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ABSTRACT

The sum rules usually derived for the squares of the matrix glements of
the co-ordinate operator between cigenstates of a Schrdodinger Hamiltonian
are here extended to the matrix elements of more goneral operators teken
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a hermitian operator. Several applications of the sum rules obtained are
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1. IKTRODUCTION

The purpose if this paper is to review the sum rules of
gquantum mechanics (of the type of the Thomas-Reiche-Kuhn sum rule),
to identify their limitations, and to generalize them in several
respects. It will be shown how a wide family of related sum
ruales can be written by direct application of the closure rela-
tion for the eigenstates of hermitian operators. The generalizg
tion will include the use of operators more general than a
Schr8dinger Hamiltonian to form the set of base states, and the

freedom to sum matrix elements of arbitrary operators.

The well-=known THOMAS-REICHE-KUHN sum rule 1, states that

for a one-particle Hamiltonian of the form
. 2
H=— + V(T) (1)
7 T UE
where V(7) is a siatic potential (i.e., V(¥) commutes with T) the

following sum rule for the matrix element of the ce-ordinate

operator x is wvalid:
c 12 _ W2
g(Eij)Mklxlwl = n“/zm . (2)

Here |j) and |k)> are the eigenstates of the operator H with

eigenvalues E, and Ek respectively. The summation symbol means

J
the sum over the diserete set of states and integration over the
continuum spectrum. In the literature this rule is derived by
noticing that ih
x, H = o Px 0 (3)
so that



ih 745
(5~ B Cklxl 3= — (klp, 3>

Multiplying both members by <{k|x|j>* = (jlx|k> , this becomes
| 2 _ ih .
(By - BICk]x 57 = — (Jixle> e 135

Interchanging the indices J and k and“subtracting, we obtain

ih
28 - B Kklx| 1% = — {3lxied>lngl3> -

- <xlx[3><3lp, 16D}
Summing over k, using the fact that the states ¥ form a
complete set and the fundamental relation

X Py = P, ¥ = ih (4)

the sum rule (2) is obtained. In this derivation of eq. (2) the
essential points are only the form of the commutator in eq. (3),
the fact that the eigenstates of H form a complete set, and the
fundemental relation (4). If the commutator [x, H] fails to be
of the form (3), the sum rule (2) may be not valid, l.e., the
second member of (2) may be different from the constant ha/Zm.
This will occur, for example, in the case of the particle being
subject to a velocity-dependent potential, or in the presence of
exchange forces in systems of several particles 2. We shall see
how the necessary modification in the form of the sum rule ap~
pears in a stralghtforward way if an appropriate form of the sum
rule ls written which does not make use of the explicit form of

the commutator (3).

The possible usefulness of a sum rule like this derives from

the following. Suppose that the sum in the left-hand side has
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scme physical meaning (for example, an integrated cross=-section,
or a total transitien probability), or enters as a term in anm
experimentally measurable quantity (such as an average value of
some physical quanﬁity). Then by comparing this value with the
second member of the sum rule we can tell whether or not the
Hamiltonian governing the system is of the form (1), or whether
the matrix element relevant to the process is actually ef the
assumed form. In the cases where a non-static interaction has
to be introduced, the use of the sum rule allows us %o obtain
information on the strength and form of these new terms. This
procedure has actually been used to get information on the amount
of exchange and velocity-dependent forces present in the nucleon=-
nucleon interaction 3. The application of the sum rule (2) is,
however, strongly limited by the condition that the operator in
the matrix element relevant for the process being studied be of
the form of a single co=-ordinate x. This is of course a strong
restriction and has implied that the sum rule could be used for
the photo-nuclear processes only in the so-called dipele ap-
proximation. Some effort was made to extend the sum rule to
matrix elements of higher multipole moments 4, but only ap-
proximated forms were obtained. We shall show how more general
sum rules, referring to matrix elemenits of more general operators,
can easily be writiten (and perhaps applied successfully to

problems of physical interest).

The sum rule (2) is often called the sum rule for the oscil-
lator strengths, because oscillator strength fkj is defined as
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the quantity

2m
e 2
kaj = (B, ~ Ej)l<klxlﬁ>| )

which appears under the summation symbol.

Other sum rules have been written down, with different powers
of the difference (Ek"’Ej) maltiplying the square of the matrix

element. That is, sums of the type
- - P 2 _
8,(xy x) = E (B - B, )PKklx| 317 » (5)

with p = 0; 1, 2, 35 4 have been explicitly computed for Hamil-
tonians of the type (1) S, For p = O the sum rule is of course

only the closure property
1 1elx] 3512 = ¢31xP15>

of the set of states |k> and no assumption of the form of H l1s
implied. For p=1 we have the sum rule for the oscillator
strengths. The derivation of each of these sum rules was made in
a rather special way, using repeatedly expressions like (3) and
(4), We shall show how a more straightforward derivation of them
which has several advantages can be presented. First, we do not
have to be restricted to the coordinate operator x but we can
write sum rules for the matrix element of any operator. Second,
the form of the hermitian operator H is left unspecified so that
we can easily perform the sum for any given H. This will be

shown in some examples.
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Let H be any hermitian operator (not necessarily an operator
representing a Hemiltonian, but any one which represents a
constant of motion of our system). We indicate by {i) and Ey
1ts eigenstates and corresponding eigenvalues. Let A and B be
any two operators acting on the Hilbert space of the eigenstates
of He We shall be concerned with obtaining closed forms for

sums of the type
S,(4, B) = E (B - E,)P (3lale><k|Bl3> (6)

where the sum is extended to all eigenstates of H (whether in
the discrete or in the continuum spectrum, in this last case the
sum means also the appropriate integration over continuum

variables).

Nothing physically or mathematically new 1is introduced or
obtained when a sum rule of the kind discussed here is derived.
The only fact that is used and is responsible for the closed
form written for the infinite sum of matrix elements is the
closure properiy of the eigenstates of a hermitian operator. If
the closure property is applied in a straightforward manner to
the proper expression, the derivation of such sum rules appears
trivial. However, calling attention to this point seems to be
necessary since in the literature we often find derivations,
using specific models or long calculations, of expressiocns which
are nothing more than a particular example of the completeness

property of a set of states.

The closure property of the set of states k implies directly
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in the sum rule

5,8y B) = L (3lale> (xiBlid = (3laBli)>. (7)
k

Here we have a sum of the type given in eq. (6) with p = 0.

2. GENERALIZATION OF THE SUM RULE FOR THE OSCILLATOR STRENGTHS

We now consider the case p=1l. Let us calculate the average
value of the quantity EA,Iﬂ B ° in a state |j> . We obtain,
using the closure property and the fact that H|k>= Ek|k>,

3l [a, H) Blj>=
=%<3|A1k> B, <kIBl3> - By L3lalx> <x|Bl3>} -
Thus we have a sum rule
S,(4,B) =)}% (B, - E,) <3lAlk) CxIBI3> = (3l [a, HIBI3>, (8)

relating a sum of a certain combination of matrix elements of
arbitrary operators over a complete set of states with the
average value of a related operator in a single state. Aplica-
tions of this formula can easily be made to reproduce the
results for special cases reported in the literature and to
obtain new formulas. For A = B = x and for H beling the
Schrodinger Hamiltonian we obtain in the left~hand side the sum
of the oscillator strengths that appear in the Thomas-Reiche-
Kuhn formula (2).

A similar sum rule, but not completely equivalent to (8),
can be obtained by considering the double. commutator [IA, H] ﬁ1¢
Taking the expectation value of this quantity in the state |ji>
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and introducing in the appropriate places the complete set of
intermediate states we obtain
l a
5,(Ay B) = % (B = B lAIk)> kIBl3> + <3IBL<ke]al32) =
k

=l {[as 8] 5 8]15> (9)

which is formally more complicated than eq. (9), but may result
in being simpler in applications. This is due to the fact that
the double commutator [[A, H . ﬁ] may have a form which is

actually simpler than that of the product [A, E]B. If Aand B

are hermitian operators, and B = A, eq. (9) becomes
. 2 _1 .
Xa - 51 Gslalol® =1l @, alla>.

We consider a few examples.

a) One-~particle Schrédinger Hamiltoniam - Let H be the
Sehrodinger Hamiltonian for one-particle subjected to a static
potential, as in eg. (1). Let operators A and B be functions of

the co=-ordinates only, A = £(¥) and B = g(¥). Then

ih —_

[, H = - @t.7 +7D.9) (10)
and hz

[[f('r"), H g(":}’)] = -ﬁ-'v“"i‘-""g R (11)
g0 that the sum rule becomes

2
h —_  —

2 (B - BCIElOCklgl 3>+ lele><xlelsn = T <3Ive- Vel i)

(12)

In the particular case of f = g = x we re-obtaln eq. (2).

Particular cases of interest are those in which these functions
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are such that we obtain the electric and magnetic multipole matrix

elements.
b) Many-particle systems - Let H be the Schrddinger Hamiltonlan
for a system with N particles
N
H = 2: Pr/2m + Z V(Ty) + 3 Z: STV (ryy) s (13)
i=1 Ay i=1
and let N
-
A=f =3 £,(ry)
i=1

(14)

e y]
n

N
g = Z gi(;-:;_)
i=1

be sums of functions of the co-~ordinates of each of the particles.

We then have N
ih i ——— v—— .
(£, H =— 2 (VI{- By *+ ;- Vfi)
Znm -
and i=1

ha N — —
[[f: H] , g] = ';"Z ve, - Vey) o
i=1

—
where Vfi and 6%1 mean gradients with respect to the co=-

ordinates ;1° The sum rule then becomes

2 N
: ‘ h —_— -
S1(f, g) = — 2_ <3IVE,- Fyli>.  (18)
£

This sum rule 1s relevant for the study of the interaction of
electromagnetic radiation with the N electrons of an atom. In the

dipole approximation it is taken
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N
£ =2 X

i=1
and then
N hZ
T (B -ED| QT xle> |5 =—n,
k i=1 2m

which is a well=-known result.

¢) HNon-static potentials - A well-appreclated characteristic of
the Thomas-Reiche-Kuhn sum rule, which is also a property of the
more general form (12), is that the potential itself does not
appear in the second member of the sum. This fact 1s a
consequence of the particular form of the Hamiltonian H. If interx
actions with an electromagnetic field,with a velocity-dependent
potential or exchange forces, are introduced, the sum may take a
different form from those given in eq. (12) or eq. (2). Let us
see what happens if we include in the Schrodinger Hamiltonian a
velocity-dependent potential of the form often used in nuclear

physics 6

- - 1 . -
VW, P} =~—T3 3@ » (16)
2m

and an electromagnetic field. Then

1 e \2 i i
H:—-—-(i)’——c—) +V(I‘j“i‘ f’v-'e"")o:f(;)(—’-'e‘“)

2m Zm c c
(17)
and . -
ihff_, eA - — el
£y, H = — (p-—) o (L=AJ) VE+ V£ - (1-)J)(Io“-—->)
2m c c
(18)

Then the sum rule becomes
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h —
5.0, g) = — (311-27) V2 - Tel 3> (19)
mn

We see that in this sum rule the electromagnetic field does not
appear explicitly in the second member; it only affects the

determination of the eigenstates of H. This is not true of the
velocity=dependent potential (16) which appears in the operator

whose expectation value. represents the summed quantity.

d) Dirac Hemiltonian - Let £(T') and g(¥) again be two

arbitrary functions of the co=-ordinates. For the Dirac Hamilto-
nian H = cx.(F~80e)+fue” +V(F) we have [f, H) = ih ¢& . ¥F
and L{;", " , gJ = 0, Then the two forms of the sum rule give

51065 8) = 3 (B~ By ilehio <kleld> +

(20)
| + {3lglu) <kl£]iy) =0
and
8,(fy g) = % (B - Ey) <Jleled <xlgly) =
=jlih e & TE 2]3D (21)

‘Interchanging f with g in eq. (21) and adding to eq. (21) we
obtain the sum (20), which is zero, so that we have a general

relation

(il TRD)Ii>=0 , (22)

valld for every elgenstate |j)> of the Dirac Hamiltonian H, F(F)
being an arbitrary function of the co-crdinates. A4is a particgl'ar
case of (22) we have that the current J = ¢ 1,!3"'6? lej in a station-

ary state vanishes when Integrated over all space. Eq. (22) cad
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also be obtained by calculating the expectation value of the
commutator [F, H| in an eigenstate of H. If £ and g are real

functions, the sum in eq. (21) is a pure imaginary quantity.

The zero obtained in performing the sum in eq. (20) over all
states is due to the compensating contributions from positive
and negative energy states. By inserting in eq. (21) projection
operators for positive or negative energy states P, and adding

to the same expression with £ and g exchanged we get

; (B, - E;)(K5lE Pl klegl 3> + (lg Pylkd> <kl£]3>)

= he (TP, g + VRIP, £15D . (23)

In the non-relativistic limit P = (mc2 + H)/mc2 so that the above

sum becomes 2

h —
i;(JIVf . veli>

which should be compared to the expression given in eq. (12).

e) Integrals involving eigenfunctions = Applications of
mathematical or physical interest can be found for the sum rules,
consisting in writing directly the values of certain integrals
involving eigenfunctions of a hermitian operator. Let us, for
example, consider eq. (12) where the states are the eigenstates
of a Sehrodinger Hamiltonian with static potential and in the
presence of the electromagnetic field. For simplieity, let all
eigenfunctions be written so as to be real functions. Let us

choose f =Yp /¥; and g = ¥ /¥;s where ¥ and ¥, are eigen-
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functions of H with eigenvalues Ep and EQ respectively. To avoid
zeros in the denonminator, we restrict ourselves to the case in
which |j? 1is the eigenstate of H correspoanding to the lowest
energy (so that ¢3 has no zeros and f and g are well behaved);
we indicate the eigenfunction corresponding to this ground state
by ¢B. The formulas obtained can be extended to other states if

care is taken in the definition or interpretation of the expres-

sions written. The sum rule eq. (12) then gives

b

(£, -E) - s 2*&6"?‘ v
% uk'Eo {Upwkd qulpk dt"—zm quV Z/)o * Q’O

Using the orthogonality property of the wave functions, this

Y Y
2 o/ Pla(d _ e

becones

If ¢p and “h are eigenfunctions corresponding to the continuum
spectrum with delta function normalization, énq in the above
expression must be understood as 6(fr-§5, where S'and Ebare the

momenta of the particle in the states ¢p and ¢h.

This formula is valid whenever %b; @a and Qb are eigen=-
functions of the same Schrgdinger Hemiltonian. It can be use-
ful in evaluating certaln integrals once the eigenvalues of H
are known. BEg. (24) is a consequence of the completeness and
orthogonality of the set of eigenfunctions of H. For spherical-
ly symmetric states or for one-dimensional ovroblems, it takes

particularly simple forms.

Physical applications for relations such as eq. (24) can be
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of the following kind. Suppose the fundamental state and the
corresponding elgenvalue are known. Then, given empirically an
approximate wave function wp for an excited state, the correspond
ing eigenvalue can be extracted from the above expression.
Conversely, if the eigenvalue is experimentally or empirically
given, and the wave function is parametrized in some way, we can
use eq. (24) to obtain information on the parameters determining
the wave function. Of courses, local relations involving two wave
functions and the corresponding eigenvalues but not the potential
¢an be easily written; integral forms such as the above are; how-
ever, of much advantage when the knowledge or the description of
the wave function is only approximate, since then an average over
small local fluctuations is already performed by the integration

Process.

Another formula whieh can be useful when the wave functions

are not real can be obtained in the following way. Putting g =

i

f in eq. (12), and choosing £ = UE /ﬂ% we get

¢p hz @p @
E -E )oY — * = * ol 2\ g2 .
%( . j)ipj 0 ¢kdtJ¢k wp av - J?Pj wjv ij v 7 ax

J
Using the property of orthogonality of the wave functions in

the second integral of the first members; and performing the sum

over ky we get v
*-’% =g _Zm *Zl}p
erjv 7)\7 7 ¢ dz-—E(Emej)J¢jI¢p arv - (28)
J J h J

Again in this formula the meaning of the integrals should be
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studied in each particular case In which the wave function ¢3 has

ZeT0S .,

Again let H be a hermitian.dperator with elgenstates. [J ) and eigep
values Ej, and let A and B be any operators. Then it is easy to
see that

. - - 2 _ o ,

G0 A, 1 Bl§Y = 2 <ilalk) CxlBly> (B - 28, B + )
go that we obtain a sum rule

Sp(4y B) = L (B~ B)7 ¢3lAlk> <xlBl3> = (Jl[:[A, i I{IBI» .

(26)

It is interesting to remark that the second member can also be

writiten
- [l @ I DI (27)

since this form may be more convenlent when doing actual computa-~

tions.,
Let us look at some perticular examples.

For the Schrbdinger Hamlltonlan with a statle potential and in
the presence of the electromagnetie fleld we obtain, f and g beling

funetions of the co~ordinates only. that

53(¢5 8) = ¥ (B~ B (3lelodklely) =
5 e (2B 4 B VENTE
4m

ey

P+ P.y2)i>  (28)

where P = p =

—p
=1

¢, We should nete that the eleotromagnetic fleld
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appears explicitly in the second member of the above expression.

For £ = X we obtain a well=known result. By adding the cor-

responding expressions for £ = y and £ = z we obtain

£~ B0 {1 Golelio]® + [<3lyliol® + RIS
n® 2

N 2h ot
= — IFP 3> = — (IE; = V@D]5> . (29)
m

mZ

It is interesting to remark that in this last form the electro-
magnetic field does not appear explicitly in the second member

of the sum.

If a velocity-dependent potential is included so that the
Hamiltonian is of the form (16) we obtain
2

h — —_
S5(f g) :Z ilwr . (1L =AF) P +

e e ~» — e —fn
+ P (1=AT)VE)WVg (1~AT) P + P (1= AT) Vg)i>

where“f’bz E?m eA/c. The differences between this expression and

eq. (28) must be noted.

For the Dirac Hamiltonian in the presence of an electromagnetic

field and with a static potential we obtain

5,(¢5 g) = nZc? (3|Ve. Ve + 155 x Veli> . (31)
For £ = g = X we get
2 . 2 _ .2
% (B =Eg)° | 3lx[1)]7 = h (32)

which is different from the result obtained with the Schrodinger
Hamiltonian. Here again, projection operators can be introduced

to separate the contributions coming from positive and negative
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energy stotes.

Hdow we consider sum rules where higher powers of (Ek' Ej)

appear, that is, sums of the form (6), with p>2.

It is easy to verify that

5504y B) = 2 (B~ E,) <3|A|k><k'lB|:i>=<jl[[[A, H], H] ,LEE|B|:1>,'
(33)

8,04, B) = <:s|[:[[[A, H, 1, |, rﬂBl.w,

and thus successively. For a power p we have p commutators:

s,(4s B) = % (By - E; P ¢jlalky(x|Bl 3> = o

=<.]'|[u--[[A, H| H:l N Iﬂ....., IﬂBlj> -

We thus have a straightforward way to compute a set of sun
rules which may find several applications. We have only to
evaluate the multiple commutator which appear in the second

member and calculate its average value in the state 3>,

The sum rules imply limitations in-the nagnitude of the matrix
elements of an operator and may be used to obtain information in
their rate of convergence to zero as Ek —>00. AS p increases the
sum tends to increase and may diverge. Suppose we want to obtain
indication on the asymptotic behaviour of (k|A|j> for very large

Ek° We have to evaluate the expectation value
<j|l—no-aoo [[A, H],}il°°°"’lﬂp“lj>

using p = 1y 2y 33 ... commutators. Suppose that for p = s the

expectation value is infinite, while for p = s -1 it is finite.
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Since for high energies the number of states inwan interval of
momenta is proportional to kzdk, we have that J K° Es.ll<k|:‘-!j>lzdk
is finite, while we expect that f K2 Eﬁl(klAlj)lde diverges.
Then we may say that <k|A|j>|Z » (&% Eﬁ k)1 ké'i, with §,> 0, and
that --"KklAILj)lZz(kZ aﬁ k)1 E, k'sa', with §,> 0. The quantities
61 and 62 have upper bounds determined by the functional dependence
between E, and k, with K81+ ~ Ek For a relativistic kinematics,
51 + 82 = 1, and the asymptotic behaviour of the matrix elements is
determined up to a unit power of the energy. If negative energy
states are included in the sum, our argument should be restricted

to even values of p, and the indetermination in the dependence with
the energy is of two units in the exponent.

If the expectation value appearing in the second member of e
(34) is finite for all numbers of commutators (all values of p)y
then the product < jlA|k)> (k|B|j> tends exponentially (or faster)

to zero as Ek —> 00.

By multiplying sum rule for power p by‘ o/ pl and summing over

p from zero to infinity we get
00 P

™ %(Ek-Ej)p (il Cx|Bl 3> =

p=p P

= {jl{A+ i— [a, H +§ [[A, H]‘,\_I€’+§ [[[A, H], H] 1-1_1-3 +

+ seees +°—£ ':.....[[A, H], H] cossey H] + } Blj> (35)

p!
The term within the brackets is the formal development of

e'aH Ae'h’LH° Performing in the left-hand side the sum over p
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first we get

allE - X . .1 =« , oH
5 X E -E ) slalxy <xiBl3> = ¢ile™ 2™ B3> (36)
k
This formula is in fact trivially the closure relation

% ¢ 3Py (k|G 3y = 3lFalsd

-
with F = e B A ana ¢ = e B,

The several sum rules for different powers p are then the
terms of the expanéion of eq. (36) in powers of «. This makes
it clear how the closure property, and only that, generates all
this family of rules. However they can be useful if the sum
concerned has a physical meaning and can be directly measured.
Then one can obtain from the sum rule information such as on
the structure of the Hamiltonian governing the system, or on
the form of the matrix elements responsible for the process
being studied, or on the asymptotic behaviour of these matrix

elements,s and 80 one.

We can also write sum rules of the type Sp(A, B) for non-
integer values of p. Let us start from eqa. (36), and just for
convenience call « = iA. Multipkying both sides of eq. (36)

k3, p-l

by e and integrating over A from zero to infinity, we

obtain

Co _
j dx'% e_A[Kﬂ(Ek'Ej)] AP cataley ¢xlBlg) =
A= 0
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8]
Interchanging the order of the summation and the integration
processes in the left-hand side, and performing the Integration
over A, we get (if the real part of p is not positive the

integral is defined as a distribution)

(K + 1 (Ek--E‘_]))”p CilAalky <kiBlj> =
X

00 (37)
<3l je'm Pl JMH 5 o -LH 5, 1B[5> -

I p)

The 1imit K —»0 can be taken when so wished. We thus obtain
a sunm Sp(A; B) for any complex p, expressed in closed form as a
single expectation value. The expression is only formal unless
we are able to evaluate explicitly the quantity A(A) =

IAE p 1AM mpie means knowing the Heisenberg equation of

motion for the operator A in a system governed by the Hamiltonian

H,

Sums with functions of Ek and Ej which are not just powers of

(Ek‘"Ej) can also be performed. Thus we have
> C3lald <EiBls) (0B - @(By)) = <3l [y w()BlG> .  (38)

vhere Y(H) is any function of the operator H. Relations of this
kind can also be used to obtain informgtion on the asymptotic

behaviour of matrix elements.

Other classes of sum rules; obtained by differentiation of

an eigenvalue equation with respect to parameters have been
|
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obtained recently 70

4, APPLICATION OF THE SUM RULES: THE INTEGRATED CROSS-SECTION

FOR_THE _PHOTO-NUCLEAR EFFECT

The Thomas=Reiche-Kuhn sum rule (2) for the matrix elements
of a co-ordinate x has found -application in the caleulation of
the cross-section for the photo-nuclear effect integrated over
all energies of the incident photon 3 and in other problems 8.
In the nuclear photo-effect, a photon incident on a nucleus 1is
abgsorbed, and a proton is ejected. It is the nuclear analogue

of the atomic photo=electric effect,

In the usual treatment of the photo-nuclear effect the
matrix element responsible for the process in first-order
perturbation theory is subjected to the so=called dipole ap-
proximation, which consists in considering the extension of
the nuclear wave=functions small compared with the wavelength
of the incident photon. The purpose of this approximation is
to obtain that only matrix elements of a single co~ordinate
such as those appearing in the Thomas=Reiche=Kuhn sum rule, ap
pear in the expressions to be caleulated. This approximation
can be questioned, however, since in the integrated cross=sec-
tion we use matrix elements corresponding to photons of high
energy.

Since we now know how to write sumrules for more general matrix
elements, we are able to avoid thedipole approximation in this
calculation. In what follows we show how this can be dones

For simplicity and to stress the esgsential points we



362

consider the case of a single charged particle bound to a centre
of static (non-velocity dependent) forces. The particle is
considered as heavy, so that non-relativistic kinematics is used.
We assume that the centre of forces admits only one bound state
so that we do not have to consider transitions without emission

of the charged particle.

A photon of frequency ws propagation vector 'I?along the z=-
axis, and polarization vector along the x~axis, collides with the
heavy particle bound by the centre of forces in a state described
by the wave function ?3, In the final state the particle in a
positive energy state ‘I'fg which asymptotically has a plane wave

part qormalized in a wvolume V.

In a first-order perturbation theory the differential cross-
section for the process is 4

> =5 2
Js&f gy, T (39)

o(w; B8,p) =
? 2rhe ©

where v is the velocity of the emitted particle. For unpolarized
vhotons we have to average this expression over the x and y direg
tions of polarization. This differential cross-section is in

general difficult to evaluate due to the lack of knowledge about .

the wave functions in the final state.

For our normalization of the final wave functions the number

of states is v d3 F v mZ
dnN = = vdd(hw)
(2r)® w2 (2P
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where p = mv is the momentum of the emitted particle.

The total cross—section integrated over the photon energy is

then 00 00

Cint =Jo(w)d(hw) =jd(hcﬂ)—[ dQo(w; 8,9) =

4 ¢
(40)
2

" <2”h - zi”‘/'* ETy 4 ax|

' m c T W £ x 7]
where 2 means sum over all possible final states.

Py ;
W= Ef = Ei is the difference between the energies of the

final and initial states. Since L/(Ef-Ei) cannot be expanded in
powers of (Ef=-Ej), we do nbt have a sum rule to be applied
directly to the above expression. However we can rely on proper-
ties of the matrix element to perform the sum in an approximate
waye

The ground state waée function ¢3 occupies a limited region
of space, so that the integral over d¥ can be restricted to a
finite region of radius R. On the other hand, the matrix elements

are likely to tend rapidly to zero as k increases.

It may then be that we can neglect, both in the sum over
states and in the integration in the space volume; the contribu-
tions coming from the regions which do not satisfy the condition
k r¢¢l. In these conditions we can expand exp(i kz) in power

series and keep only a few terms.

The dipole approximation consists in putting simply
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exp(i kz)x1l., Then the matrix element can be approximated by

?va ¥y d“c:—-—J\?P [x, H § a ’C-—-—-—-(E - E,) ?J/ x Y, ax

h h
(41)
In this approximation the integrated cross-section becomes
2mreh 2 1 ma 1 lz )
Oing.(dipole) = ( - ) S\ 3) %R Ej)”q»f x Y ar | . (42

The sum here indicated can be performed. For pure static
potentials in the Hamiltonian it gives the classical Thomas=
Reiche-Kuhn result. If exchange or velocity-dependent forces are
present, the sum will be modified accordingly. and this has in
fact been used for a test of the presence of these terms in the
Hamiltonian 23 30 The dipole approximation was the only contri-
bution to Gint considered in previous calculations, because of the
limitations in the sum rules available. We now show how other
terms of the expansion of exp(i k z) can be included. The next
term is usually referred to as the quadrupole contribution. The
contribution of the interference terms between dipole and guadru-

pole matrix elements to the integrated cross—-section is

Zweﬁ>2 1 ~h

Py -
£ (Ef E;;)

J@; V¥ d?-’J'zP; ikz ¥, (7)3. av + c.co} =
2reh \© 1
= ( e) = <= -—I_n._)z (Ef-Ej)
m ¢ chz T

Oint. (interf.) =—‘< -
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({/; X q’j dZJZP; izvx E,l/j A% + CoeCo (43)
J
Wwe should notice that a factor W= Ef - Ej coming from the dipole
term and another from the k = w/c appearing in the qguadrupole
matrix element were able to eliminate (Ep = Ej) from the
denominator. We thus obtained an expression which fits into our
sum rule (8) and can be put in closed form. For every other
term in the expansion we have that the matrix elements will bring
a factor o) raised to a power larger than two, and all sums %o be

effected will fall into the general form (34)-

For the contribution arising purely from the guadrupole

matrix element we have >
2meh 1 1
) = —-é.zcaumhq)lzvu az|” (aa)
£

(quadrupole) =(

G-.'I.Ilt o n

c

The sum can again be performed by using eq. (8).

Up to quadrupole terms we then have for the integrated cross-

section, using the sum rules

' 2mreh 23 ‘ e m ' -
Oint.  \ m ';(Jl 3 [[XsH] 5 :{l -3 [[x,ﬂ] , 12V, |+
h ch ,

1
+ ;‘:2" [[iz VXS H}, iz V}J }l.’i)

(45)

Knowledge of the Hamiltonlan and the ground state wave function is

necessary to evaluate this expression.
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