢, = 69 K kg, where kg is the Boltzmann
constant.

In three dimensions a potential of the form —<v §(x — R) has no bound state. This
potential is used to describe a point interaction of an electron to an ion spin located
at position R, where v includes a coupling constant times a scalar product of spins.
A corresponding interaction with a planar ferromagnetic lattice of spins is obtained by
summing over the lattice positions R;. It is essential for the following discussion to realize
that even such a discrete lattice has a bound state localized near the plane. This is evident
from a variational argument using ¥, (x,y,2) = ¢+(z) with ¢, from Eq. (2) as a trial
function. Here z is the distance from the lattice plane. % is normalized to unit area. The
corresponding energy is given by Ey of Eq. (2) with § = yn, where n is the density of
lattice points. The true ground state energy can only be lower. The approximation which
uses a continuous planar distribution of spins corresponds to the limit in which the lattice
constant vanishes while § remains constant.

The Hamiltonian Eq. (1) with the kinetic energy for three dimensions is

52
H =——A-066z)o0,. (4)

2m
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The localized orbital wave functions and corresponding energies become
Vit ooy (T, Y5 2) = cp+(z) eilkaothy) (5)
Eo(ke, ky) = Eo+ & (k2 + k2) (6)
3 Polarization due to a magnetic plane

The density of spin up electrons has a contribution from the occupied bound states Eq.

(5):

p+,b(z) = ﬁ fEO(kz,ky)<EF dkw dk |(p+(Z)|2 (7)
- M ~2lel/lo
- -+l (8)

where Er = h’k%/(2m) is the chemical potential. The free states for spin o, = +1 with
the apropriate boundary conditions at z = 0 are plain waves e‘(*=+%s%) multiplied by a
function ¢4 4, (z) chosen to be either even, @, x, ., or odd , Y1k, .

Oipe= V2 cos{k,|z| £ arctan(1/(k.l))} (9)
Ptk,0= \/§ Sin(kzZ). (10)

The orbital states with k£, = 0 do not exist, since they vanish identically.
The contribution to the electron density from the free states becomes for the two spin
orientations

pi,f(z) = (_2-71?)_3 f(hz/Zm)(k2+k2+k2)<Ep dkm dk dkz {I‘P:I: kz,e(z)|2 + lQO:t kz,0 z)|2} (11)

- 2(2’”)2 ko dk, k2 _ k2) [ N cos(2kzz):i:leolsm(2k,|z|)] (12)
The spin polarization is
P() = (prp + pog — pog)2- (13)
The contribution of the free states is
1 kr k.1 eZik,|z|
Pi(2) = dk, (k% — k2) 22— 14
f(Z) (27()2 Z( F kz) 1+k§l(2) ( )

Since the contribution of the bound state, Eq. (8), can be obtained by an integration
around the pole at k, = i/ly, the whole spin polarization is given by the integral

kp-+ioco 2ik;|z|
dk, (k% — k2) Bk ®

P Klo€ *
(2) = (7r) . 21T k23

(15)

In a jellium model the homogeneous positive charge background is —ek?./(37?2), where
e is the charge of an electron. Then the charge density is

Q(2) = elprs + Py + pog — K2/(37)] (16)
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When Q(z) differs from zero, a Hamiltonian which includes Coulomb couplings will lead
to further effects.

For small coupling constant 3, Q(z) is of order 1/i2 = (8m/h*)?. The dominant terms
in P(z) are of order 1/ly:

2 .
P(z) = ok — e 7 d, (k% — k) Snbelz) (17)
- ﬁ}l_ { — Si(2kp|2]) + sm<2kF|z|>(;l2cr;Tz|r)|2cos(2kF|z|)} . (18)

Note that the constant /2 in the curly bracket arises from the bound state as e~ 24/l = 1,
Thus this result cannot follow from finite perturbation theory. Historically, this polar-
ization was first discussed by C. Kittel[l] in the one dimensional case. Kittel did not
consider the bound state and used perturbation theory for plane waves. Thus he did
not get the constant 7/2 and concluded that in one dimension the polarization had long
range. Yafet[2] challenged this conclusion and, still within perturbation theory, proposed
a modification in the integration over a singularity which produced this constant 7 /2.

For later use, let us calculate the magnetic part of the grand potential of a single layer
per unit surface at zero temperature, which is the work necessary to introduce a unit
surface of the layer into the electron gas with fixed chemical potential. It is noteworthy
that the free states give a contribution only through the change of the density of particles
AN(k,), since the energies of the levels remain A%k?/2m. From Eq. (12) the change in
density due to the states with wave number &, becomes

cos(2k,z) + k,lysin(2k, |z|)

Api,k;,f(z) =-2 1+ k2l2 (19)

Then o o]
— -2 LA 2
ANes(k) = [ 2 Bpais(2) = 2m6(k) F (20)

The é-function arises from the fact that in the presence of the potential the orbital states
with k, = 0 do not exist. Note that

1 [ ! for spin up (+)
gfo dk, ANy ¢(k.) = { 0 for spin down (—), 1)

which just confirms the completeness of the free and bound states. The appendix offers
a more visual approach. From that point of view Eq. (21) is reminiscent of Levinson’s
theorem(7]. In the weak coupling limit lj — oo, AN_f(k,) — 0, while AN, ¢(k,) —
—4mwé(k,).

The contribution of the free states to the grand potential becomes with AN; =
AN+, f+ AN. —f

&= @ Jirars C6 5 (8 — KRAN (k.) (22)
= ~demyil” dks (Kp — k) ANy(k.) (23)
= kb [T dk, 8(k.) (24)

Rk Epk2
- :4% & =C. (25)
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C' is the kinetic energy of a two dimensional band filled from zero up to the level E.
This term which is independent of the coupling constant will be compensated later.
The contribution of the bound state to the grand potential is

b= g2/ on(kz,k,,)gEF dky dky [Eo(kg, ky) — EF] (26)
== —(1 - Eo/EF)2 C. (27)

The total potential is

£ = & + &5 (28)
= C(2 - Ey/Ep)(Ey/Er) (29)
= —w—’gfg z for kplp > 1 (30)

4 Bound states of two delta functions

Some features of the interaction between two magnetic planes are contained in a one
dimensional model for the indirect interaction of two ion spins coupled to one electron[10].
Here, let us consider the Hamiltonian

h d L L

where # > 0 and the plus or minus sign refers to situations with parallel or antiparallel
magnetizations respectively. The localized orbital wave functions have the form

Ae¥ for z < L/2
p(z) = Be¥* +Fe™ % for|z|<L/2 (32)
De™% for 2> L/2 -
with the energy eigenvalue E = —h%¢®/(2m). The wave function is continuous with

discontinuous slopes at +L/2. This determines the coefficients
B=A/K, F = A(qly — 1)e?* /K, D = Aqlpe?* /K (33)

with K = 1+ (glp — 1)e??£, and where A is a normalization constant. In the parallel case
[+ sign in Eq. (31)] the equations for the energy E; of the (symmetric) ground state and
the energy E; of the (antisymmetric) excited state are obtained from

el p1—qly= 0 (34)
e 2l — 14 qolp = 0. (35)

For L < [y only the symmetric solution exists. In the antiparallel case (— sign in Eq.
(31)) there is one bound state for each spin direction with an energy Es3 given by

e el /1 - gz =0. (36)

Figure 1 shows these energies as functions of the distance L.
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5 Bound states for two ferromagnetic layers

In a metal with two parallel ferromagnetic plates the planar translational invariance allows
a generalization of the results of the previous section to three dimensions. The wave
functions and energies are given by Eqgs. (5), (6) now with a band index j € {1, 2, 3}:

h2

Ei ks, k) =E; + —
.7( y) ]+2m

(k2 + k) (37)

To discuss the stability of the parallel versus the antiparallel configuration, the thermo-
dynamic potential has to be evaluated. In the parallel case the grand canonical potential
per unit area (at zero temperature) has the contribution of the localized states

Ebp = # J fEl(kz,ky)SEF dkg dky [E (ks, ky) — Er]
+ 37 [ Jath by <p GFs dby [B2(ka, by) — BrO(L = b)), (38)

where O(2) is the step function. Similarly, in the antiparallel case

—_ 2
Coa= g1 | [ ks dky B (s, by) — B (39)
E3(kz ky)<EF

The integrations of Egs. (38) and (39) yield

Ebp = [(2— E1/Er)E1/Erp + (2 — E3/Er)Ey/Er] C
_N+6(L-1) C (40)
Tpa = 2C(2 = B3/ Ep)Es/Ep — 2C. (41)

6 Free states in the presence of two magnetic layers

6.1 Parallel magnetizations

When the contribution of bound states to the energy is considered, it is necessary to use
free waves which are orthogonal to the bound states. This is automatically fulfilled by the
eigenfunctions of the Hamiltonian. Thus, in the presence of bound states the contribution
of the running waves is not given by the Ruderman-Kittel function.

The wave functions factor into plane waves for the x and y directions and a z dependent
function ¢, (2). For the case of two layers with parallel magnetizations we use a set of
even or odd eigenfunctions

[ acos(k,z) for [2| < L/2
Pk, p.e(2) = { V2 cos(k,|z| +b) for |z| > L/2 42)
_ [ Asin(k,z2) for |z| < L/2
Phz.p,o(2) = { V2 sin(k,|z| + B)sign(z) for |z| > L/2 )
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where for spin up

2 _ 2

a = 172 sin(k, L)/ (k210)+4 cos2(k, L] 2)/ (K, lo)2 (44)
b= —k,L/2+ arctan{ tan(k,L/2) + 2/(k;lo)} (45)
2 _ 2

A" = 1-2 sin(k; L)/(kzlo)+4 sin®(k, L/2)/(k;10)? (46)

B=  —k,L/2+ arctan [ (47)

1
ctg(kzL/z)—z/(kzz(,)] '
For spin down [ is to be replaced by —I;.

The integrated excess probability density of the spin up states over the unperturbed
value is

AN, 1 (k) = %[L—%cos &2&] L — 27 6(k,) (48)
AN, o.1(k;) = 41— g sin? (85)] - L. (49)

Again the substitution lj — —I; yields the spin down results. The total excess probability
for k, is

ANp(kz) = ANP,C,T(kz) + ANp,e,l(kZ) + ANp,o,T(kZ) + AN, ,o,l(kz)- (50)

The contribution of the free states to the grand potential becomes

= R 1 1 f*n 2 _ 1.2\2
Sf,pZ—%WZ A dk, (kx — k;)° ANy (k). (51)

In view of the singular properties of AN,(k,) at k, = 0, the integral over k, is written as

kr kp a :
/ dk,...:lima_ﬁo[/ dkz...+/ dkz...]. (52)
0 a 0

In order to make a connection with the work of Bruno[4], we introduce Q,(k,) such that

dQp(k,)/dk, = ANy(k,) for k, > 0. (53)
Thus
Qpplks) = —2 Im ln{e"”ﬁtiﬁi’“z“ e Ll ikl eiki’;;b;t’;’é‘“} (54)

_ sin(4k, L)—2sin(2k, L)(1—k212)
= —2arctan { el SO O ) s b+ 4Tm In 1+ (.1o)?] . (55)

The numerators of the four factors of the logarithm in Eq. (54) correspond, for &, > 0, to
the four terms of Eq. (50) in the same order. The product of the denominators is positive
and therefore of no effect. Individually they produce, for k£, > 0, self-terms as given by
Eq. (29) multiplied by +1. On the positive imaginary axis, k, = i ¢, the first and third
factors of the numerator vanish for the values ¢; » of Egs. (34) and (35), respectively.
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The branches of arctan in Eq. (55) have to be chosen in such a way that Q;,(k,) is a
continuous function of k,. Z,, Eq. (51), can be expressed through Q;,(k,) by a partial
integration

Efp = ‘g—mﬁili%—m{ — (K — o) Qp()
AR db (B — B)RQpp(ks) + [7 dk, (k} — k22 AN, (k) }. (56)

The first term does not vanish because of the singular behaviour of Qy,(k,) at the lower
limit;:

limy 4025 p() = 20 O(L — o). (57)
In the second term of Eq. (56), the lower limit of the integral can be put equal to zero.

The third term has a contribution according to Eq. (48). Thus Zy, consists of three
terms:

_ K21

Efp = ~om @n) /0 ’ dk, (k% — k2)k, Qs (k) + [O(L — lp) + 1] C. (58)

The first term of Eq. (58) coincides with Eq. (1) of ref. [4] applied to our case: cosf =1,
rE =rE =1/(1 £ ik,lp), T =0, q, = 2k,.
In the weak coupling limit, kply > 1, Eq. (58) reduces to

_Er
w22

Ef,p = (59)

{—Si(2kFL) N sin(2kpL) — 2kpL cos(2kFL)} ‘c

(2kpL)?

with C given by Eq. (25). The expression in the curly bracket differs from that of Eq.
(18) by the absence of the term I, which in Eq. (18) was contributed by the bound state.
Apart from this and the constant C, —28P(L) of Eq. (18) agrees with Eq. (59).

The complete change of the grand potential due to the magnetic layers includes the
contribution of the bound states, Eq. (40):

—
ot

—p = Efp+ Eb,p- (60)

In this equation the last terms of Eq. (40) cancel with the corresponding terms of Eq.
(58). Therefore

=, = EFk%{ — G limasg f] dy (1 — 4?)? AN, (ykr)
+ 8—‘;[(2—%)%+(2—%)%—@(L—l0)]} (61)
where the integration over AN,(k,) excludes the contribution at k, = 0. Alternatively,
2, = Erkb{ gy Jo dy (1= v*)y Qyp(ukr)
E
+ #[e-B) B+ (-8)8]) 2

with the definition of arctan mentioned above.
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For kpL > kplg > 1, =, becomes

Ep

Z, = F o
F w22

(63)
Thus the bound states have contributed the missing term 7 in the curly bracket of Eq.
(59) making it a coupling of finite range, plus the self-terms, Eq. (30), of two single layers.

The full result, Eq. {(62) minus the self-terms of two separate layers, can be obtained
from the first line alone, however, with a different integration path in the complex plane,
in analogy to Eq. (15). Since the integrand vanishes for y — 400, we have (with &k, = ykr)

kp+ioo i00 kg
—Im dkz...=—1m/ dkz...+1mf dk, ... (64)
0 0

kr

The last integral is that of the first line of Eq. (62). We shall show that the integral along
the imaginary axis yields the contribution of the bound states (second line of Eq. (62)
minus the self-terms). Let us consider the first factor in Eq. (54).

Flks) = (%5 + 1+ kD) /(1 + iklo) . (65)

For Im k£, > 0 and L — oo this goes to 1, showing that the denominator subtracts the self-
terms. The numerator vanishes for &k, = ¢¢; as seen from Eq. (35), and the denominator
for k, = i/ly. Im In (2z) is zero if 2 is positive and +x if 2 is negative. On the imaginary
axis f(k,) is negative from k, = il to k&, = ig;. Then

— & b Tm [} dk. k(K — K?) In(f (k)
= meg[(2-2) 8- (- 2) 2] (60

with an analogous result for the third factor in Eq. (54), while the others do not contribute.
Therefore the integration path of the left hand side of Eq. (64) yields the full interaction of
the magnetic layers without the self-terms. If this integration path is used in the integral
of Eq. {1) of ref.[4], then the contribution of the bound states is incorporated. Similarly,
Eq. (6) of ref.[5] takes the poles on the positive imaginary axis into account.

In fig. 2 the contributions from free and bound states are shown separately. Both are
shaped by the exponential decay of the bound states with a length ly. The sum of the
two terms, however, hides this length. The shape remains close to the result of Yafet|2]
which becomes rigorous for krly 3> 1. The amplitude is, of course, proportional to 1/13
in this limit. The remarkable cancellation shown in fig. 2 is reminiscent of the theorem
of Bruno, Eq. (6) of ref.[5], which states that the characteristic length v/2mV /A® of a
potential well of depth V' is not apparent in the coupling between two magnetic layers.

6.2 Antiparallel magnetizations

In the antiparallel case the Hamiltonian Eq. (31) is invariant with the transformation
which simultaneously inverts the z-axis and the spin direction. Thus, the z and spin
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dependent part of the wave function can be written as

acos(k,2) + bsin(k,z) for — L/2< z< L/2 (67)

V2 cos(k,z — ¢) for z < —=L/2
‘}oTskz;ﬂ(z) -
V2 cos(k,z + C) for z > L/2

for spin up and

V2 cos(k,z — C) for 2 < —L/2
0 ko(2) =< acos(k,z) — bsin(k,2z) for — L/2 <2< L/2 (68)
V2 cos(k,z + c) for z > L/2

for spin down. The boundary conditions yield two solutions:

bla = (1/klo) (1 +4/1+ kgzg) . (69)

a® = K23/ {(b/a)? + (b/a)k.lo + 1 + K215 — [(b/a)? — 1 + 2(b/a)k,lo) cos(k, L)}, (70)

c= -5 4 arccos [% cos (kL) — %Sin (&‘2&)] (71)
C = —%L 4 arccos [% cos (%L} + —% sin (E‘QL)] - (72)

The excess probability for one solution and spin becomes

2
ANG,:I:,T(kz) = ANa,i,l(kz) a { 15 Sin(kzL) + [1 + (g

e
"
il
L]
b~
e —
|
b
|
5
B
o7

~ %, | kloa
(73)
Summed over the two states and the spin directions
o cos(2k, L)(1 4 k3L — sin(2k, L)k, 12 — L
ANk =8 ) cos @k, D)1+ B202) + 2k2B 4 gy okl (T)
so that
= AP 11 fh 2 2\2
e = —%Wz ; dk, (ks — k3)* AN, (k). (75)
With
dQy.(k,)/dk, = AN,(k;) fork, >0, (76)
B B eikzL_m eikzb+m
Qralks) = 4 Im In [ v ver (77)

_ sin(4k, L}—2sin(2k, L)(1+k212) 212
= —Zarctan [cos{*lk,L)—2cos(?k;L)(l+k§£§)+(lik3!§)2] +4lm In(l + kL), (78)

limg,o82s 0 (@) = 2, (79)
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the contribution to the grand potential from the free states becomes

_ R2 1 ke

= __ M 1 s 2
St = " 3m By dk; (kp — k2)k, Qpa(k:) + 2C. (80)

As with Eq. (58), the first term agrees with Eq. (1) of ref.[4] with cos# = —1. In the
weak coupling limit it leads to minus the result of Eq. (59). The full change of the grand
potential is

Ea = Ef,a + Eb,a (81)
with =, , from Eq. (41). Thus

Zo= Brkb{ - ghpilimen [} dy (1 - 12V AN(vkr)
+:|2-2)2-1]} (82)
or alternatively
Zo= Brkb{ - gy Jy dy (1 - 4y Qpalvb)
++(2-2) 2} (83)

This can also be represented by a single integration as in Egs. (15) or (64).

In the weak coupling limit Ej3 vanishes as I;* and Z, tends to minus Eq. (59) without
the term €. For L = 0 this vanishes as it should, since the two magnetizations cancel.
At large distance, L — oo, it tends to the self energies of two layers, 2¢ of Eq. (30).

7 stability of relative magnetizations of the two lay-
ers

To compare the stability of the two configurations, we introduce the quantity
AZ=5,-Z, (84)

which is negative when the parallel arrangement is favoured. AE is plotted in Fig. 3 as
a function of L for four values of I.

For figures 2 and 3 the Eqs. (62) and (83) were used. The results agree with those
obtained from Egs. {61) and (82), exept for a narrow region around L = [;, where a
step function is compensated numerically. The method of integration parallel to the
imaginary axis, Eq. (64), was also tested numerically using a rather complicated real
integrand generated by computer algebra.

8 conclusions

The é-functions used to describe the exchange coupling of magnetic layers to the spin
of conduction electrons produce bound states. These have not been discussed so far in
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treatments of the indirect interactions of the magnetic layers. The standard perturbative
treatment of the one dimensional case by Kittel[1] leads to a coupling of unlimited range.
This was corrected by Yafet[2] who proposed an ad hoc way to integrate over a singularity.
Here it is shown that the bound states are responsible for the finite range of the interaction
in the weak coupling limit in one dimensional geometries. Bound states require non
perturbative methods. Bruno[4] introduced a treatment, which goes beyond perturbation
theory. Explicitely it deals with the free states only. His result, Eq. (1) of ref.[4] agrees
with the expressions for the free states. Since the energies of the bound states are poles
of his Green’s functions in ref. [12], a particular integration prescription in the complex
k. plane exists which gives the complete result.

The range of the bound states defines a length I;, which, however, does not appear
in the shape of the interaction. The guestion whether distances connected with bound
states show up in the indirect interactions of magnetic layers is of current interest[8][9][5].
The present problem is a particular case, which can be treated analytically.

In conclusion, this paper presents a consistent theory of the indirect interaction be-
tween two magnetic layers described by planar é-functions coupled to a degenerate electron
gas. Closed formulas valid for any coupling strength are given. The general result follows
closely the weak coupling limit until the binding energy becomes larger than the Fermi
energy.

Appendix A

A heuristic argument is applied to the simple system with one magnetic layer, whereby
formulas which appear throughout this paper can be visualized. Using the boundary
condition of an incoming plane wave, ¢*:*|+), the transmission coefficient ¢, and the
reflection coeflicient r4 are obtained as

ikl
Ttk +1

The transmitted and reflected waves suffer a phase change

ti 1—7':{:. (Al)

i = |t:|:| ei‘b"*, Ty = |T:|:| e"‘i'"i. (A2)

The derivatives of the phase shifts with respect to the energy ¢ = h%k2/2m are time

delays|[13]
Ty = na‘gff = na‘g’; = (A.3)
The change of the number of particles is the product of time delays and outgoing fluxes:
ANu(k) = 285 (a2 + [raf?) 7y — 22002 (A.4)
= 22 ImIn(ts) = +27-arctan (F:E) (A.5)
= %ng (A.6)

where the factor 2 accounts for the two fluxes with +k,. The last expression coincides
with Eq. (20) for k; > 0.
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Figure Captions

Figure 1 - Energies of the bound states of two é-functions a distance L apart. F,
and F, belong to the localized symmetric and antisymmetric states of the parallel
spin configuration, and Fj3 to the two degenerate states of the antiparallel spin
configuration. Distance in units of {; and energies in units of €.

Figure 2 - Interaction energy per unit area between two magnetic layers in the paral-
lel spin configuration for {; = 8. E,, and E;, are the contributions from the
bound and free states, respectively. Their sum =, shows a remarkable cancellation.
Distance L in units of kz', and = in units of EpkZ.

Figure 3 - Energy difference per unit area AZ between the parallel and antiparallel
configurations of two magnetic layers as a function of their separation L for various
values of the coupling constant. AZ in units of Er/(n%%), and L in units of kz'.
For vanishing coupling constant (full line) A= = —x for L = 0 in these units. Long
dashes show a case of weak coupling: kply = 8 so that Er/ep = 32. Intermediate
dashes belong to intermediate coupling: kply = v/2 i.e. Er/ey = 1. Strong coupling
(short dashes) with krly = 0.5, Er/ep = 0.125 leads to a rapidly damped interaction.
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