APPLICATIONS HOLOMORPHES ET DOMAINES D'HOLOMORPHIE *

Mario C. Matos

Centro Brasileiro de Pesquisas Físicas

Rio de Janeiro, Brazil

et

University of Rochester Rochester, New York, U.S.A.

(Received March 12, 1971)

PREMIÈRE PARTIE: Sur les Applications Holomorphes Définies dans des Espaces Vectoriels Topologiques de Baire.

La caractérisation due à Zorn(1) des applications holomorphes entre des espaces de Banach est établie pour les applications d'un ouvert non-vide d'un espace vectoriel topologique de Baire (resp. métrisable de Baire) à valeurs dans un espace de Banach (resp. localement convexe). A partir de là d'autres résultats sont obtenus, entre eux une généralisation d'un théoreme classique de Hartogs(2).

Une application d'un espace topologique dans un autre espace topologique est dite B-continue si elle est continue en tout point sauf ceux d'une partie maigre.

Soit f une application d'un ouvert non-vide U d'un espace vectoriel topologique E dans un espace de Banach F.

Lemme - Si f est G-holomorphe et B-continue, alors pour tout x ϵU et tout n ϵN , l'application h ϵE \to δ^{n} f(x; h) ϵ F est B-continue.

^{*} Comptes Rendus de l'Académie des Sciences de Paris, tome 271, 1970, pages 599, 727-728, 1165-1166 et 1258-1259.

Il en résulte le théorème suivant:

THEOREME 1 (Zorn) - Si E est un espaçe de Baire, f est holomorphe si et seulement si elle est G-holomorphe et B-continue.

Ce théorème est utilisé dans la preuve du résultat suivant. Voir la thèse de Noverraz (3) quand E est métrisable complet.

THEOREME 2 (Zorn) - Si E est un espace de Baire et f est G-holomorphe, l'en semble des points de U où f est continue est à la fois ouvert et fermé dans U.

Soit f une application d'un ouvert non-vide U de l'espace $E_1 \times E_2$, où E_1 et E_2 sont des espaces vectoriels topologiques, dans F.

THEORÈME 3 (Hartogs) - Si E_1 et E_2 sont des espaces de Baire, $E_1 \times E_2$ est un espace de Baire, E_1 est métrisable, alors f est holomorphe si et seulement si elle est séparément holomorphe.

Voir les travaux de Zorn (1) et la thèse de Alexander (4) pour le cas où E_1 et E_2 sont des espaces de Banach et la thèse de Noverraz (3) pour le cas où E_1 et E_2 sont métrisables complets.

Les théorèmes ci-dessus restent valables avec les modifications suivantes: E, E_1 , et E_2 doivent être métrisables de Baire; F peut être localement convexe. Dans ce cas, l'holomorphie signifie la G-holomorphie et la continuité.

DEUXIÈME PARTIE: Sur l'enveloppe d'holomorphie des domaines de Riemann sur un produit dénombrable de droites.

Pour les domaines de Riemann sur C^{N} , on caractérise les domaines d'holomorphie et on prouve l'existence de l'enveloppe d'holomorphie.

Soit E un espace localement convexe separé tel que l'enveloppe convexe for mée de tout compact est compacte. Considérons un domaine de Riemann (\underline{U},ϕ) etalé sur E par l'homeomorphisme local $\phi: \underline{U} \to E$. Sur l'algèbre $\mathscr{H}(\underline{U})$ des fonctions complexes holomorphes sur \underline{U} , on considère la topologie définie par les se

mi-normes d'algèbre p portées par des compacts de \underline{U} (5). Le spectre S(U), l'en semble des homomorphismes continus de $\underline{W}(\underline{U})$ sur C, a la topologie engendrée par les ensembles N ci-dessous. Soient: (a) U un ouvert convexe disqué de E conte nant 0; (b) $\underline{K} \subset \underline{U}$ compact tel que $\underline{K} + \underline{U} \subset \underline{U}$ et $\underline{K} + \underline{L}$ est compact pour tout com pact $\underline{L} \subset \underline{U}$ (6); (c) h $\underline{\varepsilon}$ $\underline{S}(\underline{U})$ tel que $\underline{h}(\underline{f})|\leqslant \sup\{|\underline{f}(\underline{u})|; \underline{u} \,\underline{\varepsilon}\,\underline{K}\}$ pour toute $\underline{f} \,\underline{\varepsilon}\,\underline{W}(\underline{U})$. Alors N est l'ensemble des $\underline{h}_{\underline{u}} \,\underline{\varepsilon}\,\underline{S}(\underline{U})$, où $\underline{u} \,\underline{\varepsilon}\,\underline{U}$, tels que

$$h_{u}(f) = \sum_{n=0}^{\infty} h \left[\frac{1}{n!} \hat{d}^{n} f(.) (u) \right]$$

pour toute f $\varepsilon \#(\underline{U})$. On a l'homéomorphisme local π : h ε S(\underline{U}) \to a_h ε E, où h(T \circ ϕ) = T(a_h) pour toute T ε E'. Supposons désormais que $\#(\underline{U})$ sépare les points de \underline{U} . Si i(\underline{u}) ε S(\underline{U}) est l'homomorphisme ponctuel associé à \underline{u} ε \underline{U} , alors i: \underline{U} \to S(\underline{U}) est un bi-holomorphisme de \underline{U} sur un ouvert connexe \underline{U}_s de S(\underline{U}). Soit (E(\underline{U}), π) le domaine de Riemann sur E où E(\underline{U}) est la composante connexe de S(\underline{U}) contenant \underline{U}_s . Si f ε $\#(\underline{U})$, on définit son extension f ε $\#(E(\underline{U}))$ par F(h) = h(f) pour toute h ε E(\underline{U}). Alors (E(\underline{U}), \underline{U}) est un couple de prolonge ment (7).

THÉORÈME 1 - On a: (I) $\mathcal{H}(E(\underline{U}))$ sépare les points de $E(\underline{U})$; (2) $(E(\underline{U}), \underline{U})$ est un couple normal de prolongement. En plus, $(E(\underline{U}), \underline{U})$ est maximum par rapport aux propriétés ci-dessus.

Prenons dorenavant $E = \underline{C}^{\underline{N}}$. (\underline{U}, ϕ) est un domaine d'holomorphie s'il existe $f \in \mathcal{H}(\underline{U})$ sans prolongement $f' \in \mathcal{H}(\underline{U}')$ pour tout domaine de Riemann (\underline{U}', ϕ') prolongeant (\underline{U}, ϕ) proprement. (\underline{U}, ϕ) est pseudoconvexe si, pour tout \underline{U} et \underline{K} satisfaisant aux conditions (a) et (b) ci-dessus, on a $\underline{\hat{K}}_{\underline{U}} + \underline{U} = \underline{U}$, où $\underline{\hat{K}}_{\underline{U}}$ est L'ensemble des $\underline{u} \in \underline{U}$ tels que

$|f(\underline{u})| \leq \sup \{|f(\underline{t})|; \underline{t} \in \underline{K}\}$

pour toute f $\varepsilon \#(\underline{U})$. (\underline{U}, ϕ) est localement pseudo-convexe si (\underline{U}_V, ϕ) est pseudo-convexe, où $\underline{U}_V = \phi^{-1}[\phi(\underline{U}) \cap V]$, pour toute variété affine V de dimension 2 de $\underline{C}^{\underline{N}}$. (\underline{U}, ϕ) est d'ordre n dans $\underline{u} \in \underline{U}$ si n $\varepsilon \underline{N}$ est le plus petit entier tel qu'il y a un polydisque ouvert $\underline{B} \subset \pi_n(\underline{C}^{\underline{N}})$ de centre 0 pour lequel $\underline{u} + v \in \underline{U}$ pour tout $v \in \pi_n^{-1}(\underline{B})$, où $\pi_n : \underline{C}^{\underline{N}} \to \underline{C}^{\underline{N}}$ est la projection annulant les coordennées d'indice j > n.

THEOREME 2 - Les proprietés suivantes sont équivalentes: (1) (\underline{U} , ϕ) est un domaine d'holomorphie; (2) ($\underline{E}(\underline{U})$, π) s'identifie canoniquement à (\underline{U} , ϕ); (3) (\underline{U} , ϕ) est pseudo-convexe; (4) (\underline{U} , ϕ) est localement pseudo-convexe; (5) Il existe n ε \underline{N} tel que (\underline{U} , ϕ) est d'ordre n dans tout \underline{u} ε \underline{U} et (\underline{U} , ϕ) est d'holomorphie, où \underline{U} = ϕ^{-1} { $\pi_n[\phi(\underline{U})]$ } et $\phi_n = \phi|\underline{U}_n$.

Le théorème 2 a été prouvé par Hirschowitz (8) pour les ouverts de $\underline{C}^{\underline{N}}$. Remarquons que les implications (1) \Longrightarrow (2) \Longrightarrow (3) \Longrightarrow (4) sont valables pour tout E.

TROISIÈME PARTIE: Sur les ouverts de τ -holomorphie dans les espaces de Banach séparables.

Nous indiquerons un théorème du type Cartan-Thullen pour les ouverts d'un espace de Banach complexe séparable E.

Soit τ une fonction réelle strictement positive semi-continue inférieurement sur l'ouvert non vide U de E, telle qu'on ait pour tout x ϵ U:

$$\tau(x) < d(x, \partial U)$$

(distance de x à la frontière ∂U). Soit $\mathcal{B}_{\tau}(U)$ la collection des réunions finies des boules fermées de centre x ϵ U et rayon strictement inférieur à $\tau(x)$.

Indiquons par $\mathcal{U}_{\tau}(U)$ l'algèbre des fonctions complexes holomorphes dans U et bornées sur tout ensemble appartenant à $\mathcal{B}_{\tau}(U)$ munie de la topologie de Fréchet de la convergence uniforme sur les éléments de $\mathcal{B}_{\tau}(U)$ (°). Remarquons que l'algèbre $\mathcal{H}(U)$ des fonctions complexes holomorphes dans U est la réunion filtrante des $\mathcal{H}_{\tau}(U)$ pour toute fonction τ . Nous dirons que U est un ouvert de τ -holomorphie s'il est impossible de trouver deux ouverts connexes U_1 et U_2 de E tels que

$$U \cap U_1 \supset U_2$$
 $U_2 \neq \emptyset$, $U_1 \Leftarrow U$

et que pour toute f $\epsilon \, \not\! k_T(U)$ il existe $f_1 \, \epsilon \, \not\! k(U_1)$ satisfaisant $f = f_1 \, \operatorname{sur} \, U_2$ Si X \subset U, nous indiquerons par \hat{X}_U^T l'ensemble des x ϵ U tels que

$$|f(x)| \leq \sup \{|f(t)|, t \in X\}$$

pour toute $f \in \mathcal{U}_{\tau}(U)$.

Proposition - Les conditions suivantes sont équivalentes:

- (1) U est un ouvert de τ -holomorphie.
- (2) Si A ϵ θ_{τ} (U), alors \hat{A}_{U}^{τ} est bornée dans E et sa distance à θ U est strictement positive.
- (3) Il existe f ϵ $\%_{\tau}$ (U) pour laquelle il est impossible de trouver deux ouverts connexes U_1 et U_2 de E tels que

$$U \cap U_1 \supset U_2 \qquad U_2 \neq \emptyset \qquad U_1 \not = U$$

et qu'il existe $f_1 \in \mathcal{U}(U_1)$ satisfaisant $f = f_1$ sur U_2 .

Un résultat analogue à la proposition ci-dessus a été prouvé par Dineen (19), avec le cas du type borné $\mathcal{K}_b(U)$ à la place de $\mathcal{K}_{\tau}(U)$.

QUATRIÈME PARTIE: Sur le théorème d'approximation et d'existence de Malgrange-Gupta.

Soit E un espace localement convexe séparé, dont le dual fort E' est métrisable. Nous prouvons des résultats d'approximation et d'existence pour un opérateur de convolution \mathcal{O} sur l'espace $H_{N,b}(E)$ des fonctions complexes en tières nucléaires de type borné sur E $(^{11})$.

Soit $P_N^{(n)}$ l'espace de Fréchet les polynomes complexes n-homogenes nucléaires sur E. Rappelons que sa topologie est définie par la famille de se mi-normes.

$$P \rightarrow \|P\|_{N,q}$$
,

où q est une semi-norme continue arbitraire sur E', telle que:

l'espace vectoriel $P_f(^nE)$ des polynômes complexes n-homogènes continus de type fini sur E (c'est-à-dire, qui sont des sommes finies des ϕ^n , où ϕ ϵ E'), est dense dans $P_N(^nE)$,

29 Si P ϵ P_f(ⁿE), alors $\|P\|_{N,q}$ est l'infinum des sommes

$$\sum_{j=1}^{m} |q(\phi_{j})|^{n}$$

pour toute expression

$$P = \sum_{j=1}^{m} (\phi_{j})^{n}, \quad \phi_{j} \in E' \quad (j = 1, ..., m).$$

Considérons l'espace de Fréchet $H_{N,b}(E)$ des fonctions complexes f sur E, pour chacune desquelles il existe P_n ϵ $P_N(^nE)$ (n = 0, I, ...) tels que

$$f(x) = \sum_{n=0}^{\infty} P_n(x) \quad \text{pour tout } x \in E,$$

$$\|f\|_{N,q,\rho} = \sum_{n=0}^{\infty} \rho^n \|P_n\|_{N,q} < + \infty,$$

pour toute q et tout $\rho > 0$. La topologie de $H_{N,b}(E)$ est définie par les seminormes

Soit $\mathcal O$ un opérateur de convolution dans $H_{N,b}(E)$, c'est-à-dire une application linéaire continue de cet espace dans lui-même commutant avec les translations par les éléments de E.

Proposition 1 - Le sous-espace vectoriel des sommes finies des P exp ϕ , où P ϵ P_N(ⁿE), n = 0, 1, ..., ϕ ϵ E', \mathcal{O} (P exp ϕ) = 0, est dense dans \mathcal{O}^{-1} (0). Proposition 2 - Si $\mathcal{O} \neq 0$, alors $\mathcal{O}[H_{N,b}(E)] = H_{N,b}(E)$.

ŕ

* * *

REFERENCES

- 1. M. A. Zorn, Annals of Mathematics, 46, 1945, p. 585-593, Duke Mathematical Journal, 12, 1945, p. 579-583.
- 2. Tous les espaces vectoriels topologiques considérés dans cette note sont complexes et séparés.
- 3. Ph. Noverraz, Annales d l'Institut Fourier, 19, 1970, p. 419-493.
- 4. H. Alexander, Analytic functions on Banach spaces, Thesis, University of California, Berkeley, 1968.
- 5. Les notations et la terminologie sont celles de L. Nachbin, Topology on spaces of holomorphic mappings; Springer-Verlag, 1969 et J. A. Barroso, Topologias nos espaços de aplicações holomorfas entre espaços localmente convexos. Tese, Instituto de Matemática Pura e Aplicada, Rio de Janeiro, 1970.
- 6. Les additions en question sont prises au sens de H. Alexander, Analytic functions on Banach spaces, Thesis, University of California, Berkeley, 1968.
- 7. Voir les notions de "extension pair" et de "normal extension pair" dans la thèse d'Alexander, loc. cit.
- 8. Voir A. Hirschowitz, Annales de l'Institut Fourier, t. 19, 1969, p. 219-229.
- 9. Cet espace a été considéré par G. Coeuré, Ann. Inst. Fourier, 20, 1970, p. 361-432.
- 10. Voir S. Dineen, Annali della Scuola Normale Superiore di Pisa (à paraitre).
- 11. C. P. Gupta, Malgrange's theorem for nuclearly entire functions of bounded type on a Banach space (Thesis, University of Rochester, 1966, Notas de Matemática, No. 37, Rio de Janeiro, 1968); On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space (Indagationes Mathematicae) (à paraitre); L. Nachbin, Convolution operators in spaces of nuclearly entire functions on a Banach space, Functional Analysis and Related Fields (edited by F. E. Browder), Springer-Verlag, 1970, p. 167-171.