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ABSTRACT

By using self-dual clusters (whose sizes are character
ized by the numbers b=2,3,4,5) we calculate within a real space
renormalization group framework, the longitudinal surface tension
of the square-lattice first-neighbour ';éqispin ferromagnetic
Ising model. The exact critical temperature T, is recovered for.
any value of b; the exact assymptotic behaviour of the surface
tension in the limit of low temperatures is analytically re-
covered; the approximate correlation length critical exponents
monotonically .| tend towards the exact value v=1 (which, at two
dimensions, coincides with the surface tension critical exponent
- y) for increasingly large cells; the same behaviour is remarked
in what concerns the approximate values for the surface tension
amplitude in the limit T»Tc. We develop four different numerical
procedures for extrapolating to b+~ the renormalization group
results for the surface tension, énd quite satisfactory agrée-
ment is obtained .. with Onsager's exact expression (error vary

ing from zero to a few percent on the whole temperature domain).

Furthermore we compare the set of RG surface tensions
with a set of biased surface tensions (associated to appropriate

misfit seams), and find only fortuitous coincidence among them.



I INTRODUCTION

Since Onsager's exact caléulation(l) in 1944 of the
longitudinal surface tension in the square-lattice Ising model,
a certain amount of work has been dedicated to related topics,
which no doubt enlighten the important phenomena concerning the
interface separating two equilibrium phases. It is clear that
if we consider let us say a ferromagnetic d-dimensional Ising
model, the surface tension y (for a convenient definition of
d-dimensional surface tension see Ref. (2) and references there-
in; also Ref. (3)) will in general depend on the orientation
of © the . misfit . seam . ( with =~ antiferromagnetic bonds).
~ This dependence has.been discussed in various cases(3'5),.either
'directly on Y(T) or on the surface entropy (-dy/dT). However,
essentially because of the divergehce of the correlation
length £, isotropy should emérge in the neighbourhood of the
i.e. if we define Y(T)NA(TC—T)u, in
(3,6-8) \pat A and 1 are the

same for all orientations of the seam. These .facts are

(

critical temperature Tar

the limit (To-T) /T + 0, we expect
exhibited by exact results 8,9) for the diagonal surface tension
in square lattice and similar systems. Furthermore, . scaling
arguments applied on the surface tension (first subextensive |
assymptotic correction of the thermodynamical free energy of
the bulk system) 1ead10718) o consiant gd—ly in the neighbour-
hood of T, hence (by using the definition £ & [T-T| ™ )p=(a-1)v

(therefore we expect, for two-dimensional Ising systems,p=v=1).

(17,18) were

The renormalization group (RG} techniques
initially devised for the calculation of the critical tempera-
ture (fixed point) and'exponents (eigenvalues) ; however, if
appropriately used, they lead to satisfactory results for the
whole domain of temperatures (a pedagogical example is presented
in Ref. (19)). Within this context they have been useél5’XL21)
for the calculation of the surface tension. In the present
work we calculate, within a real space framework similar to

that of the Oliveira et al(ls), the longitudinal surface tension



of the square-lattice first-neighbour %%-— spin ferromagnetic
Ising model. However we use, in contrast with that work, self-
dual clusters (whose sizes are characterized by the numbers
b=2,3,4;5), which are particularly well adapted(22-27) to RG
discussion of critical phenomena (phase transition as well as
bond percolation) in the square lattice, as they lead to the
exact critical temperature Tc ‘(or critical bond percolation

probability pc), whatever be the cluster size. The tendency
towards - Onsager's ‘exact result for the surface tension is

clearly exhibited for increasingly large clﬁsters.

In Section ITI we develop the RG framework and present
the numerical results. In Section III we present four different
procedures (the multiple extrapolation procedure (MEP), the

-stngle extrapolation procedure (SEP), the single multiple ex-

trapolation procedure (SMEP), and finally the multiple single
extrapolation procedure (MSEP)) for extrapolating the RG re-
sults to b » =, :

Finally in Section IV, and within the purpose of test

rring an hypothesis concerning our RG results for the surface

entropy (or thermal slope of the surface tension) at vanishing

temperature, we are led to propose a family of biased misfit
seams whose main consequences on the surface tension are ana-

lysed.



II REAL, SPACE RENORMALIZATION GROUP TREATMENT

I1.1 Self-dual clusters

Let us first of all present the family of self-dual
clusters (see Fig. 1) we shall adopt for the square lattice.
To each (internal and terminal) node of the clusters. we
associate a %% - spin, and to each of their bonds a thermal

transmissivity*,
t=thgJ , ‘ (1)

where 8 = l/kBT and J > 0 is the first-neighbour Ising ex-—
change integral. Next we associate to each cluster an equi-
valent transmissivity thERb(t), which is obtained thrqugh
the partial trace on the internal nodes. This trace can be

- performed, with considerable operational advantages, by using
‘the recently introduced(zg)"break—collapse" method. The

results are listed below**:

t) ER(E) = ¢
t, = R,(t) = _2t? * 2t3u
1+ 2t° + t
voaet 26’ Af t40
vol- (1-t)? -2yt if bl
ty = Ry(E) = 33484410t 5+ 8t5+12t7+ 16t °+6t %+t

1+ 4t3+4t%+4t54+14t%+20t7+11t %+ 4t°+2t10

noO3t3 4 et T if t =+ 0
Nl - 3 (1-t)® ;;%;41—t)* O if ot
4 .

*  Though these words have been introduced recently by two of us(26'27)'

this variable has been used since long before (24’28).
**% R2(t) has previously been calculated in Refs. (23,24,26,27).
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The functions Rb(t)_have a remarkable property ( due to

the self-duality of the clusters): ijtc) =t VDb where

if we recall

te = V2 - 1, hence K Tc/J=2/argsh 1 =  2.269, which is the

B~-"(30)

exact critical temperature  for squaré'lattice; Furthermore

(26) that the equivalent transmissivities for series

and parallel arrays of n bonds are respectively given by

t. =t (2)

1=t - )
TP . [______1 -t ]n ' - (3)



it is straightfoward to calculate the assymptotlc behaviors

of tb for t+0 and t-+1l, Let us first work out the 1limit

t +0: such situation our cluster becomes equivalent to b
< parallel bonds, each of them consisting in b bonds ( of

transmissivity t) in series, therefore

1-t (. byb

____ b n [E_Z_EB] n 1 - 2b tb
1+tb 1+t

hence t, = (t) b tb
‘b = &

if t-0 ' (41
In the other limit, i.e. t=+1, the cluster becomes equivalent
to b bonds in series, each of them consisting of b parallel
~bonds of transmissivity t, therefore

~ (1 - $£1b T
- (L=t e
R N 5 R R
1+ 1-t
] 1 +¢f |
vl - —B2  (1-n)P if to1 (51
. ;b=

Furthermore, by using the techniques indicated in Ref.
(29) is nothing but tedious to calculate the next assymptotic
corrections, so expressions (4) and (5) are extended as follows:

t, = R (t) AvbtP + 2(b-1)2 tPFL if t-0’ (4)
) |
. 1 —-———(1 _gyb_ b2 +2(b “1)2 14y b¥L 57
2P 2P
if t+1

Let us stress that through the dual transformatlon(26 27
et =(1-t)/(1+t) we can pass from (4') to (5') and viceversa.



Within the RG framework we shall now assume the following
recursive relation (which renormalizes the sguare lattice into

itself through an expansion factor b/b') ¢ | .
Ry (t') = R(8) - - (b=2,3,4,5; b'=1,2,...,b-1) (6}
This relation admits two trivial fixed points (t*=0 and t*=1)

and a physically relevant one: t*=t., hence the present RG leads

to the exact critical temperature for any choice of (b,b'). The

. itical t is given b (24-27)
approximate critica exPonen vb,bﬂ g b
ln b/b'
Y - (7)
b,b’
ln Ab’b'
! 4a Rb(t) . d Rb,A(vt)
Ab b' = S
’ dt dat

t=t
c

and the results for b'=1l and b=2{3,4,5 are indicated in Table 1.
A preliminar analysis of the results for b'=2,3,4 showed that

the behaviour of Yy bt is less monotonous than it is for b'=1l.
,b' ,

IT.2 Longitudinal Surface Tension

Let us now turn our attention onto a central problem :
what family - of clusters are we going to use in order to simulate
(within a finite cluster) the macroscopic misfit seam (see Fig.
2(a)) which generates the surface tension? Our proposal 1is in-
dicated in Fig. 2(b): to each of those misfitting clusters is
associated an equivalent transmissivity’ Qb(t), and the RG
recursive relations will now be

Qs (£') = @ (k) (b=2,3,4,5; b'=1,2,...,bx1)  (8)

However it is straightfoward to verify & peculiar property, name
ly



Qb(t) = - Rb(t) - | v b Yt

Therefore the relations (8) become, after cancellation of the
minus sign on both sides of the equation, the same relations (6)

we had before!

We must now write down the RG equation for the surface
tension y : following along the lines of Ref. (15), this will

be given by
(-bl)Advl . _Y_' = bd_l . .l. : oo, (9)
T T
hence, in our case (d=2},
' .
b' T

Furthermore equation (6) can be rewritten:
¥ —
Rb,(th J/KBT ) = Rb(th J/KBT) (10)

where definition (1) was used. Once we make a choice of (b,b'),"
relations (9') and (10) close the problem, as they provide a
RG recursive transformation of the T-y-space (or equivalently

t-y) onto itself. This set of equations admits two physically

important fixed points, namely (T=Tc, v=0} and (T=0, Y=%>)mmere
Yo Will be arbitrarily chosen equal to unity (i.e. we = shall
work with a reduced longitudinal surface tension which equals
unity at vanishing temperature]; the former is an unstable
fixed point, the latter is é stable one. The flow diagram (in

both T-y and t-y spaces} is schematically indicated in Fig. 3.

In order to find out the behaviour in the vicinity of the two

fixed points, we must consider the Jacobian matrix

aT! o1 )
oT Y
(11)
9y’ ay'
oT CAONY



where

'
T T ch? J/kgT d R_,/dt'

it

{ T!]Z 1 = t2 : d Rb/dt

T 1 -¢t'2 4 Rb,/dt'
]
..a_'_r.—. =0
3y
3y' _ b ¥ ar' _ T’
T b' T dT T
v __b T!
Y b' T

.(12.a)

(12.b)

(12.c)

(12.4)

In the critical fixed point (T=Tc) the Jacobian (11) becomes

b,b’

0 b/b'

The fact that both eigenvalues are bigger than unity exhibits

the instability of that fixed point; the eigenvectors (1 0) and

(0 1) indicate the privileged flow directions (see Fig. 3(a)).

Furthermore the relation

= _ .ln,Ab’b.
AV _ In(b/b"')

is reobtained, and

In(b/b") _
1n(b/b')

1



the scaling law u=(d-1l)v being thus preserved by our RG. We
remark also the existence of a third fixed point admitted by
cequation (9'), namely (T=«,y=0) or equivalently (t=0,v=0)) ;

if we start, for any T>Tc, the recurrence.procedure with Y#O,
we obtain an unphysical divergent surface tension in the limit
T + o, hence y must identically vanish for all temperatures

higher than Tc: the well known exact result is recovered on

renormalization group grounds.

Let us now focus the vanishing temperature fixed point:
its discussion is somehow delicate because of an indeterminacy
that apéears in the limit T+ 0. Let us first of all rewrite
equation (6) as follows:

- ' ' : - :
pre™2b' I/kgT' o p o720 I/kgT (13)

where we have used the assymptotic behavior.(5) and also the fact that

thx~l-e?® if x-+0.From (13] comes*
( kT )
- [ ] .
IRl B 1nm/pY) , (13')
T b { 2bJ J :
1 k 7 ’ A
1 1
and ar’ o 2. |1 + 2B 1n(b/b') (13'")
ar b | bJ |

and the Jacobian is finally given by

b'/b 0

s 1n(b/b") 1
J 2b

whose eigenvalues are 1 (marginal case) and b'/b (smaller than
unity, exhibiting therefore the stability of this fixed point,

*  On rigorous grounds,the operations (derivatives, substractions, etc) we
are performing across the equivalence sign (v) demand more detailed
justification than presented in this derivation.
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at least in one particular direction), respectively associated

to the eigenvectors (0,1) and (u,v) with

vo_ kB In(b/b') . , (14)

u J 2(b-b')

&

which gives us the jnitial slope of the approximate surface

tension Yy b,(T), i.e.
. 14

. T | :
Yy e (T v 1= In(b/b’) FB if Kk T/3-0  (15)
' 2(b=b') J '

Let us remark that for b'<b we have that

In(b/b) . L

b{(l1-b'/b) -~ b

therefore the slope (dyb b,/dT)T 0 vanishes* in the 1limit b=,
as it ought to be for a RG calculation which is expected to con-
(1)

verge towards Onsager' s - exact result
Figs. 4, 5 and ®]

(see also Tablel and

k. T
Yy, = 1 - B_ 1n coth o A ' (16)
= 2J kgT
k_T
n1 - B gm23/kgT if KBT/J > 0 (16')
J
» T T
w2 f1- X 1f =S >0 (16'")
Tc. . e . .

_ We shall now take advantage of the assymptotic behaviour
(5') in order to extend relation (15) up to the nekxt assymptctic

correction. Through use of relations (5') and (10) we obtain,
in the limit T >0,

If b'=l the slope vanishes as 1ln b/b whereas if b'=b~1 it vanishes as

1/b, this is to say more rapidly.4Wévhave observed this acceleration

of the convergence (if b'=b-1 instead of being fixed) in a oonsiderable
© variety of similar problems .
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F(T';b') VF(T;Db) R 7 | (5')
where |
kBT/J
F(T;b) = = - VTI Vb
b |1 1nb 58T [Ll_J kg" -20/kpT
2b J b J

Finally if we make use of the recursive relation (9') we obtain

. T - k T :
& 1- ln(b/b') kBT - [b"l Jz‘ kB e ZJ/ B (lsl)

2(b-b"') J b J

.Yb,b'
if kBT/J + 0

We verify that in the limit b =+ « (with b' < b) we recover that
exact aésymptotic behaviour (16') (see also Table 1 and Figs, 4,

‘5 and 6).

Let us now operationally describe the numerical method

we have followed for determining Yb.b" for intermediate temper
) ’

atures. First of all we choose an arbitrary temperature T, lower

than TS, then we use the recursive relation (10), this is to say

Rb,(th J/kth+l) = Rb(th J/kBTj) (3=0,1,2,...,n=1) (10"}

to obtain the sequence of decreasing temperatures Tl’ T2,.,.,T.,'
.o Tn where we arbitrarily stop at the n-th step with the unique
restriction that Tn be close enough to zero. Next we calculate
the surface tension Yn associated to Tn by using (15') (or just
(15)), and finally we run backwards through relation (9'), i.e.

j41 (3=n-1,...,1,0) (9'")

;=
b Tyn

in order to obtain the sequence of decreasing surface tensions
Yn-17*°*Yo which closes the procedure. An example of such a

run is presented in Table 2. The results we have obtained for

b'=1l and b=2,3,4,5 are indicated in Table 1 and also in Figs. 4

14

5 and 6. Furthermore if we define Ab b through the RG result
. ’
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T }Vb,b"
Tc

Yb,b' ¥ Pp,b" [1 -

and denote by B, ,, the positive pure number obtained by multi-
’ .

plying (kéﬂyb)ky'ﬂmyshzxzof a straight line which starting

' from the point (T=Tc, y=0) tangentially touches the curve Ybe(T)
(see Fig. 4), the present RG procedure enables us to obtain nume
rical estimates for both coefficients (see Table 1 and Fig. 6),
which are expected to tend towards the value 2, according to (16'').

Let us conclude this Section by saying that the results
presented in Figs. 4, 5 and 6 and in Table.© 1 leave no great
doubt about the fair convergence of the present RG approximations
towards the exact Onsager's expression for the longitudinal surface
tension in the square lattice Ising model. In the following
section we present four different extrapolation procedures for

obtaining- an estimate of the b + o limit of the RG results.
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III ~  EXTRAPOLATION PROCEDURES

IIT.1 Multiple extrapolation procedure (MEP)

This procedure is a very simple one: for any given
temperature, we linearly extrapolate to the rorigin Yb,i vs;hr%
The choice of the b-l-variable essentially comes from the fact
that it is quite natural to expect that the temperature scales
—l/v’ hence the surface tension should scale as b—p/v; but
at two dimensions, /v = 1. As this is basically a finite but large size
aw3D | there is no particular reason for expecting it to hold

eveh for small values of b (as in our present case); nevertheless  this

as b

frequently happens within a reasonable accuracy (see, for example, Refs.

(32) and (33)); a measure of the credibility of such extrapolation in
.Vevery particular case is given by how much the linear correla-
tion factor approaches unity. With the notation'yM(T) for the
surface tension obtained through the MEP, we present our re-
sults in Fig. 5 (the linear correlation factor grows from

about 0.998 at T=0 to unity at T=Tc. The high error (with .
respect to Onsager's exact result Y given in equation (16))

obtained in the immediate neighbourhood of Tc comes from the

fact that Vb, 1
to v. We remark that the MEP globally decreases the error by
: ‘ M’ AM_and BM the
critical exponent and amplitudes of v (T) (defined in total
analogy with Vb,l' Ab,l and B ) in the neighbourhood of Tc’

b,1

our results a;e Vg = 1.069, AM =~ 1.83 and BM = 2.

is — though quite close— not strictly equal

about a factor 2. If we respectively note v
M

Let us finally remark that more complex situations
might appear in similar problems, in £he sense that the criti
cal temperatures'{Tb’l} might be not one and the same for all
b. In such cases it can be convenient, before applying the
MEP, to reduce the temperature axi$ in order to force all the

critical -points to coincide*.

* Another possibility might be to work on constant Yy straight
lines instead of constant T straight lines, or even on cons

tant Y/T lines (see Ref. (33)).
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IIxr.2 " Single extrapplation'procedure'(SEP)

We present here a quite different extrapolafion
approach which applies to every single function Yb,l(T) ’
which can be used for other lattices, dimensionalities ,
models (such as XY or Heisenberg) and equations of state.
(such as the spontaneous magnetization), and which takes
advantage from the fact that, for a large number of cases,
exact or almost exact values are available for the cri-
tical temperature, the set of critical exponents and the
slopes at vanishing temperature. To be more specific, in
our present case we shall use the following data: the RG
value T for the critical temperature (the present self-

Jb,1
dual clusters lead to T T ¥ b, but for the sake of

b,1
generality we prefer to malntaln here Tb l), the RG expo-
- _ J _1nb
nent b 1’ the RG slope Cb 1 = (dyb l/dT)T =0 ETE—I)
the exact values for T ot V and the sIBope CL:-F (dyL/dT)T=0=O.

We work here with a reduced surface tension, otherwise we

also ought to assume the knowledge of the exact vahxayr(o).

We introduce next the variables

: v : '
_ T b,1
xp 1(T) = [1 - J (0<T<Ty 1) (17)
b’l :
() = [1 T )Y
= [ . J (0<T<T ) (18)
‘ c
and the relation
S = f (x)
Yb,1 = Ty, 1 Xy, 1 (19)

among the b»x SEP proposal Yb 1 generated by Yb 1 and- the
correcting function fb 1 (x) which remains to be found. For T= 0

(hence x=x =1) we want ys to equal unity (because this is
b,1 b,1
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the exéct result for YL), and as it is so for Yp. 1 it comes
14
that ' '

fb,l(l) =1 | | - (20)

Furthermore, relation (19) implies

S
dvy, 3 9f, 1 (X) 4y AP Ay g
= — Yp,1 ¥ fp,1 )
ar ax ar Pr '

dT
which becomes, at T=0,

dy,
. Yb,1

=1 ar

. dfb;l

T=0 T dx

(x)

daT . T=0

~where we have ﬁsed the relations (18) and (20). In other words,

dfb,l

dx

.ch/J

x=1 AV

) | (21)

(¢, - Cb,l

and, in the present particular case,

af, . _ . . '
b, - 1 Inb (21')
dx x=1 argsh 1 (b-1) A

Moreover, the correcting function £ (x) has been introduced

b'l
mainly to redress the .possibly wrong thermal slope of Yy 1
14

at T=0, and we want its effects to gradually ©relax while
approaching Tc (hence x=0); it seems therefore reasonable to
demand

af (x)

dx x=0 . :

This assumption (as well as the forthcoming ones) is strongly

supported a posteriori by the results it leads to. The simplest
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function which simultaneously satisfies restrictions (20),
(21) and (22) is the parabola

k.T /J kT /J :
B cC B cC 2
f (x) = [1 + ———(C )| - ———(C -C.) x (23)
b,1 [ 2y b,1” L 2v b-1 L
and in the present particular case
£,,00 = |1+ —= Inb v 1 dmb 2 (331
! 2 argsh 1 b-1 2 argsh 1 b-1 :

Now that the correcting function is uniquely determined the
problem might seem closed, but it is not, because we have not
yet precised the arguments of Yb 1 and Yb 1 in relatlon (19).
We will postulate that this relatlon connects Yb l(T) with

Y (T') where
- b,1

l(T') = x(T) ' : (24)

in other words, relation (19) must be understood as follows:

s - S ~f1 - L)V .
. ’ c b

This is clearly the central assumption . .of . the - SEP  and it
states that a kind of law of corresponding states holds for the
RG approximate functions"{Yb'l(T)} associated to different clus
ter sizes. We remark that relation (19') becomes identically
satisfied in the limit b+e, assuming tpat Tb,l+Tc' vb,1+ v and
Cb’1+CL (to be more precise, if Yb,l(T) regularly tends towards
YL(T)). Furthermore, we can say that the definitions (17) and
(18) (together with assumption (24)) samehow.cover up the criticality’
of the problem, and the simple paraﬁolic - in the x-variable =
form (23) we have adopted for the correcting function becomes

more natural.
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The whole SEP is quite satisfactorily supported by
the results to which it leads. We have represented in Fig. 7
the error (Yz,l—YL)/YL associated to the set .{Yb,ll . for
b=2,3,4,5: discrepancies remain inferior to 3% over the whole
domain of temperatures for all values of b (error inferior
to 1% for b=5). In order to illustrate the validity (within
a few percent) of the proposal (23) for the correcting futh
ion fb l(x), we have represented, in Fig. 8, the worst of

them (namely f (x)) together with the exact correcting

2,1
function YL(T)/Y2 l(T ).
4

From our standpoint the main 1nterest of the  SEP
comes from the fact that, by using only commonly available
information (Tc,v, etc) and one RG approximate result, it is~
possible to obtain a curve which is satisfactory - over  the

whole domain of temperatures.

III1.3 Mixed extrapolation procedures '(SMEP and MSEP)

Let us combine here the SEP and the MEP by applying
both of them, one after the other, onto the set of RG funct-
ions'{yb’l(T)}. The single multiple extrapolation procedure
(SMEP) consists in the application of the SEP onto the result
YM(T) by using its own values for the qritical temperature TM
(in our case TM=TC) and exponent VM and tgﬁ'thermal slope CM
for vanishing temperature. The error of Yy  (T) (result obtained
through the SMEP) is represented in Fig. 7, and remains, as
for the {yill(T)}, inferior to a few percent over the whole
domain of temperatures (it is smaller than 0.4% for temper-
atures smaller than let us say é%Tc).

The multiple single extrapolation procedure (MSEP)
consists in the application of the:MEP.“ to: the functions
-{Ysllfi)}, i.e. to linearly extrapolate to the origin Yill(T)
vs. b for flxed temperatures. Oncemore the result, which

will be noted Y (T) and whose error is represented in Fig. 7,
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is quite satisfactory (particularly for temperatures below
let us say {%Tc,-where it is smaller than 0.4%); the linear
correlation factor approaches ‘1~ in the wvicinity of
kBT/J = 1 but quickly decreases (down to let us say 0.95)

when T=0 or T=Tc are approached.
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Iv BIASED SURFACE TENSION

The center of our discussion has been until now
the longitudinal surface tension; let us now focuse the sur-
. face tension YB(T) associated to an arbitrary biased misfit
seam which makes an angle 6 with let us say the x-axis of
the lattice. Clearly '

_YO(T) = YL(T) . ( 25)
and ‘Yﬁ/4(T) = YD(T) ( 26 )

where 1y is given by (16) and y,(T) is the exact diagonal

O

surface tension given
k_T .
B 2
v, = In sh 22 ( 27 )
JvY 2 'kBT
S oy kT
nyZT |1 -1n2 B ] if  k.T/I >0 (27')
2 J - B
T -T T _-T
n2 S if —S— >0 (27
T T )
C (o]

We notice that the initial slope of the reduced
diagonal tension YD//TT is precisely the same as that of the
RG tension Yo,1 (see the assymptotic behaviour (15)). This
fact seemed to us curious enough to try to find out if, for
"some reason , the family"{ybls.}.was assymptotically equivalent
(at least in the limit of low temperatures) to a family of
biased surface tensions associated to lower and lower values
of 0, until final arrival (in the limit b » «) to the
longitudinal surface tension. The main scope of the present
section is to answer this question.
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The family of biased misfit seams we are gecing to
consider is indicated in Fig. 9 . This family might seem at
first look a quite arbitrary one, but it is not. We have not
been able to construct any other family of narrow, macroscopic
‘ally straight, misfit seams which contains the’ longitudinal
and diagonal cases as particular ones, which introduces no
bulk effecté (in the sense that through aﬁy path across the
seam, the effect, in what the surface internal energy concerns,
is to reverse the spins) and whose value at vanishing temper-
ature (given by the number of ant<ferromagnetic bonds per unit
length along the seam, and normalised by the value of the lon-
gitudinal. surface tension at that tempefature) is shared by

all the misfit seams with the same slope, and is given by:
Yg(0) = |cos®| + |sine| ' (28 )
If we consider, for exampie, tg6 = 1/4 we obtain Yeﬂn=5/ff7=fl.21

which is perfectly compatible with Fig. 11 of Ref. (3). Further-
more equation (10) of the same reference leads to

dygq (T)
ar T=0
kB
= - =2 {lcoselln(l+|tg6[)+|sin6|ln(l+|ct96l)} (29)
2J -

- Let us incidentally. point- out that the reduced quantity

kBT Ye(O)

- 2T In(l+itgd|) + |tgd|1ln(l+]|ctgd '

.20 |tge]) + |tg0|1n(1+|ctge]) (290)
kgT 1+ |tge|

in the limit kBT/J + 0
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D o '
‘ kpT, |cose| + |sind| T,
T ~T '
in the limit - 0
' T
c

might well be, in spite of having been constructed for diZfferent
families of misfits, identical to the quantity T(8) of Ref,

(5). Unfortunately the comparison for an arbitrary angle 9 ‘ is
not easy at all because of the complexity of Egs. (4), (5) and
(6) of that reference once they have been decomposed into their
real and imaginary parts; however the analysis of a ‘few simple

particular situations supports this statement.

Let us now turn back to our initial purpose, i.e.
the comparison of Yb b.(T) and Ye(T). From Egs. (15} and (29) we
’ .
respectively obtain that

25 dp,p (T _ 1n(b/b')
- = = 220l ( 30 )
B 4T T=0 b-b!
and
S 21 1 dy, (T) é..ln(l.+l_tge.l.),-i—,ltge'l.ln(lﬂctgel) (
“B yg0)  ar =0 1+|tgo |

The comparison of these two pure numbers does not seem to enlighten
any relation between our RG surface tension and an exact biased
one, therefore the fact that both lead, respectively for b=2b'=2

and 6=nv/4, to 1ln 2 can be considered as fortuitous.

1)
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CONCLUSION

‘ The longitudinal surface tension of a éimple square-
lattice Ising model has been calculated within a real ' space
renormalization group approach. The self—auality of the clus-
ters that have been used leads to guite good results, 1in par-
ticular the exact critical temperature is recovered for alil
cluster sizes. The two-dimensional scaling law p=v among the
surface tension and correlation length critical exponents is
preserved. for all cluster sizes as well. The characteristics
of the critical fixed point (its instability and others) lead
to a natural emergence of the well known fact that the surface
tension identically vanishes for all temperatures above the
critical one. Analytic results (such as the eXpreSSion, for
all cluster sizes, of the first two assymptotic corrections. for
the thermal behaviour of the surface tension in the limit of
low temperatures) as well as -numerical results (such as the
approximate values for the critical exponent and amplitude in
the vicinity of the critical temperature, for the first four
non trivial cluster sizes) strongly suggest a fair (maybe mono
~ tonic) thbugh not very fast éonvergence towards Onsager's .

exact: result.

Let us incidentally remark that the cbupling constant
renormalization equations (or equivalently the thermal trans-
missivity renormalization equations) that have Been expiicitely
established for the first four non trivial clusters, can be
used to discuss a great variety of interésting quantities, such
as the susceptibilify, spontaneous magnetization, internal

energy, specific heat(34), etc.

In order to extrapolate, into the 1limit of infinite
cluster size, the surface tension renormalization group re-

sults, two basic lines have been developed. One of them (MEP)

is a relatively standard one in the sense that it is related to
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finite size scaling ideas; the other -one (SEP) is rather

peculiar (it makes use of the exact or almost exact values

for commonly well known quantities such as critical temper

ature and exponents as well as thermal slopes at vanishing

temperatures; it can independently be used for every single .
finite cluster renormalization group result for the sur-

face tension) and speculates over the validity of a kind

of law of corresponding states which relates the temper-

ature-axis of the actual finite size- approximate surface

tension to the temperature-axis of the extrapolated surface .
tension. Furthermore both éxtrapolation lines have been

corbined -in the two possible sequences to give mixed proce

dures (SMEP and MSEP). In all but the MEP case (where its

nature demands the knowledge of the results associated to

considerébly larger clusters than discussed here) the

errors with respect to Onsager's result are encourangingly
small (a few percent at ﬁost) for the whole domain of-
temperatures, being in the SMEP and MSEP cases lower than

0.4% . for all temperatures below let us say é} Tc.

Finally the thermal slopes at vanishing temper-
ature of the finite cluster renormalization group surface
tensions have been compared to those of the exact surface
tensions associated to a certain family of biased misfitting
seams. There was some suspicion that such relation might
exist between these two quantities, in spite of its apparent
strangeness. However careful comparison suggests that it
is not so. | ‘

. We acknowledge fruitfuludiscuésionswﬁih H.Martin,
G.Schwachheim and A.C.N. de Magalhides. One of wus (C.T.)
also acknowledges useful remarks i from . M.E. Fisher ’
" R.Stinchcombe and A.A.Gomes as well as an enlightening
lecture of B. Widom on a related subject.
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CAPTION FOR FIGURES AND TABLES

Family of self-dual clusters (each of them is, through

Fig. 1
' m/2~rotation in its plane, superimposable to itself in
such a way that every bond cuts one and only one bond
of the other cluster). Each cluster has two terminal
nodes, b(b-1) intérnal nodes and (2b(b-1)+1) bonds.

Fig. 2 - To each full (dashed) bond is associated an exchange
integral J (-J), hence a thermal transmissivity t (-t).
(a) the misfit seam in the macroscopic system; (b)
the family of RG clusters.

Fig. 3 - Schematic RG flow diagram (out of scale) in the T-y
- (a) and t-y (b) spaces for fixed (b,b'). The dots
indicate fixed points, the arrows the sense of the
flow, and the full line the thermal dependence of the

RG approximate reduced surface tension.

Fig. 4 - (Out of scale) Onsager's (dashed line) and RG (full lines;
b'=1 and b=2,3,4,5) results for the reduced surface
tension. The slope of the straight 1line is
(—BS’lJ/kBTC) (see text)..

Fig. 5 - Thermal dependence of the relative errors (with respect

‘ to the exact Onsager's result YL(T))of the RG approxi--
mate ({y, ;(T)}; full lines) and the MEP (y' (T));

14
.dashed line) results for the surface tension.
Fig. 6 - Cluster size dependence of the RG coefficients Ab 1

(open circles), B_ (full circles ), c, , (full 1line)
14 14
ahd Db ] (dashed line); the arrows point the respect-
14

ive exact values (from Onsager's result).



Fig., 7 - Thermal dependence of the relative errors (with
respect to the exact Onsager's result YL(T))of the
SEP ({Yb 1(T)} full llnes), the MSEP (YMS(T),
dashed llne) and the SMEP (Y (T); dotted line) re-
sults for the surface tension. Numerical precision
difficultiee (chaotic oscillations) forced us to
cut the b=4 and b=5 SEP results before arrival to
Tc- . A

Fig. 8 - SEP (full line) and exact (dashed line; defined as

(T)/Y2 1(T )) results for the correctlng functlon

f2,1 as a function of x=1-(T/T ) = [1-(T'/T )I
(discrepancy inferior to 2.2%).

Fig. 9 - Family of biased misfit seams and their slopes (only
the antifefromagnetic bonds are indicated, excepting
the top-left. case where the ferromagnetic bonds are
indicated as well). In the bottom~right case two

equivalent misfit seams are indicated.

Table 1 - The RG approximate critical exponents v and co-

b,1
(see the %ext), and D

b, l'Bb]. b} g Bl
(we recall that Yb b' Cblf b.b"—g“ /kB

efficients A

)

for various cluster sizes. The associated critical

temperature is the exact one in all cases.

Table 2 - Illustration (b=2, b'=l) of the RG procedure that
has been used to obtain y, b,'vs. T.
’ 1



b Y, 1 Ay Bl b Dp,1
2 1.14863 1.41 1.57 | 1n2/2 = 0.35 1/4 = 0.25
3 1.10936 1.52 1.73 [1n3/4 = 0.27 4/9 = 0.44
4 1.09499 1.58 1.83 |[1n4/6 = 0.23 9/16 = 0.56
5 1.08791 1.63 1.91 | in5/8 = 0.20 16/25 = 0.64
(1) .
exact 1. 2 2 1
‘Table 1

kpT/J Y5,1

1.9 0.1687 .

1.6557 0.2941

1.3151 0.4671

0.9201 0.6537

0.5635 0.8006

0.3136 0.8911

0.1658 0.9425

0.0854 0.9704

able 2
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