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ABSTRACT

Correcting and extending previous work . by Hawking
(1966) and Olson (1976) we derive and analyse the complete
set of perturbation equations of a Friedmann Universe in the
quasi-Maxwellian form. The formalism is then applied to
scalar, vector and tensor perturbations of a phenomenological
fluid, which is modelled such as to comprise shear and heat
flux. Depending on the equation of state of the background we
find that there exist unstable (growing) modes of purely ro-
tational character. We further find that (to linear order at
least) any vortex perturbation is equivalent to a certain heat
flux vector. The equation for the gravitational waves are de-
rived in a completely equivalent method as in case of the pro
pagation, in a curved space-time, of electromagnetic waves in

a plasma endowed with some definite constitutive relations.



1. INTRODUCTION

Several other methods exist to investigate perturba-
tions of inhomogeneous cosmological models (Lifshitz, 1946;
Lifshitz and Khalatnikov, 1963; Bardeen , 1980) but we prefer
here a formalism which in its roots goes back to some work of
Jordan and coworkers (Jordan et al, 1960; Kundt and TrUmper 196Z;
Trimper 1967) which is described in accessible form in Ellis
(1971). As noted by Hawking (1966) the quasi-Maxwellian form
of Einstein's equations has the advantage that one is dealing
only with physical (i.e., directly measurable) quantities and
things simplify further if the Weyl tensor of the background met
ric vanishes, as is the case for a Friedmann Universe. The rea
son for this is related to the tensorial character —~of Weyl

conformal tensor Wu Indeed, once in the background geome-

Buv®

try W vanishes, any small quantity GWq represents a

aBuv Buv
true perturbation and not merely a trivial coordinate transfor

mation.

The difficulty of any such perturbation method,other
than the quasi-Maxwellian approach, is to find the physical
content of the result obtained. This problem has been dis-

cussed by many authors and re-examined recently by Bardeen (1980
insome detail and is inherent in many nonlinear theories. Apart
from the intrinsic (unresolved) problem to tell with mathemati
cal rigour what it means that two geometries differ by a cer-
tain infinitesimal amount, there is the additional difficulty
how to relate (in a physically unique way) the two solutions.
The first problem is related to the general covariance of the

equations; the second is related to the gauge invariance of



the physical system. It is mainly with the second category of
problems that one is usually concerned. Let us consider as an
jllustrative example a classical (cold, collisionless) fluid.
Let the four-velocity of each particle of the fluid be pa(x)
and consider a '"perturbed flow" ua(x)+ &ua which comes a-
bout through the action of some force 6Ku, Let Eu(x) be de-
fined as the map which takes a particle at point x¥ into
X% = x%+ sx%=x%+ Ea(x) such that there the perturbed four velo
city ﬂa due to the force sk is just ﬁu= ua(X+E)+6ud(x+£).This
map relates every particle of the unperturbed flow to a parti-
cle of the perturbed flow, but it is not unique. Evidently, we

are free to add to &% an (infinitesimal) piece of the (unper-

turbed) trajectory ep® and we arrive at a new possible map

£%= g% gn® (1)

While the two maps are mathematically completely equivalent
they are by no means physically equivalent, as the transforma-
tion (1) does not leave invariant the proper 3-volume element,
and therefore the proper baryon density. As is evident there-
fore it does not make sense at this stage of approximation to
talk of the amplitude of the perturbation. To be able to do
that one must consider explicetely the external perturbing
force (switched-on e.g. adiabatically) which gave rise to the
perturbation. Different operational prescriptions have been
proposed by Olson (1976) and Bardeen (1980) to obtain gauge
independent amplitudes. The problem is of particular relevance

in cosmology, where one considers perturbations of the entire



universe, i.e. perturbations which may be larger (at early
times, at least) than the particle horizon.

We shall follow here the conformal approach  which
as will become clear below has a number of distinct advanta-
ges for space times which are conformally flat. In this meth-
od, the especification of gauge independent quantities 1is a
simple task (at least in the case of Friedmann background) as
one can easily be convinced by just looking at the kinemati-
cal parameters which vanish in the background, besides the in
variants quantities associated to the perturbed conformal ten
sor. For pure gauge transformations all these quantities (which
are null in the background) remains null. This is an absolute
criterion to eliminate unphysical modes of perturbations.

Our motivation for reconsidering the whole confor-
mal approach is two fold: we shall generalize it to non-per-
fect fluids and we shall give an analysis of the complete set
of perturbation equations. This is needed, once prior results
obtained by Hawking and Olson are incomplete and even contains

some erroneous: conclusions.

2. THE UNPERTURBED FIELD EQUATIONS

The background geometry obeys Eintein's field equa

tions

[

Vo2 v v (2)
with the energy-momentum tensor of a general fluid

u_ U
T, = oV - pht o+ gtV v q VM i (3)



in which

nt = 5“\)-\/“ Vv (4)

q, is the heat flux and H“V the traceless anisotropic pres-
sure. The gradient of the four-velocity of the matter v® can

be decomposed in its irreductible parts as follows:

- 1 -
Vu;v = wuv+ Guv+'?re huv Vu Vv (5)
where Va==Va,p vH is the acceleration, g = Va,u is the expan
. ____l’_ o B__l_ . ,
sion, ouv 5 Vu;B h(u hv) 7 6 huv is the shear and
_ 1 o _ 1B _ .- o _
Wy = Z.Va;B h LPh V] is the vorticity of the flow V. We de
fine the vorticity vector w? as:
T_ 1 oBpT
w = i g Vo (6)
and T]aBuv= - L g®BEY 35 the completely anti-symmetric ten
]/._g _
sor. Here and henceforth a bracket [ , ] means antisymmetriza

tion that is [a,B8] = af-Bo and a parenthesis ( ) denotes symme
trization (a,B) = af+ Ba. We define further the "electric'" and

"magnetic" part of the gravitational field

= -W vM v (7a)

|
1
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<
=
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<

Hup = auBY (7b)

The symbol * means the dual, that is



*

_ 1 £A
Waqu" TT"nau WsABv'

The Weyl conformal tensor WuB can then be decomposed:

uv

ouBY QUAC VTE AUAC vTE

+ (T]apxo

BvTe OUAC BvTe
& 8 ¥ n ) VA VT Hoe

in which 8opusv - 8ap Zuv” Bov gyt

The tensor Euv satisfy the properties

uv Vi
vV o_
Euv V=0
nv_
Epv g 0
Huv= Hvu
uv_
Huv g =0
\)_
Huv V' =0
The Riemann tensor R can be writen:
o Buv
_ _ 1
Rasuv"wuﬁuv ¥ JuBuV T R Zuppv
in which
J -1{rR_ g, +R, g -R _g. -R, g}
aBuv 2 Tou ©Bv Bv Cau av “Bu Bu “av
T . .. .. aB = oB aB o R
he Bianchi identities R {pv:iad R UV;X+ R vk;u+ R

can be writen in an equivalent form, using Weyl tensor:

Wquv
3V

1 oula;B] 1 ulo,,B
7 R - 17 o' Rofl

AUV

(8)

(9)

(10)

(11)

(12)

=0

(13)



Using Einstein's equations (2) these can be writen as

wedy L1 e8], %_ oMo 8] (14)

*

Using (9) and projecting appropriately we can re-write

Eintein's equation in a form which is reminiscent of Maxwell's

equations:

hg&h}W’EuA;y4‘n€Buv v HvAOuA + 3ty o, =

= %—hw . rg-— q° - %(oev—Swgv)q\)+—%~ n&H \'/11 +

+ %% h&¢ Huv;v (15a)

h Y Honsy nesuv vVE" 0"y - 3B w,

= 2(p+plu® - 1 5B v, Qgig* T €O"B>\(O'UB+ w,g) T,

(15b)

h Sh M et o T (o) v

_T]Avuo TIET&B Vu VT Haoevg _.va EB(XT]e)OaB Vu+

* %‘ EBu;oc hu(e nHee Vo= - 731" alfu?)s ’%‘ h®g “u’
711“ g glenr)abu v, qoc+%_h wienr)obu VT

(15c)



£, A LUV ex _ 1 (e, A) U3V _
hp hv E"” "+ OF 3 E h u'V

Avuo 4 eTaB . (A g)ooB _
-7 T V, Vo By Oupt Vg Hg T \

1 u (enA)oaB o 1l osed o w o uos
- 5 H hu ﬂ V0 Z h ™" (q q VvV

Ba ;M U
A e R
o ol S XEL I W R G
e (5 MNPy o 5 WMEL Lo (15d)

a dot means derivative in the direction of the Zfour-velocity
vHs
We further have from the contracted Bianchi identi-

ties, via Einstein's equations, the conservation laws:

[ ] L] u' \)
o+ (p+p) 6+ q" VoA, - ife 0,y = 0 (16a)
. _ U . u v
(o+p)V - p , W7 +q h" +0q +q” 0, +
v v v _
SIS AN LA A ¢ (16b)

in which o"V= OUV+_%L huv

Fron the definition of the Riemann curvature tensor

_ e
Visa;e ™ Vuseia - Ry e Ve (17)

we obtain the equation of motion of the Kinematical quantities:



(18)

7 o B uiv “viu 3 aB  au B B
e yv_ 1 H Vv 19
e BY \% ff—Ruv'V \% haB (19)
u v oe _ 1 U v - 2.
hu hB Wy -5 h hB (au;v av;u) * = 0 wu8+
L WM =0 (20)

One further obtains from (17) three constraint equations (not

envolving any dot derivative):

2 _ o
5 © W, - (0% +w® ). hYA—aO‘(G +wm)-va“h

SHT A Y Y0 Yo
(21)
W+ 20V =0 (22)
0 o
1 _ YBe . -
2 [OB(T wB(T]_Y ‘no) VE*_V(T ted HTG (23)

Equations (15)-(20) together with (21)-(23) are, for given in
itial date on a space-like hypersurface equivalent to the ori
ginal Einstein's equations (2). They show in a physically un-
derstandable manner how specific properties of the matter cre

ates the gravitational fields Euv and Huv’ and how expansion,



shear and vorticity are propagated along the flow lines. The
constitutive relations for an and qu must be taken for each

case from the physics of the system.

2. THE PERTURBED EQUATIONS

The above set of equations will be used to describe
the evolution of small disturbances in Friedmann's background.

The metric will be written in the standard from:
ds? =dt? - A%(t) {dy?+o?(x)(de%+sin%6d¢?)} (24)

in which o(x) may take the values siny, X or sinhy .

Let us first consider equations (l15a,b,c,d). Since
E=H=w=o0=V=0 are all zero we do not write a & in front.The
only non vanishing quantities of the background are p, p and
0. For these we use 8p, Sp and 66 for the perturbed quantities:

p=p,*38p . We obtain after straightforward manipulations

SUV P o A pA _ 1 o (p A) sV
E hu hv + 0E 5 Ev h . v

_ 9 mAvue pTap _
3 n n Vu VT Eea th

1 u ‘ A 1 A
- HM o n ATy o 2 (pep)6o® (25)

MV L 0y A A L g (p A ymsv -
H }Hl hv + OH > Hv h " \%

_ 9 Avue . ptal 1 u
3 T] T, VuVT HeochB\)+ 2 EB :

2

(b mM)TaB 4 _
A WJ U Vd—O

(26)
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H . h* n*Y = (p+p)sw® (27)
h*e MY = 1 5o h*S- 5 ev® (28)

s O

Similarly we obtain from (18), (19) and (20):

., 2 Cea _ (130
(80) "+ 5~ 080 - V¥ S5 8p (29)
. 1 *0 1 2 2 -
‘v T E &y v o 2 V(u;v) tx 0 uv Euv (30)
e lg ot domored oy (31)
3 2 00 O
The constraint equations give:
2 80 - 2 BV - (6% +w®)  hP =g (32)
3 s U 3 U o prsa T ou
a =
W, =0 (33)
-1 ;o B EPA ;
Hiv= " 2 h'(u h v) ( ap;A “opsa) T]B Ve (34)
Finally equations (16) yields:
(60) "+ 0(8p+6p) + (p+p)so+q”, =0 (35)
. _ B . o0y —4__ OLB -
8] GVU Gp,B h u+ (p+p)Vu4-hua Q-+ = Oqu+hLloc I 8 0
(36)

The method to solve this apparently rather involved
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set of equations goes back to the work of Lifshitz (1946),see
Lifshitz and Khalatnikov (1963). Our method here is a variant
of his. There are three different types of perturbations:
scalar, vector and tensor.

SCALAR PERTURBATIONS

In the case of scalar perturbations we make the ansatz:

§0 = R(t) Q
dp = N(t) Q
8V, = V(t) ?uv Q
E,, = E(t) P,
H,, = H(t) ﬁuv (37)
Ouv = Z(t) ﬁuv
I, = I(t) ﬁuv
q, = a(t) h” Q
wu =0

Inserting into the above equations we find that Q has to obey

Y v §v Q = Q (38)

K* > 0 for the flat universe

where K?-= n?-1 , n=1,2,... for the closed universe
q?+1 for q*> 0  for the open universe
5 1 a B o o 1
H = 1 p -
ere Puv < h ™ v, Vg Q TAZ huv Q (39)

The operator Vu is the co-variant gradient projected in the

rest-space orthogonal to v". We have for an arbitrary vector f¥
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Using this ansatz into equations of perturbation of &p and 86

we obtain an equation for the density of contrast p = %%:

(a5 - A azouy s e [- A (43N N

[ (1+23;\) Aoy - g(i\ilxl% } . _(_1_%7 kzl}j_ _g_ u] =0 (41)

+
CDI De

It can be shown that one integral of this equation is

W= -(1*A)R 6 (42)

in conformity with Lifshitz. This solution is fictitious and

can be eliminated by the gauge transformation
t > T=t+R,

Reducing the order of the differential equation by the ansatz

u=u, F we obtain, with M= F

oM + [(—é—- A)o2 - (1+3x)p-|1\'4+ (1+32) (-zxez— -g_(1+3x)} —g_ M+
K2
AZ

+ A

6 M= 0 (43)

with the general solution

-1
T “(1) £2/3 4 U(Z) t , for euclidean section
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3fo

'3 sinn .
U= [(sinn-3n)f +£,] +
Ao(l—cosn)2 o 1 Ao(l—cosn)

for closed section

(n is defined by dt= A(n)dn)

. -2
w= £, sinh” (5) (1- = coth =) + 3 £

for open section

in case of dust; and in case of radiation;

_ sing 1 1 cos¢ _ 1 1 .
u—Zoc,:—————-+(-(F —2—)cos¢]+28[-—————¢ (F 2) smd{]

for euclidean section

2

in which ¢=—%— K t!/2

for the closed section:
=0 fJA(n)dn
with
J) = n*ey Iy ,0an) ey Y, (an))
2

K
3
We can obtain the result for the open section by the for-

in which q?%= and Jl/2 and Yl/Z are Bessel's functions.

mal map A~ iA, n~in and k- iK. Just for the completeness we

list below the remaining set of perturbation equations

2p2 . 2
E-= _KFAT [N-—p+ 8q + 3€+K H]
2(3€+K?) A?
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. 2. o , .

f- KV L Zor=- L(1+30)N
A2 3 2

. _ P - _ -H_-

r-K°V E 3

1+ 2
(36 K*) g - ZKZ[('A% avadl ?R} K*q
K2

N4—6(1+A)N+ (1+A)pR+-——%= 0
A

~A[N-pV] + (1+2)pV +

- )
G+ 0q+ (322K )]n=o
- 3A% K2

In case of perfect fluid these equations reduce to the ones

investigated by Lifshitz et al previously,

VECTOR PERTURBATIONS

We set -
SVU='V(t) Su

q,=q(t) S, (44)

Sy is defined in the 3-dimensional rest space orthogonal to vH

by means of the projector operator huv. That 1is

T

Ve sy=0
\)A_ﬁ
hu Sv Su

Su is an eigen-vector of the Laplace operator

woSoo S
WYy v, s s =7 S (45)
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(K is an integer). It is stationary, that is

sa,uv“ = 0 (46)

and divergence-free:

s = o (47)

1)

From this vector we can construct tensors ZaB and Fu by taking

B
the symmetric and the antisymmetric parts of the derivative:

-~ -~

z = S

uv v(u (48)

V)

- -~

FUV = vl:ll S\):[ (49)

Besides, we can define another associated quantity*su and *Zuv
which will be very useful in dealing with the perturbation e-

quations. We set

«GW _ o MEBX |
st =1 Sg.y Ve (50)

Using the properties (45), (46) and (47) we can show the addi-

tional relations:

uv _ 26+ K*
h Vv Zup— -——Kz—— Sp (51)
Bawsa Vit 52, =0 (52)
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*Ep OL)T] B2 vy \7 z —h‘ép hu)\) v,*S, (53)
h ) n” N ByA VxVvae S Y L 5\)*511 (54)
ho‘phW %ﬁY*;f% *gp (55)
h(a“ he)v(§u*§v)‘+ %—e h(a“ hB)“ §u*§v= 0 (56)
h(a“ hB\)) (%u §v)‘+ _g_ h(d“ hB)\’ §u 5\): 0 (57)
pH (P79 Ave v, §v*zw= (2e-k2)nH (0 pPIY §v;u (58)

in which € is defined in terms of the 3-scalar of curvature

(3)R by

)

aBuv A2 By gy (59)

hasuv = hau th_ hav hBu

I
From the definition of the vorticity wuv > SVIU,VJ and (44)

- 4 -
Wiy T V(B F (60)

For the shear and the electric tensor Euv we set

Q
i

v L(t) Zuv (61)

E(t) T

t
[

Hv (1Y) (62)
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The acceleration vH is given by:

Ve (v T o avH
. - (63)
= (V+ 3 V) Su
Using this value into equation (36) yields
. 1-32 1 1 [+, 4 2€+K?
Now, Raychandhuri equation (29) gives
§ = -3[ iz » 24 p] (65)
Using this value into equation (32):
2
L= A (qr(1+2)pV) + - (66)
2€+k
From (28):
= 1 2 1l
E= ————— A% o[ (@+M)pV+q] + 5 (67)
3(2€+k?)

Let us now turn to the calculus of Huv' Equation (34) gives di-

rectly

Vv u v *
=) h(a h vV, *S (68)

N
Hyg = - 7 g) v "

0B

This induce us to define the expansion

- *‘
H H(t)*Z

o B
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and consequently

‘AZ

H(t) = - ———
2(2€+k?)

C(1+X) eV + q] (69)

Discussion of the results.

It seems worth to remark that although we used only from
equations (Raychanduri equation, the conservation of the ener-
gy-momentum tensor, the constraint relation which connects Huv
with spatial derivatives of shear and vorticity; and the equa-
tion of the divergence of Euv) we have solved our problem of
finding the evolution of vortex perturbation. All others equa-
tions are identicaly satisfied. This can be shown by a rather
long but straightforward substitution of the values we obtained
for E, L and H into the remaining equations(*).

These results are generalizations of results obtained by
Lifshitz for nonvanishing stress and heat flux and agree with
Lifshitz' result in case the later are zero. Let us remark
that in order to compare our analysis with those of Lifshitz
we have to express our results in his notation. In other words,
we have to find explicitly éguv. This is not dificult and may

be obtained just by looking at the expression which defines

the shear. We have

_ 1 a, B - % BoopP -4 -3
5 b,*h" &V h b P(sT? IV - 5 h g0~ - 66 g

Tuv (asB)

(70)

(*)y.M. Salim - PhD Thesis (1982) unpublished



After this we can easily obtain Sg“v.

Thus, it remains only - to exhaust our analysis - to inte
grate e€q.(64). This can be made after the constitutive relations
of the stress and the heat flux is given. Let us examine two

particular cases.

Case i: Perfect Fluid

We set q =1 = 0

Integrating (64) gives

3A-1 (VO is a constant) (71)

and consequently

1+ i
E=-——o—o0p V BA’ (72)

3(26+k2) ° O

- - 2 E
H = 3 5 (73)
L= 2 oy e v At (74)
2€+k? © °
( we used p=p, A_SA'S)
Remark that for a typical expansion factor (emt—l), in later

eras all gravitational energy (proportional to E? + H?) becomes
"magnetic" (E/H goes to zero as t—>«), a result which depends
on the presence of vorticity in the perturbation.

In the case of radiation (A =1/3) the velocity perturbation
and the corresponding shear and vorticity are constant, a re-
sult which was known since Lifshitz paper. Remark however that

1

for stiff matter, in case T?<X<1 the vorticity ( and the shear)

increases as time goes on, once in the standard Friedmann back-



ground A(t) is a monotonic function.

Case ii: Stokes (linear) Fluid

We set g= 0, Huv='n cuv’ In this case equation (64)
gives
V=V, exp|-nt- -Sg— —;—1—(2(-:+k2) f A% dt] (75)
o)

(VO is a constant).

In general, for a Stokes (linear) fluid the constant o 1is
restricted to be positive. This guarantees, by the ad hoc use
of the second law of thermodynamics that entropy can only in-
crease in the direction of the arrow of time (defined by the
expansion of the universe). However in the case Huv is just a
small quantity and we restrict perturbations to be linear, e-
quation (35) implies that such condition on n can be relaxed,
once the contribution of the anisotropic energy to variation of
entropy is a second order effect, which can be neglected. Thus
the instability of this perturbation, which occurs in case of
negative n, is not forbidden.

Let us make one more remark on the general features of vor
tex perturbation. Suppose we intend to consider a pure electric
perturbation by setting H= 0. The equations of motion imply that
then T=E= 0. That is, the perturbed geometry is again con-
formally flat. This is possible only if there is a heat flux
such that q= -(1+X)pV in which case the shear is given by
L= %}. This shows that we can prescribe arbitrarily function

V(t). We have just to proceed as follows. Take L(t) as a given

function of the distortion of the cosmic fluid (either by the-
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ory or by any kind of observation).

Then, obtain V(t). From this evaluate the amount of heat
which is necessary to satisfy the complete system of perturbed
equations. Note that this result is completely independent of
the wavelength of the perturbation. The unique remaining task
is to justify, through a physical model the presence of such
heat. This, of course, has to be examined for each case iindi-

vidually.

TENSOR PERTURBATIONS

We set
§6 = 0
§p = 0
v. =0
" - (76)
Ey = E(t)?uv
Oy = L(t)?pv
ﬂuv = H(t)qu
in which qu satisfy the following conditions:
a2 S S k2o
LR N PR - Uy (77)
and the constant k has the corresponding spectrum:
0< |k| <~ for the euclidean section
k% = g2+3 0<q< e for the open section
k? = n2-3 , n=3,4,.. for the closed section.
v¥ =0 (78)
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Wy 0 =0 (79)

Wu o =0 (80)

We remark that due to the tensorial character of the kine
matical quantities the unique survival component of the pertur

bation of the fluid is the shear GUV' It affects the evolution

of EU and Hu by equations (30), (34) and the quasi-Maxwellian

A% A%

set.

From equation (34) we obtain

_ 1 o B eAp o
HUV 5 L h (u h v) nB Ve VA Upa (81)
This induce us to define the star-operator *qu:
* -
U= Pu\)[U] (82)
Then
= *
Huv L qu (83)
The dynamics of the complete system reduces to the set:
. N AP TRN TT _1 . 1
E + 6E [-7—(p p) 3 6+ v ]L— 5 H+-?r eI (84)
s 2 1
L+ = 8L + E= - - I (85)

This simple form of the equations of evolution of the perturba
tion is a remarkable consequence of decomposition (76) and of

the properties of *qu. This set of equation (84,85) is very
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similar to the propagation of electromagnetic waves 1in a
Friedmann background. The term of stress (rhs of equations(84)
and (85)) are related to the current form-vector | ju of the
charged particles by a simple relation.

The exam of the set (84) and (85) can be simplified if we
note that it corresponds to a dynamical set of the standard
form

E=F_(L,E,t)
1 (86)

i=F2(L,E,t)

However the fact that this system is not autonomous (the
explicit dependence on t can be eliminated only in very simple
cases) difficults such examination.

In case the electric and the magnetic modes are not ex-
cited simultaneously the analysis is greatly simplified. In-

deed, set L=H= 0 to reduce (86) to:
-2
2E=-I=EA (88)
-l
which implies that the gravitational energy goes like A , as

it should be.

In the other simple case E= 0, the system reduces to

L+ oL-- T (89)
1, _ 6> K27 _ 1 » 1
['7—(9 p) 3 + X? JL-‘ - - oI (90)

From (89) and (90) we obtain an equation for L:
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S 1 1

L+ Lo+ Lf re D-TT-P'+7;'92‘.*—]= 0 (91)

For short wavelength  and substituting the known values for
p, p and © we can write this equation (91) under the generic

form for the euclidean section:

2
d°L, e () Ly £ ()L=0 (92)
t
e bo
with fl(t)""'—f— and fz(t)=;
for fo and d, being constants. Equation (92) for different

functions of p, p, 6 and A can be solved by means of confluent
hypergeometric functions [Morse-Feshback].Coming back to  the
general case, let us divide eq.(84) by L and define a new vari
able ¢E-%?. Then, eq. (84) reduces to a non-linear equation for

¢. From this we can evaluate the shear L by means of the inte-

gral

L=exp-f(—§— e+-921—+¢)c1t (93)
in which we have used the constitutive relation Hpv= q Ouv
(Klimek) .

The equation for ¢ takes the form

=21

* A 2
d-92+ T 6 = M(t) - —q -G (94)

2

in which M(t)z-%-(p-p)-%%92+ E_m_

A2



Remark that ¢ being a ratio of two small quantities, it
is not necessarily small. Thus we cannot neglect the quadratic
term ¢? which makes this treatment of the perturbation to de-
pend on a non-linear equation. Fortunately, in some cases of
interest this difficulty can be overtaken. For instance in casesof
large wavelenghts, that is; for —§~-<<ilwe can neglect the term
(—%—)2 in expression for M(t). In this case ¢’vt—1 and also
L~t™'. We encounter here the same assymptotic situation we
faced before in case of pure vortex perturbation, that is, for
large times the gravitational perturbation becomes purely
magnetic.

It seems woth to point out a remarkable fact which seems
very little if any noticed before, that is: gravitational dis-
turbances are present if and only if the fluid acquires a shear

deformation.
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