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We propose two different unifications of the Metropolis, the Glauber and the
Heat-Bath dynamics for the Ising model. Both generalizations satisfy detailed
balance. Computer simulations for the d = 2 Ising ferromagnet suggest that, in all
cases , the correct magnetization, specific heat and susceptibility are recovered. The

fundamental implications are discussed.
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The thermostatistical approach of the dynamics to be associated with the Ising
model persistently atiracts attention since almost half a century. This interest has
been greatly enhanced nowadays. This is due, on one hand, to the dissemination of
computational facilities, and, on the other, to the usefulness of this model for
stﬁdying a variety of systems (spin glasses and other magnetic models, neural
networks, immunology models, cellular automata) and concepts (spread of ldamage,
dynamical critical phenomena). Quite a number of different microscopic dynamics
have been specially devised for the Ising model, essentially because of its simplicity.
However, in some sense, this model is a peculiar one. Indeed, classical systems are
characterized by two basic properties, namely that all the observables, (ij commute,
and (ii) are continuous variables. The Ising model satisfies (i) but not (ji). This
peculiarity is at the basis of the above mentioned proliferation of associated
microscopic dynamics. These dynamics can be §tocha§ti.§ or deterministic,
single-spin flip or multi-spin flip. To the stochastic/singlespin class belong the
" Metropolis [1-3], the Glauber [4] and the Heat-Bath [3] ;iynamics. To the
stochastic/multi-spin class belong the Kawasaki dynamics [5], the Swendsen and
Wang dynamics [6], its generalizations by Kandel and co-workers [7] and the Wolff
dynamics [8]. To the deterministic/single-site class belong the Q2R [9] and the
Creutz [10] dynamics, and finally, a deterministic/multi-spin flip dynamics has been
obtained by Creutz [11], through a convenient generalization of his single-site
dynamics. Let us finally mention that: (i) each one of these dynamics refers to a
specific ensemble (microcanonical, canonical); (i) the spin updating within all these
dynamics can be gequential or parallel . One should say, at this point, that it is
possible to define generalized dynamics whick unify some of those defined above,

either within a given class (e.g., Glauber and Heat-Bath [12]), or else, belonging to

distinct classes (e.g., Glauber and Kawasaki [13]).
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In the present paper, we focus attention to the three most frequently used
dynamics, namely the Metropolis (M}, Glauber (G) and Heat-Bath {HB) ones. We
propose two different unifications (referred to as the arithmetic (a) and geometric (g)
dynamics), both preserving detailed balance . Our primary aim is to see how these
two generalized dynamics lead to the correct thermodynamics of the Ising model. To
check this we calculate, through LxL sized computational simulations, the
spontaneous magnetization m , specific heat C and susceptibility x of the
square-lattice Ising ferromagnet. Our results suggest that the correct
thermodynamics is indeed recovered, in the L - oo limit, in all cases .

We denote by P-* the probability that the j—th spin becomes +1 at time t+1 if
it was -1 at time t; we define analogously P+-, P** and P--. These quantities satisfy

P+*“4+ P*=P*+4+P~=1.Let us now remind that

Py = min{l, exp(-AEs/k; T}, . (1.2)

P+ = min{l, exp(AEi/k,T)} (1.b)
for the Metropolis dynamics, and

Pe=Pr={14 exp(AEi/k )} (2.a)

Por=Pos = {1 +exp(-AEi/k T)}" (2.b)

for both Glauber and Heat-Bath dynamics, with

OE,=Ej-Bf , S ®
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where E; (E}) is the energy of the system with the i-th spin down (up).

Let us now unify these three dynamics as follows:
Plr=xP"+yPi +2Ps _ (48)
Poe=xP*+yPe*+2P 0 (4.b)

where a stands for arithmetic and x+y+2z=1 (0<x,y,2 < 1); see Fig. 1. We
can straightforwardly verify that Eqs. (1), (2) and (4) lead to

Py

o - SPCAR/LT) (5)

a

i.e., detailed balance is satisfied for arbitrary (x,y,z). Since Eqs. (2} hold for both
Glauber and Heat-Bath dynamics, it is clear that, at this level,‘there is no need to
work with a ternary composition (a binary composition with weights x and I-x
suffices). Nevertheless, we shall maintain the (x,y,z) notation for reasons that will
become clear later on.

Along the same lines, a second unification can be proposed. Suppose we have D
different dynamics characterized by (P{-, Py*), (P3", P3*), ..., (P}-, P;*) such
that detailed balance is satisfied for all of them, i.e.,

Pi-/ Pi* = exp(-AEy/k,T) (k=12,..,D) .

We define "

D » ) .
PE':kEl(P;')xk . S (6.2)
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D
- -4y % '
Pr= 1 BT, (o)

D
where g stands for geometric and kEl x,=1 (0¢ XppXgpeei Xy § 1). It is trivially
verified that |

P:-

Pé*

= exp(-ABi/k,T) XU

i.e., the geometric dynamics algo satisfies detailed balance for arbitrary {x,}. By
choosing D = 3 into the present problem we have

P;- = (P;l-)x (Pé-))' (Pﬁﬁ)z ’ _-; | (8.)

Pyt= (Pli‘)Jc (Pc'*)y (Pﬁﬁ z * (8.b)

In our numerical simulations of the Ising ferromagnet we have used an LxL
square lattice with periodic boundary conditions, and the updating has been done in
the typewriter sequence. The ensemble averages have been performed by repeating
Nexp ® 100 independent realizations of the system (L = 20,40). In order to accelerate
thé thermalization process, we have chosen, for all temperatures, initial conditions
(t = 0) such that the magnetization is close to a reasonable expectation. Before
starting measuring thermodynamic quantities we have dropped a transient time of
the order of L2 . The time averages have been performed along a time of the order of
L?/2 after the transient. Finally, the approximative spontaneous magnetization has
been obtained through the usual procedure, i.e., by averaging |m(t)] instead of

m(t) . It is important to stress at this point that this (standard) procedure makes the
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finite L Monte Carlo thermodynamic results to resemble the L - 0o limit ones,
which is the only limit where symmetry can be broken strictly speaking. In other
words, one has to keep in mind that only the L -+ 00 extirapolated numerical results
are physically meaningful. |

In Fig. 2 we present our results for m, C and y for both L =20 and L =40
for gix different dynamics, namely x = 0 (i.e., Glauber or, equivalently, Heat-Bath),
x =1 (i.e., Metropolis), arithmetic x =1/3 and x = 1/2, and geometric x =1/3
and x = 1/2. We remark: (i) for fixed L , the magnetization practically independs
from x and from the dynamics being either arithmetic or geometric; (ii) fbr fixed L,
the specific heat and susceptibility exhibit a moderate trend to monotonously
increase while x varies form 0to 1, and this for both a and g dynamics; (i) for
increasing L , the already small discrepancy between the curves associated with the
six different dynamics decreases . These remarks, put together with the well known
fact that the Metropolis, the Glauber and the Heat-Bath dynamics yield (in the
(L,t) - (00,00) limit} the correct Ising thermodynamics, very strongly suggest that
the same happens with the intermediate dynamics (i.e., arbitrary (x,y,z)) for both
arithmetic and geometric unifications. This large set of dynamics share one
important fact: they all satisfy detailed balance. It is well known that this condition
suffices for recovering the correct equilibrium thermodynamics [15] (at least for
sequential updating of the dynamic variables), in the (L,t) - (00,00) limit.
However, in numerical simulations (performed for limited values of L and t),
finite-size effects and relaxation times could differ when we change the dynamics.
Our results suggest that equilibrium thermodynamics properties are quite insensitive
to variations in the (x,y,z) parameters (i.e., different dynamics), gven for small L

and t.
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It is in the realm of non-equilibrium properties that the present proposal of two
infinite classes of dynamics could be used to provide distinct and interesting results
for different values of (x,y,z). In what folllows, we present two possible fields of
research where these generalized dynamics could be useful.

If we start from a given global initial condition, different dynamics will make a
physical system to evolve through different paths in t_he phase space; such evolution
is being intensively studied nowadays. One privileged tool for doing this is the
"spread of damage" between two different copies of the system. More precisely, the
two copies are (slightly of appreciably) different at t =0, and, by using a given
dynamical prescrition (which includes the game sequence of random numbers), the
"distance" in phase space (e.g., the Hamming distance D(t)) between the two copies
is followed as time goes on (with particular interest in the asymptotic behavior in the
t - 0o limit). The system is said to be "chaotic" if D(o0) # 0 ,. because it is sensitive
to the initial conditions. This method is well illustrated -through the Ising
- ferromagnet. Indeed, with the Heat-Bath dynamics, chaos tends to appear at low
temperatures (T < T¢) [16), whereas with the Metropolis and Glauber dyramics, it
tends to appear at high tempertaures (T > T¢) [12,17-18]. As we see, Glauber and
Heat-Bath dynamics yield gualitatively different spread of damage, in spite of the
fact that they share the same transition probabilities (as expressed in Eqs. (2)). This
discrepancy is due to the different use that is done, in these two dynamics, of the
random number corresponding to time t (see [12,18,20]). Because of this subtle
difference, the Glauber and the Heat-Bath dynamics yield the same result when only
one copy of the system is followed (as it is the case when we study its equilibrium
thermodynamics), but yield different results when two copies are followed (as it is

the case for the study of the spread of damage). It is for this reason that we
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mantained, in the present work, the notation (x,y,z), thus individually treating each
one of these three dynamics. In fact, the study of the spread of damage corresponding
to the unifications introduced in the present paper is in progress.

Finally, it is clear that the relaxation process towards thermodyr_lamica.l
equilibrium depends upon the particular dynamics which is used. Conseq'uently,
quantities such as relaxation time and amplitude should depend on (x,y,z). In other
words, the present unifications provide also a tool for adjusting (within certain

limits) these relaxation quantities.

One of us (C.T.) acknowledges warm hospitality received at the Physics
Department of the Universidade Federal do Rio Grande do Norte (Brazil). Two of us
(A.M.M. and F.D.N.) have received partial support from CNPq (Brazilian agency).
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Caption for Figures

Fig. 1 - Triangular representation of the arithmetic and geometric dynamics (M,

G and HB respectively refer to Metropolis, Glauber and Heat-Bath dynamics).

Fig. 2- Monte Carlo results corresponding to six different dynamics and two
different sizes: (a) Spontaneous magnetization; (b} Specific heat; (c) Susceptibility.
"Exact" refers to L. Onsager and C.N. Yang results (e.g., k,Te/J = 2/In(1-+{2) =
2.269); "Nearly exact” is taken from [14]. L=20:x=0(%), x=1(n), arithmetic
x = 1/3 (o), geometric x = 1/3 (a), arithmetic x = 1/2 (4), geometric x = 1/2 ;
L=40: x=0(x), x=1(e), arithmetic x=1/3((), geometric x=1/3 ),
arithmetic x = 1/2 (»), geometric x = 1/2 (0). At every chosen temperature and for
all three m, C and x, all twelve points have been com‘puted_;l even if they are not
graphically distinguishable. For fixed L , the highest relative discrepancy in both C
and x for the six different dynamics occurs at their peaks: C/C » 0.12 for L = 20
and 0.11 for L =40, and Ax/x ~0.27 for L = 20 and 0.21 for L = 40 . The non
neglectable discrepancy between the (nearly) exact and finite-L susce-ptibility in the

paramagnetic region has been already discussed in |3].
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Fig. 1
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