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ABSTRACT

We provide a manifestly covariant extension of
the Low-Sturrvock Lagrangian and investigate its invariance prop
erties. It is pointed out that the Boltzmann - Vlasov equation
follows from a gauge invariance of the Lagrangian, which is a
consequence of the lack of uniqueness to label particle tra-
jectories. Whitham's wave-vector action is shown to be conser
ved in curved space-time and the equivalent dielectric tensor
for a cold plasma is derived in lowest order eikonal approxima

tion.



I. INTRODUCTION

Although recent years have seen a considerable progressl) in
the formulation of relativistic thermodynamics and plasma phys
ic a selfconsistent, Poincaré-covariant statistical mechanics
of particles interacting also by long-range forces has not been
achieved (and is nowhere in sight). Pulsar magnetospheres, ac-
creting binary stellar systems and relativistic jets of plasma
such as possibly observed in Quasars and in SS433, however, all
demand a fully relativistic treatment including curved space-
time and provide thus a strong motivation to incorporate gen-
eral relativity into plasma physics.

As we are not interested here in a description of the Dback-
ground plasma in curved space-time but rather in the propagation
of disturbances (waves) through this plasma we circunvent the a-
bove mentioned difficulties?) by assuming that (globally) a
partition function for the plasma exists and that it obeys the
Liouville equation in curved space-timez). We shall further as
sume that the background fields are known exactly and we shall
ignore the back~reaction of the disturbance on space-time. We
shall treat the extreme plasma limit, where the wavelength of
the perturbation is much larger than interparticle distances.
Our treatment is therefore complementary to the one given re-
cently by Thorne®) who considered the near vacuum case, which
may be more appropriate for the study of the propagation of X-
rays and Y~rays in concrete astrophysical situations, whereas
ours applies more to the propagation of radio waves.

Our study will be based on a relativistic version of the eiko
nal method, which will be described in the first section and
on an action principle, which allows one to derive many useful
results in an economic and elegant way. The reader, who is in-
terested in the mathematical subtilties of the problem is
referred to the article by Brener and Ehlers (who consider how
ever only the cold plasma case and who use a less elegant meth
od. In the third section we introduce the averaged Lagrangian
and in the fourth section we apply it to small amplitude waves.
The final section is devoted to some applications of the meth-
od.



1. The relativistic eikonal method

Generally one cannot solve Maxwell's equations exactly for
waves propagating through an inhomogeneous medium. The problem
becomes even more complex if one wishes to do this for a medi
um in accelerated motion or in curved space-time, as is for
example necessary if one wishes to describe wave propagation
through a pulsar magnetosphere or through the accreting gas
of a black hole. The standard treatments using plane wave so-
lutions to describe wave propagation in a homogeneous plasma
in a flat space time5) are no longer applicable. In the geom
etrical optics approximatione), where the wavelengths A are
small in comparison with the "inhomogeneity scale"” %, a re-
fined version of Hamilton's theory of rays7), first described
by Weinberga) leads to radiative transfer equations which de-
termine the change in wave vector, polarization state and in-
tensity. In this eikonal method one ignores internal reflection.
A proof does not exist, but the general conjecture is that the
amplitudes of the reflected waves go to zero as exp(-2/X\).
Thus they cannot be obtained by a method which is essentially
a power series expansion in A/2. In the eikonal method it is
assumed that the four-potential of the waves éAi(x) can be

written as¥*

saK (x) = £(x) af(x) etV (¥ (1.1)

The scalar f is called the amplitude, the suitably normalized
four-vector ak (x) is called the polarization vector, and ¥ (x)
is the eikonal. f(x) and ak(x) are slowly varying functions of
X, whereas the eikonal ¥ (x) describes the rapid oscillations

of the waves, Y =ki’ where ki is the wave four-vector. The

T ,

four components of ki are not independent, but for given medium
they are related by a scalar relation which is characteristic
for the medium and which is called the dispersion relation,

D = D(ki’xj) = 0.

* we use the notation of Landau and Lifshitz’), i.e. latin indices run
from zero to three, greek ones from one to three., The signature of the
metric is (- +++). and g is the determinant of the metric 8ab -



In order to solve the eikonal equation D(wli'x') = 0 and to con
struct Y(x) one uses the method of ray tracing")s), i. e. one

solves for the ordinary differential equations

7

o7 dx 3D
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x ar Bk, (1.2)
7
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and Y(x) is then given by

P(x) = Jki AT (1.3)

Locally the waves described by (l.1) are therefore plane waves,
and the long range effects of the medium and the geometry are
taken into account by propagation laws. The most general way
of describing wave propagation would certainly be that of phe

nomenological electrodynamics7)9) where one uses the induction

tensor 6Hab together with the field tensor éFab= éAbla-SAqlb.
SHab satisfies the field equation
ab _ 4T La
SH™ .y = = Joxt (1.4)
ab

and is related to OF by the permeability four-tensor.
To lowest order eikonal approximation this relation can be

written?)

ed

sH%P (%) = P (x,10 674 () (1.5)

and , in the absence of external currents, leads to

s¥?P = i (k%P - kPa%y etV (1.6)
b . ~ 3
sk, = tfeabcdkb(kcad - ackd)elw =90

b



. L 3 ~ b
The trivial symmetry relations for € ed are

Eab ~ba Eab

= e — =

ed ed ~ de
and for a loss-free medium due to the Onsager relations

= = = =1 N*

€abed = Fedab ~F “Tabed (1.7)
where the bar denotes the complex conjugate quantity.
Introducing Lad: = gabed k,k_, equ. (1.6) can be written

ad _

L""a, = 0 (1.8)

% -
Lad = (Lad) - Lda

Due to the symmetry relations of € this equation has the triv-

ial solution ag; = kd' This implies that det!ILadIIE 0, i.e. det
||Lad|| = 0 is not the dispersion relation. It can be shown®)
that a covariant dispersion relation is obtained if one chooses
a specific gauge for ags for example adkd = 0, and adds this
gauge condition Ladad > (Lad+kakd)ad to Ladad Det][Lad+kdkaH=O
is then the dispersion relagion (including the spurious mode

kik$= 0 corresponding to klai= 0). Equ. (1.8) determines fur-
ther the polarization vector al(up to a gauge mode).

In order to determine the amplitude f, however, dynamical quan-

tities are needed (and one has to proceed to first order ap-
proximation to obtain these). In geometric optics7) Landau and
Lifshitz use the physical argument that in a loss-free medium

energy must be conserved on the average, leading to the require

.2 . . . .
ment div S = 0 from which the amplitude can be obtained by sim-
. - + * I3 3 -
ple ray tracing since S points in the direction of the group
velocity. In a medium in arbitrary motion energy is not con-

served but the number of "photons", as represented by the num-

bers of rays, still is. Multiplying equ. (1.8) by 2% we obtain

L =3 199, = 0.
aL a4



It is easy to show that L is proportional to the dispersion rela-

tion®), and in geometrical optics the space part of

7 9o - - 9 . .ad
N": = — = =14
L a ad K 1

ok a (1.9)
7 1

-1

. . . . . . . Qo .
coincides with w S, i.e. it satisfies N 0. The relativ-

ig
istic generalization of the conserved current thergfore will
be (1.9) if we can show that N%i = 0 in general. N* is sometimes
called wave-vector action, and’its conservation gives.rise, in
the standard manner, to the adiabatic invariant I = NtdZi = Ny,
where dV 1s an arbitrary, infinitesimal volume element which
is propagated along the rays of equ.‘(l.Z). In linear theory
the average energy-momentum tensor Ttk is related to Nk as
follows?) ©)

7.k

TPk o WPy (1.10)

Now suppose the physical system under consideration (crystal,
plasma, etc.) can be derived from a Lagrangian.
In this case equ. (1.10) is nothing but the averaged canonical
energy momemtum tensore), and for the divergence of Tik we
would obtain

R (1.11)

4

Using L =0 as the‘dispersion relation in (1.2) then immedi-
ately leads to (il$ is the functional and not the total deriva

tive with respect to xl)

NY o= wt:= 21 (1.12)
s ok

7 Z )
Z
The method of an averaged Lagrangian, which was first considered
by Whithamlz) and subsequently investigated by many authors, for
example”)lu) , 1s therefore an elegant and powerful means to
provide a manifestly covariant basis for relativistic geeometrical
optics. (Note that - N* was introduced for the first time by
Sturrock?!® (1962), although his work did not have much influ-

ence on later development).



However, the price one pays is a loss of generality in that one
does not always know how to construct a Lagrangian for a given

physical system. Moreover, if one is interested in the phase of
the amplitude one has to take recourse to the full systemofdif
ferential equations“)s)g). On the other hand, if one has a
Lagrangian at hand, many results follow with considerable ease

. . . . . 15) 16
from its invariance properties via E. Noether's theorems ) ) .

In particular, equ. (1.12) is a direct consequence of theeikonal
ansatz (1.1) and holds rigorously and not only to lowest order
eikonal approximation. As mentioned above, to establish equ.
(1.12) Eabcd must be known to first order eikonal approximation.
This fact was overlooked by the autho;s of ref. 9, and their
result concerning the divergence of N is wrong. A second gratify-
ing aspect is that our treatment can immediately be extended to

curved space-times.

2. The field Lagrangian for particle displacements

It is well know how to describe particle motion in given exterior
fields by means of a variational principle and so is the repre-
sentation of field equations for the electromagnetic field by
similar principles6>. The synthesis of both into one single prin
ciple is complicated by the fact that particles and fields are
described by different types of variables: "Lagrangian'"for the
particles and "Eulerian'" for the fields'®) . Sturrock!”) and Low'®)
have devised a procedure to overcome this difficulty at least
in part. They introduced displacements £k which describe the
motion of particles under the action of a perturbation field
such that the unperturbed trajectory xk = xk(s) goes over into

sk oo gk, gk gk

will be a "field-like" variable if we require

that %k = xk + Ek(x). It is well known that such a labelling is
not unique since the transformation (ék(x) = Axk + Ek(x+Ax))
A L Y AR I L (2.1)

I

in which ds may be regarded as an arbitrary infinitesimal func-

tion that generates a set of representations of the same physical
17 . . . . .

system ). This gives rise to a further gauge invariance of the

theory (apart from the indeterminacy of the potentials of the



electromagnetic field® and leads to a "strong conservation

"15)1) | which, as we shall show, is just the conservation

law
of particles for each species (whereas the gauge invariance of
the electromagnetic potentials leads only to charge conserva-
tion of the total charge6>, which is weaker - only for a char
ge—-separated plasma do the two coincide).

The result of the procedure, however, is rather formal, and
only if the displacements are small so that the Lagrangian
allows a power series expansion in the displacement amplitude
does one obtain physically useful Lagrangians which can be
treated in the standard manner®). However, the advantage of
the more formal treatment is that it leads to manifestly co-
variant expressions, valid rigorously, and that it allows one
easily to investigate the invariance properties of the

Lagrangians to all orders of approximation.

Sturrock starts from the particle action S: = LS + S s
A mA mfA
where the sum over 4 is over the different charged species and
where®) ’
Ny
SmA = - c Z mA]dsAZ (2.2)
=1
i
1 k 1 /— . k 4L
SmfA == ZgleA Ak(XAL>dXAZ = —ng(x)A (x)d*x (2.3)

Henceforth we shall drop the index 4 and consider each kind of
particles separately; in the final result one can easily re-
store the sum over all species. The equations of motion for the
background plasma are (for each species)

i k _ e 7z k

uu = F Al (2.4)

mc

The electromagnetic field equations follow from the total action

Stot = 5 + Sf

¥ T Ak

bl

S = - _1__I/-_-_g d% K . (2.5)

o= A,
f 167 1k ik ki



and reads)

1k 4 .7 (2.6)

If, under the action of a perturbation force, the particles at

x go to X, the new equations will follow from the actions

N

~ ~ ~k
~ e
S = - mCZ;leSZ * = ) JAk dx; (2.7)
=1

and

§ - - Lyt F etk v L VRt 0h, (o) at (2.8)

= m g ik c 7: X) X .

respectively, and give

~7T  ~K e =T ~K

Ui U T ez FRY

i = 8% utu; o= -1 (2.9)

~ik  _ 4w T

F ;k = —E’ ] (X) (2.10)

We will derive now the above equations from the following "field"

Lagrangian:

s = - -l—[/rg PR etk - 8 jgN<x,u>.(u$+é$>.zi<x+a>d“ud“x +

(2.11)

+ mc IgN(x,u)/C(ui+éi)(ui+éi) d* ud* x

; .
Here &~ = El(x,u) has been extended to cover the hot plasma case
through each point in coordinate space particles pass with dif-
ferent four velocities u” . Et = Ei(x,u). The invariant four vol

ume element df of the metric &b is given by

V=g d*x = V/=gdx%dx'dx?dx® . The metric g.b induces in the
tangent bundle T _ a metric the volume element of which is given
byz) dm = /:E'd“n = {:g dn’ dn'dn?dn®. Note that Ei is not a vec
tor in general but ét is. Consequently, the total derivative of

T .
£ 1s now



Eort = 5%%‘El (2.12)

k k

éﬁ: = d—DS- £7”: = Eiku

Z
t e b
N(x,u) is the distribution function of the background plasma.
We shall show below that due to the gauge invariance under trans
formation (2.1) N must obey Boltzmann-Vlasov equationz)inlﬁmse
space
Z Z
L(N) = N ;u + Ny b~ = 0 (2.13)

where L is the Liouville operator and where bt is given by (2.4)
so that blVi= 0. Instead of working in the physical seven-dimen

19)

sional, phase space we prefer to work in a fictitious eight-

dimensional phase space by taking into account the identity
ﬁﬁﬁi = -1 by means of a § function and the fact that a° > 1 by

means of a O~function. Our N is related to the usual £, by

N(x,u) = 26(u®) 6(-1—uiui) £, (x,u) (2.14)

and the four-current j$ is defined

jt(x) = J/:§u$ N(x,u)d*u (2.15)
Replacing b* in the Liouville equation (2.13) by means of equ,
. .. i i a b e 1 _a

. = > F
(2.4) which reads explicitely b~ + Pabn u ——7 PRy we

obtain the well-known form of the Boltzmann equation in curved spa
ce-time.
b ¢

a e a b a B
u Nla + ( — Flu” + T ot U )NVa = 0 (2.16)

As we are considering only electromagnetic forces, so that

a b _ . . . . a _ a b __8ia a
(F pu )Vb = 0, we fﬁ:d using the identity b Vg 2Fabu = g——u
that the 8~ "current" j“: = (Nu®%, Nb%) in phase space is conserved
A 1 a a _ . . _
J;A = g((gNu %a + (gNb )Va) = 0, which in turn guarantees par

ticle conservation (in phase-space)

dN = g(x)Nu®d®xd*u = g(x)Nu’d® xd*a (2.17)

~

under the action of a perturbation force. N = N(%,4) is the new



distribution function and obeys

L) = 2 §NGE, =0 (2.18)
ds
where J% is to be taken along the perturbed orbit. From equ.
ds

(2.17) we obtain the transformation law for N

ds  3'x 3%u g(X) (2.19)

N(x,u) = N(x,u)
ds 343z 3*3 g (x)

with (2.19) it is easy to show that (2.11) leads back to (2.7)
and (2.8), respectively, which guarantees complete <covariance
of our "Lagrangian'" and also its gauge invariance under trans-
formations (2.1).

Let us next show that a variation of (2.11) with respect to the
"field" Ei(x,u) leads to equ. (2.9). The variation is to be

performed in phase space and leads to

. ’ R (2.20)
s‘_:=ai_a£,az>+ I IR TR
7 r7 z 7 7 z
€ J3 9 9% ol a 8y, g, 08
where
- 7 - i eg (2.21)
L: = + mc Ng/c(u +£1)(ui+gi) - % Ng(u ' +§ )Ai(x+g)
= - N'ﬁg

and the definition for £° equ.(2.12) should be remembered.

Y

We find
5’]: ~ - s - . .
= = -Ng 98 (me 2 §* - & Fikuk) - iMet =0 (2.22)
&t ds ds ¢
: T ~
Gzz = mc u + % Al(x)

which is easiest derived in Fermi coordinates.
Invariance under the gauge transformation (2.1)

leads to (2.22) contracted by ﬁi as a strong conservation law,

i.e. for arbitrary u and A, which implies



%% =0 L(N) =0 (2.23)
i.e. equs. (2.18) and (2.9). Equ. (2,22) agrees with that of
Sturrock!?’) derived for the cold plasma in flat space-time, and
in the nonrelativistic limit our Lagrangian (2.11) goes over
into Low's Lagrangianl” . Note that variation with respect to
Z (x) is trivial if one uses the equivalent form (2.8) which
goes over into (2.11) by means of (2.19) and a relabelling of

the coordinates

;(x)ﬂ:k = ﬁ‘{r—fi(x) = 4zej/—_gfq(x,u) utd*u (2,24)

Invariance of the total action under coordinate transformations
7

xt = xt + €

with constant e€° leads to the pseudo energy momentum tensor

(2.25)
Tik = AM — (L .+ d“uﬁ)_ 7“'k(L * f,d‘*u)+ g” 8L d*u
L 3a f & f Y
71k 71k
which obeys
Tt@k N . Id“uivz (2.26)
Here iVi and L‘i are again the functional (not the total) de-

rivatives with respect to u’ and x%, i.e. only the explicit de

pendence of L and L on x and u is to be differentiated. The

complicated form of our pseudo-energy-momentum tensor is a con
sequence of the hybrid nature of our Lagrangians; Lf is a
fensity in the four dimensional position space whereas Lfm and
Lm are densities in the eight-dimensional phase space. Using
the field equations and performing some simple manipulationss),
one easily arrives at (2.22). In order to reduce (2.26) to the
standard result (equ. (1.11) without average) we have to show
that the integral vanishes. To this end we note - see (2.21) -
that £ can be written £ =:N§ and that N does not depend on the
field &, so that the functional derivative of N is just the to
V1 A d

Ags
tal derivative L =L — N+NLV£. Partial integration of the

u.
7



first term then gives (with the usual requirement that N(u) van
ishes fast enough at the boundary of velocity space)

n

Voo N @VE. 4Ty -y 8L sV (2,27)
dui §¢

which in fact vanishes due to equ. (2.23). So far we have not
made any approximations, which guarantees that our latter re-
sults will inherit the invariance properties to all orders of

approximation.



3. The averaged Lagrangian

In order to proceed we make the further assumption that the so
lutions of (2.9) and (2.10) are strictly periodic. It is then
possible to introduce ¥y as a new, independent variable and to
formulate a modified variational principle. To this end we de-

fine new fields
B  (x,0) = A (x)  n'(x,u,9) = £%(x,u) (3.1)
For the partial derivations we then have

(3.2)

.
)

; i
Bl * By¥ax

7 7 7 7
= + =
1k T Nk Me¥ )k Evr TN vk
and the new Lagrangian will be

= - Z Z 7 7 7
L = L(B,n) —L(B,n,B'k +B,wwlk s Mt Ny Yige Nyg) (3.3)

Now supose we have a solution of equs. (2.9) and (2.10).

w|a = ka is then a known function of x, ka'= ka(x). We will
insert this function into (3.2) and (3.3), so that 29 20 L 1is
a function of Y only:
L = L(x,u,B,n,B%_ + B? T 4t z X
(X u,b,n, 17 Bllb kzy nlz n’wkz, n VZ) (3 4)

Since B and n are periodic, so is L. We now consider the fol-

lowing action

2T
S = J dy Jd‘*x (j d“u(t)+Lf) (3.5)
0
and vary S first with respect to B . We obtain
2T
Ss=j dy jd“x{— ( 3L ) - <-—§L——) +—§—I:-} 8% +
: aB”TZ H aB”bW # 9B
J ax |sB? 2 . (3.6)

3BT, 1o



» ) » i 1:
and an analogous equation for ni. For periodic &6B° the "surfa-

ce term" in (3.6) vanishes since L is periodic, and we obtain

/
oL + (:QL—— - 2L = (3.7)
v )5
Brzjit By /1y
which is nothing but the original
L - kL _ o (3.8)
7 a’L
aA}Z'!Z A
Therefore we can introduce the averaged Lagrangian
2T
i:=l avL (3.9)

This Lagrangian is invariant under the gauge transformationy *y+o
for constant o and therefore leads to a conserved current (E.

23
Noether, part one of her theorem ))

NT. - wt: =L (3.10)
z
7k . : T d
For a direct proof one integrates the identity 0=0 (EaIde
and uses the modified field equations (3.7). One then obtains
27 .
. u i oy oL
0 = [ _@_Z (Blw BLZ )+ jdnu . 3. n7'w oL + ‘-—Z(mwa )i”dlp
g Lox ‘ aBli 3x ¢ Bﬂﬁ, Su Ny
7z
and inspection of (3.4) shows that in fact
2L B, +-_alj—_-nfw - L (3.12)
: Z
BBIZ anlz [/

We have therefore shown that even for such a complicated nonli-
near Lagrangian there still exists a conserved current if the
Lagrangian allows for periodic solutions.

This is certainly true for those small amplitude oscillations
where the dispersion relation allows for real solutions so that

the eikonal ansatz (1.1) is justified.

4., Small amplitude waves: the linearized Vlasov equation

We now expand our Lagrangians (2.l11l) into a power series of the
amplitude. We write A® = A? + §AY, where A* is the four poten =
tial of the background plasma. Note that our definition is slight

ly inconsistent with (1.1) and that we are considering now only



real quantities and introduce the Lagrange density L = v-gL.

1 ik 2 1 ik
L,.leads to only two terms: L.L = - a, F and L, = - — f.
¥ nly f an L1k f Ter ik' >
Tk . .
£ = T A1l higher order terms vanish. In Low's norela

tivistic treatment the same would be true for the matter Lagrangian,
but the relativistic Lagrangian gives contributions to all orders.
We define the projection operatior into the local rest frame

hg: = 6ab + uaub and write

ey
h a 1/2
ab® © (4.1)

. - 3 . ! a.
/{(u$+€z)(ui+€i) = (1-(u7g D) |1~ -
(1-(u%e_))*

a
The power series expansion of (2.11) is then straightforward.Add
ing to the first order Lagrangian the divergences (which do not
change the field equations) ) )
1 ik . . c =N T _ & alyg,
Z}(aiF )lk and Cl with 1 (mcu 5 )E?,
the first order Lagrangian is seen to vanish identically because

of the field equations of the background plasma.

.

To second order approximation we obtain after adding c2 with
- Ty Lp? gk
€y = c N (a”+ 2A|kg )Ei
~2 o N raib e a;b e a.b 4.2
L, = "me - h  E7E7 + s N(F_ 8787+ u F a‘bE £7) ( )
2 _ eN _ab 2 _ _ _1 ik
Len™ =T 8% o Ly 167 Fox
Variation with respect to a’ gives Maxwell's equation (4.3)
(iky o _ 4T etak - ofekyymg) L 4T syt
e S T S A Yo I U
v-g
and with respect to £ gives the equation of motion
a._ (@ by _ e a b a b.ey _ e a b :
L := (h »E ) — (F pe * Fb}c u”EgT) = — fb u (4.4)
me mc

We shall now show that Gjt in equ. (4.3) is given by the wusual

definition for the current equ. (2.15)
5% = ]/:ééNu$ d* u (4.5)

and that SN obeys the linearized Vlasov equation. To this end we de
fine the perturbed distribution function by (2.19). To linear or

der we have in Fermi coordinates in which along a particle's tra

jectory J~g =1, Fgc= 0



o
w

- _ .a
?-S_ 1 u Ea
ca _ o,a habgb aﬁaz 57+ (n® £%) (4.6)
du e Vb
~a _ _a a X~ = 8@ a
X + £ 5 6b + glb
45 3" 3t 0x X
As = (88y (8 Xy d'u, _ . _ a: _ .a _ 4 ;
(ds)(a“g)(a“a) 1 - u'g, Ela (hy %)y,
and from (2.19) together with (4.6) we obtain
= - a - (wna P - (uE)N 4.7
SN (Ng %a (N 5E )Va (ug) (4.7)

Inserting (4.7) into (4.5), we obtain after a partial integra -

tion

O N

. - T _(n.k - agb PR =
83 e “u k) - angED - bty
j[(uiEkN)k + ét N] d*u

|

Using N = 0, the last term can be written (gtN)', and another
Z
Vi
mains to be shown that N of equ. (4.7) obeys the linearized

partial integration using b = 0 in fact gives (4.3). It re-

Vlasov equation:

|

SN = 6N = - -2
S 2
mc

Nyg £5F uy (4.8)

[N

Equs. (4.6) and (4.7) are invariant only under the restricted

gauge transformation ga > ga +ou® with constant O whereas (4.3)
and (4.4) are invariant under the gauge transformation with ar-
bitrary 0. Therefore we can choose the gauge uaéa = 0 without a
loss of generality and still have the freedom of the restricted

gauge transformation.

. . .o . D 2 - (D, 7 _ At 4d
Using the identities 15 (A 17:) (ds A )li A ijli and
Db ,Z - (D 7 _ AT _ a1 J . . v <
Ts Avi (ds A )Vi Ali A ij‘hiwe obtain with N = 0
SN = - (NL9) (4.9)
Va
where I¢ was defined in equ. (4.4) and is now
a 7a e °b a b.c e a b
L =§& - = (¢ + =
5 ( 3& F e U8 ) £ u (4.10)

mc IIlC2



according to which Lava = 0, so that in fact the linearized Vlasov
equation follows. Equ. (4.9) was derived (monrelativiscally) in

Low's paper. Low noted that this does not yet finish the proof

since the class of solutiomns of the equation of motion (4.4) can

actually be larger than the class for which (4.9) holds. We shall
show that we can use the remaining gauge freedom to establish a

one-to-one correspondence between the two classes of solutions (with
out changing the current (4.3) or (4.5), respectively). Multiply
ing equ. (4.10) with u , we obtain by means of (4.4) ﬁxua = 0.

This may be written as

e

2
mc

a b a b.e,_ _ ;o ra
(uaF pE * uF biet £7)= - &)

. a as . a\a' _
u g (W )-(urE ) = a

i.e. (uaéa)' =0 (4.11)

so that uaéa = C for all solutions of (4.10)., If this constant C
happens to be different from zero, we can gauge it to zero with
a restricted gauge transformation £%+£% + C.u? (without affect-
ing the physical components ga, as is easily seen in the 1local
rest frame). The proof of (4.9) is somewhat tedious but can be

simplified if one proceeds as follows.One starts from SN = NA-N(X,4)

and uses ﬁ(x,u) = 0. This gives -N(X,u) = _NVi(Ei - bi), which
is just —NViﬁ' according to (4.4), (2.4) and (2.9)
" a
A = —I,va (4.12)
and
" a _ a b _ ¥z Ty o
'ag NVah bg N(x,u) 0 (4.13)

The remaining terms are then just “NV L%, which proves (4.9). We
a ;
have therefore shown that although the Vlasov equation does not

follow as a variational equation from the Lagrangian, it is. contained

implicitly in the field equations and may replace equ. (4.4).

5. The equivalent permeability tensor

Having established that our basic equations (2.9) and (2.10)fql
low from the Lagrangians (4.1) and (4.2), we can now apply the result of
section 3, equ. (3.10), if we make the eikonal ansatz (1.1). As

the next step we use the virial theorem to eliminate £° from the



total averaged Lagrangian. Since L; is gquadratic in £ and me

is linear, we obtain

2L = -L
m mf
= - = - = 1 = ..
h = L L =L + =1L . Def
so that L Pw + ' f - f 5 ' efining
su%P: = ~4m % J/:éN (g%uP- uagbyaru + gab (5.1)

we obtain finally

- 1 ab
L= 167 £ poH

(5.2)

which agrees with ref. 5. Applying (3.10), we set that the wave
T

k..

ear response tensor which relates §

action N? = is conserved. We only have to determine the lin

¥ to fik. For a cold plasma
this is straightforward. With the eikonal ansazt (1.1) we have
to invert (4.10), which now reads to lowest order eikonal appro

ximation

- (kw)2E® 4 i (kwed, gl - P P (5.3)
me?
in order to obtain
a ab e]
£ =0 "wy u (5.4)
with
_ e
Ppe 't T * 2 fbc
me
and
Q, : =+ —=_F x0% = &% cd a
be 2 be ° 9] b e bch the dual to @ b
The result is
2 . a a c
¢, = 2 (kw)787p + $Ckw) 7, - *@, =07,
2 ' ' s (5.5)
() ~Gew)? + (a0
The result (5.5) can be easily derived from Q% Wb = o, which

b

holds to lowest order eikonal approximation, so that as a conse

quence we have *Qggc = 0., Using further the identity

b



a ob xQa %xob 1 ab, a
Q77 = FATRAT - S(0,, ) 87,

one easily shows that (5.5) is the inverse of (ku)zéab -i(ku)Qag
In the local rest frame of the plasma the space part of equ.(5.5)
reduces to the well-known conductivity tensor oaB if we identify
(ku)?2 = +w and %(QijQig) = Qz = 02 where QL is the Larmor fre
quency in the particle's rest frame. From (5.4) and (5.5) we read

off the permeability tensor, using (5.1) and (1.5), (1.6)
2

~ab _ < la nl UL)p 'g H 5.6
€ ed 6[@ y dl ¥ ;? o [e “ uj (5.6
.= -]; —
where A[@ Bél. > (AaBb B Ab).

Instead of solving equ.(4.1%) for the hot plasma case (where uis
an independent variable), we use the linearized Vlasov equation

(4.8), which, as we have shown, is equivalent. To this end we em
ploy a technique due to Sagdeev and Shafranov 29 (as described by

23) 2y .
) and Clemnow and Dougherty ). To put the method in cova-

2 5)

Stix
riant form we borrow the formalism from Buneman . One first sol
ves equ. (4.8) in LagrangZan coordinates for the perturbation §N
so that it is sufficient to insert the zero-order orbits into

fik

the right-hand side of equ. (4.8) since is already a quantityof

first order. These orbits are parametrized so that at proper time
s' = s they pass through x% and u?, respectively. For a magneti-
zed plasma the orbits are to lowest order in a locally flat coor

dinate system using Fermi coordinates

xt = x% +Tik uk  + ut(s'-s)
t = an®, 4 bl 9°,  + (s'-s) &t (5.7)
k k e k k

a: = —% (cosQ(s'-s)-1) b:= —% (Q(s'-s) - singQ (s%-s))
-, 0 .4 2

=.$ = e——
v T E ds
Equs. (5.7) are the appropriate generalization of the Lorentz

rotators given by Buneman 25) (the notationis that used in equ. (5.5)
and below). If one wishes to take into account particle drifts ,
higher order harmonics and the change in the amplitude of gyra -
tion via an adiabatically conserved magnetic moment covariant for

6 . .
).Rep1a01ng the Lagrangian by Eule
13) -

. . 2
mulations are also available

rian coordinates, one obtains



SN (x,u) = - == j u,(s") £*h(z(s")) No(i(S'), u(s')) _ds'

me? o Vk

(5.8)
+ 8N(x ,u )
07 0

To make the integral independent on initial data we imagine the

perturbation to be switched on adiabatically in the infinite

past and introduce the integration variable t= s' - s to obtain
0
_ e - kil ,= - =
SN(x,u) = u, (£) £ 7(x(t))N, (x(t), u(t))_ dt (5.9)
me? L ° Vk
¢ —00

By this trick the integral has become independent on the proper

times. With our eikonal ansatz (l1.1) we obtain finally

SN (x,u) = - = 5P () s (u) (5.10)
0 mcz .
- T (kyt%%ub + kyudt)
skZ = uZ N_ e dt
o Vk
Instead of keeping the discussion as general as possible, we

shall illustrate the procedure by a simple example: we consider
the one-dimensional relativistic gas. For a treatment of a mag
netized plasma with an isotropic relativistic Boltzmann distri-
bution function compare Bunemanzs)

In the absence of a magnetlc field the particles' trajectories

are simply ul—ut, xl-xl+u (s'~s) and S41 of equ. (5.10) 1is
-1
t.uZNVk (ku) (5.11)
and for the current we obtain
2 u,N
§;% = -4 ° J a* u u? L Zk sz (5.12)
me k

pu
In evaluating this integral the Landau prescription must be u-
sed. Putting fab = i(kaéAb-SAakb) and using Maxwell's equation

(4.3) we obtain

(kFsAP 1P

6a%)k, = (kP sa° - §aPK%)

or

(%, -k26ab)6Ab = 0%, o4 (5.14)

2 Yy
o = 4 4me J L8 By ke - (R IN))

P mer Joxa”
4me? j atuan [y agu®) (")~ (e Iy - (7, ) 26%)

mc2

(krur)2



To obtain the last line a partial integration was perfomed. It
makes explicit the symmetry of Gab and Gabkb = 0, Note that
(5.14) coincides with (5.5) inserted into (5.1) for no magnetic
field. However, in general this is not true, as can be easily
verified since (5.5) has only a resonance at the fundamental

Larmor frequency QL.We specialize now N to be

N = zno(x)f<“1)'6(“2>5(u3)5(—l—urur)G(uo) where we have chosen

x! for the direction of the anisotropy. Such a plasma may ex-

ist for example around a pulsar beyond the velocity of light
cylinder. We find
4tre’n
Oi == O‘z = wzjcz = 0
p me 2
and
2 1 0
W wu* (N g, + Ny uf)
ol = - L J | B d*u (5.15)
! c? u® - cku!l .
2 k
2 w
¢ Y1+u?-nu
6% = - co ! o0 k®
0 o

0 (= 1,2,3)

ft

For longitudinal oscillations we obtain from s

the dispersion relation
o -2

whereas transverse waves in the Landau gauge 6A° = 0, with the
help of (5.14), lead to

2
(k"‘kB + ( ‘2—2 - kYkY)ao‘B)dAB = GO‘BGAB (5.17)

and for the principal modes (along || or orthogonal 1+ to =x!) for

which kaaAa 0 is possible, we have the dispersion relation

fi

N
O,
N

1 - a2 =S5 (5.18)
W
1 W
where 0o = o' = ¢ or 0 =02 =¢% =g, = L
1 l 2 3 - c?

To estimate the influence of a large velocity dispersion on the

propagation of The mode parallel to the x! we approximate £ (u)
1 -6lu -
by f(u) = Eee where 20 ! = kT = <y> is an effective tempe

rature and measures the velocity dispersion. We obtain



2 2 -fy

e

UH - 6 Ezz j ue du (5.19)
¢ 4 /1+u®-nu
In the limit 6!+ 0 we obtain G”= w;/c2 , as we must, and

2
w
for 0 » 0 we get (7H+ 62 —§ (1+n) ( 1
. w2 c l-n .
that 1-n°+——E——, i.e the plasma frequency is reduced by <y>
w2<y>
a well-known result. Finally we give the result for an isotropic

2) from which we read off

distribution function. We choose x? for our references axis and

obtain?)
2 2m ™ o
3 wp ' 3 2 efl
03 = o= £ [ av | sinoao | wldul. cost 810 ] (5.20)
¢ b ) 5 ul 1-z cos 8
2 (=)
w ™ T 3 . 2 2
ol = g2 = o, = p dy J sing do| & du [%f,31n 0 cos w]
1 2 c ) n® 1-z cos 8

where the following convention is used (5.21)

o
u

GAi

(u sin@ cosy, u sinf siny, u cos@)

: W
(0,8A,0,0) kt = (E,o,o,k)

The integral over angles is elementary, and it is convenient to
consider first O’I + 20, , which shows that the integrals behave

like

In <y>, again a known result.
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