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ABSTRACT - The cross section for backward elastic pd scattering
in the proton kinetic energy interval from.0.4 to
1.0 Gev is calculated from a double triangle diagram
with intermediate A (1232) excitation. Different
approximations for the loop integrals are discussed.
The predicted cross sections reproduce quite well the
enhancement observed in the experimental data at

about 600 Mev.
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1 - INTRODUCTION

It is well known that the experimental data on elastic
pd scattering exhibits a backward peak, 1. e., a sharp rise of
the differential cross section towards 180° [j—g]. Recently a
systematic measurement of the energy dependence of the backward
eross-section revealed an enhancement in the 600 MeV  proton
kinetic energy regionlé’léj; Roughly two kinds of models have
been proposed to reproduce the experimental features: exchange
(u-channel) models and triangle (s—channel) models.

The one-nucleon-exchange or Chew Goldberger pick-up
process[zg(fig.l) 18 the simplesi mechanism able to produce a
backward peak. It fits rather well the low-energy data but its
contribution in the GeV region is too small. Kerman and
Kislinger{iilpointed out that the exchange of baryonic
resonances could become important by increasing the energy and
hence the maximum momentum transfer. They considered the N*
(1688) exchange in addition to the nucleon exchange. But, in
order to fit the data their model must have an energy dependent
N* probability: at 1 GeV the fit needs a 1% N* component in
the deuteron , whereas at 0.58 GeV 2.5% of N* {s needed.

Sharma, Bhasin and Mitrag6’laimproved this ﬁodel by including
N%(1470), N*(1750) and N*(1520)exchanges and making relativistic
ecalculations for the vertex. However they did not reproduce the
detailed data structure. It would be difficult to obtain complex
s-channel behaviour like an enhancement with onlyithésé |
exchanges.

Another attempt to explain the backward pd data was made
by Bertocehi and CapeZZa[lgjusing a Glauber-type model. Even

including a very strong and quite unreliable off-mass-shell



behavioqr for the NN elastic amplitude, the single and double
seattering terms (fig.2) do not provide the data description,
the cross-sections being one order of magnitude smaller than
the observed in experiments,

The success of one—pion—exéhange(]@PE) model of Yao [19]1171
pp -+ dn reaction (fig.3a) and the underlying idea that at
large momentum transfer virtual pton production becomes
important led Craigie and Wilkin rijto propose the triangle
mechanism (fig.3b)l for large angle pd elastic scattering.

Using as input the pp -+ dn experimental data they obtained
good shapes for the pd - dp distributions, but the cross
sections were underestimated by a factor two due to a mistake
in their calculations[pzj. This model was retaken by Barrgﬁm]
who related the pd +dp and the pp ~ dr cross sections by a
parameter § ;Adetefmined from the deuteron structure. Actual}y,
in order to account for several simplifications and to fit the
experimental data one must use this parameter as an overall
normalization factor[?z_gqj In the‘m%angaznbdél the 600 MeV
enhancement in the backward cross section appears naturally,
as a consequence of the A(1232) eécitation in the pp » dm sub-
reaction.

Which one of these described mechanism actually takes
place is a motive of contention. Wé think however that the
existence of an enhancement at 600 MeV, exactly where the

A(1232) resonance can be excited in the sub reaction TN-TN ig a clear

indication that the OPE mechanism dominates the backward cross section, at these

energtes. In this paper we propose to calculate more accurately
the contribution of the triangle diagram (fig. 3b) in this

energy region. To do this we will also take the OPE mechanism

ey



for the pp »dT sub-reaction obtaining then the double triangle
graph (fig.4), that we will actually calculate. As we will see,
in the region where the A production dominates the wN ->wN sub-
reaction the loop integrals over the wave functions and poles
can be performed analytically and we obtain, without any free
parameter, good results for the backward cross section in the
0.4 to 1.0 GeV inecident proton kinetic energy range.

In the next section wederive the cross section formula.
In section 3 we present our approximations for the loop integrals
while section 4 is reserved to our’results and'conclusioﬁs.
Kinematics and the integral calculation are given in Appendix A

and B.

K

2 - CALCULATION OF THE CROSS-SECTION

We will caleulate the contribution of the..double

triangle graph (fig. 4) to the backward pd scattering. The

corresponding Feynman amplitude, for charged pions, 18
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where the four-momenta are defined in figure 4 and m and W are
the nucleon and pion masses. We choosed aé loop variables the

relative momenta of nucleons inside the deuterons:
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The quantities G, C, T, € are respectively the TINN and thé
pdn coupling constants (62/4ﬂ = 14.5), the relativistic pdn
vertex and the deuteron polarization four-vector. The Dirac
amplitude for TN = TN scattering is written as Ao and F(kg)
is the pion exchange form factor in the NN > NA sub-reaction.
In our calculationswe will neglect the deuteron D-

wave. So the pdn vertex is given by 2]

ru = ¢ (Ni,Mi) Yy : (2.3)
where the off-mass-shell form factor is normalised by
) (m2,m2):1 .

Now we must relate the relativistic pdn vertex to the
nonrelativistic wave function, which is the only available phenomeno
logical ' information about this vertex. However the relativistic
- vertex is a function of f0 and Ifl (via the invariants Ni and
Mi) whereas - the non-relativistic wave function depends only on
[fl. Thus 7t lacks information about the fo dependence of the pdn
vertex. To overcome this difficulty one must give a suplementary
condition relating . to [f]. Here we adopt the Gross[gdj
approximation and keep only the contribution in which particles

M, and M, are on the mass shell, i.e., we replace

1 ., ~LT ) 2 2 .
3 > 8 (Mio m @i‘ ) (2=1,2) (2.4)

M.-m M.
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Consequentely, the integration over f <s straigh-
0

- forward and the non-relativistic Limit of the vertex function

=



¢(Nf,m2%hnd the wave function W(fi) are related by [21]

2 2 ' ' ’ ' :
C o(NS ,m°) _ 1 3 .1/2
R Ak P Bl —e
N% - m2 Sl (32 w°m) W(fi) (2.5)
7

To perform analytically the remdining integrals 1s a
considerable task and so we must look for good approximations to
the amplitude A. As wave funciions decrease very fast with
[fl 1t is reasonable to. substitute the rest of the numerator by
its value at fi:O' This means that we will do the spin calcula-

tions outside the integrals and consider internal nucleons on-—

mass—-shell when doing spin summations. So, we have:

Mi:Ni:—g—— and Mi:Nismz i= 1,2

(2.6)
(Mi +m) = 2m % u(Mi) u(Mi)
‘ (—Ni+ m) = =2mEo(N_) 5(1\77:)

with the approximations 2.3-6 the amplitude becomes

A = (2m)2 m 1

Mo M, (2%)
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where we considered only the A- contribution to the TN - 1IN
amplitude and factorized tt into a spin dependent part A , and the

A pole with M, =

A + 12T /2

U

&f =g+ f, )0 L q=- (prp,) (2.8)

If we write explicitly the spin indices (fig.4) and put

_ A A

VN, ) A, viN,,n,) “’1n1n2

m B R |53 mpang>
u(My,my) T villgsngd = s Tyl g3 Myaty

The spin part of the amplitude writes

. . 1 1 , A
ST, T, AsA) = 2 T g < 1,1, | m_,n.>A .
1 1’27 m. . Azml ’ 2 2° 1" 1 s
N 7 1 il
1 1 .
I e R L P L A, (2.10)

The spin summation can be easily done in the lab system (d1=0) <If
we choose the direction of the vector N, as the quantization and
z—axis and the xz plane as the reaction plane. In this case the

amplitudes have the symmetry properties

A _ A _
Ay T AL ‘ _ 9490 - 79
(2.11)
& _ A _
A+_ = A_+ g, = 9_,

cand we get
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(note that for f.=0 we have k1 = ky = k7)
We will express the invariant quantity . |4 | in the TN
. nite iy
center of mass:
2
2 2 8w Vsmy
| 4 |“ = 2(1 + 3 cos® 0_ )|————— m, T ' (2.14)
non n_n N A
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where Q"NandqﬂNare the scattering angle and piton momentum in this
system; |

To take into account bther isospin possibilities the
amplitude must be multiplied by a factor 2.

The differential cross section in the pd center of

mass 18 given by

-

2
do_ _ (2’;”', L 'z 1a)? (2.15)
as 641 s spins
so that finally we have
2 L2
2 2 2 s m, T
- 3m

do W[_G" 72 (k%) k2] (1 + 3 cos” o)t .
an ﬁ 1,2, 4 s Do
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In the next section we will estimate different
approximations to the integral over the wave functions and poles.
In order to compare the double triangle and the one
nucleon exchange contribution we have also calculated the cross
section corresponding to the graph of figure la. Its Feynman
amp 1itude is '
T ey Ty.€

M=u (py) ¢ -2 Vig;ﬂ+g) c 2
V2 n-m V2

2

ulp,) ' (2.17)

Doing the same approximations as in 2.3-5-6 we get

. 4
M= -i 2% x® ? - n?) wz(f) Lo<l,T, |1/2,1/23A2,A> .
R A

1

5 =5 A,> | (2.18)
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where f is the momentum of the neutron in the lab sistem. After

~

spin summation and using (2.15) we obtain

ONE 2 '
d
oo = sa? LB 2 22yt (2.19)

which s equivalent to the expresstion of Kerman and Kislingerﬁ5’za

Sax
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3 - APPROXIMATIONS AND RESULTS

Now we will estimate the integral

3 3 1 1 1
I :Jd f, d°f, Y(Ff,) Y(f,) (3.1)
1 2 J1 22 Mi _ Qz K?' uz Kg_ uZ

for different approximations and compare the cross-—sections, given
by equation (2.16), to the experimental data. We will do the
caleculations for exponential-type wave functions and adopt the

Me Gee [28] parametrization, that for S-wave i8¢

ulr) (3.2)

o(r) = L
- v 47 r
5 ® 2
- r ; =
w(r) = ¢ % a. e ; Jo u(r) dr = 1
g=1 ¢
so that in momentum space
. y( = 1 0 ( 1 3 ____fi___
Y= g wllfh) = T2 0k 3 2
2w 2T i=1 ol + |fl

ul |fl ) = Jo ulr) jo (!flr)r dr

the kinematics and technical details of integration are respectively

given in Appendices A and B

3a — WAVE FUNCTION INTEGRATION

The wave functions in equation (3.1) act as a weight
function for the rest of theintegrand and its very rapid fall-off
favorizes small !f! values. Then the simplest approximation is to
take out of the integral the pions and delta poles for the value.
f; =0, as 71t was done in section 2 for the spin

~

part of the amplitude. This approximation ig equivalent to that
used by ﬂuDDQ]and Bdrrytgé] and gives a very simple formula for the



eross—section:

pd 2 2.2 2712 & 'Y
do _ Zz G F2(k ék TN E (0)|4 do (3.3)
ds m (k"= u") 8 a
do?
where —+9%— {5 the T-N differential cross section in the mw-N
d Q

c.m. system and ®(0) is the value of the vwave function for r = 0.

For the Hulthen wave function

| - or - Br .
®(n) = C, ¢ - € (3.4)
- r r -

o - 1 aba + )] /2 | a=zzzz £l
1 B -a om ’ -1
B =1.202 fn

the constant ©(0) is related to the Barry § parameter by

-

2 ¢ (0)

o Cl

é: =~ 8,36
which is the same value obtained in ref. [22] when a dispersive
approach is used to calculate  the OPE coupling strengh.

The cross section obtained with formula (3.3) <s
larger than the experimentaZ one by a factor 40 in the 600 MeV proton
kinetic energy region.

| In fact this approximation is very ecrude because 1t
negleets all [fl dependence other than that contained in the wave
function. Furthermore the constant ¢(0) depends strongly on the
assymptotic behaviour of W(f), and consequently Zs a very badly

known quantity.

10
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3-b - PIONS POLE INTEGRATION
In this approximation we take out of the integral
(3.1) the wN amplitude for f; = 0.(here the delta pole)
obtaining two integrals of the form
. ver.)
z 27

J(ki): J 2 u2 | (3.5)

where K. = k. .+ f. s Ky = (ky 5 k)

[29]

For the exponential type wave function of eq. (3.2) one gets

|

' 5
stk = (em)¥E L 1y - a. aretg L (3.6)
© Vam k] (=1 J n + o,
‘ ~1 J
where n2 = u2 - ki
O —y!‘;:-_

The expression (3.6) is valid (it is not the case here)
even when the pole is in the physical region. In such case n2_§0
and the function J(k) becomes complex ; its real and imaginary parts
corresponding respectively to the principal part and delta part
contribution of the particle propagator. Of course in this case
one must take

in 1+ iz
21 1 - ix

arctg x =

This approximatibn'is more reliable than (3-albecause
the presence of the pion pole iﬁcreases the fall-off the integrand and
consequently J(k) Zs less sensible than &(0) to the large Ifl
behaviour of W(f). The results obtained for the backward cross
sections are shown (curve (b) ) in figure 5. In the 600 MeV
region they are too big by a factor 2. In fact this approximation

is expected to give better results at higher energy, i.e., in the



region where the TN amplitude does not vary quickly with the

ineident energy.

3-¢ ~- DELTA POLE INTEGRATION

As we are in the delta exoitation region and the
pton is far from the mass-shell,integral (3.1) can be approximated
by

1

1 3

3 .
I = —5——rp— a“f a“f, Y(r,) Y(r,) (3.7)
(x” - u?)? j ! A K E I
whereQ:q+(f1 + o) 5 q = (qo, q)
Now it is convenient to introduce new variables
q;, = = (Ff; + Fy)
1 12 (3.8)
‘ 1
1 = 3 (F37 Ty
so that we can write
o 1 [ .3 1
I = = —g—— L d“q G (q.,] (3.9)
2 2.2 1,2 2 21
(k%= u“j° My - @ (g
where G(gl) is the deuteron form factor
' _ 3 4y 4
Glay) = Jdﬂa Hag =5 ) ¥y + 5~ (8.10)
For the wave function (3.2) the integral (3.9) givesIBOJ
2 1 2 lq | 5
N D A — > L a2 i ¢ 1q)%c2a.- in)?)
47 (k - ],I) Iql 2 ;=7 J ~ dJd
2 . 42
2 L a.a In( lg}® + (a. + a, = in)") +
k>g Y
lq | (3.11)

2 . z
+ I a (20, - in) arety ———o
J J 2u,j - 77

Tt e
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+2 ¥ a, a, (o. + o - in) arctg |€|,
k>g J Tk J k

(aj oy, - in/

where n2 = q§ - Mi
The backward cross-section corresponding to the

delta-pole integration is shown in figure § (curve c) . The

absolute normalization in the enhancement region is quite good .

One can see how the pole integration is important when we are in the

resonance region.

3-d - DELTA AND PION POLES INTEGRATION

The delta and pion poles in equation (3.1) can be
integrated if one neglects the delta pole variation in one of the

two internal loop wvariables. In this approximation we take
8=q + f;

and then equation (3.1) writes

3 3
s wir,) PBr.ovir,)
I = 1 =1 2 =2 (3.13)
2 2 2 2 2 2
My - @7 (500 (K2 - u) (x5 - u’)

The rgsult of the last integral en (3.13) is Just given by eq.(3.6).

In appendix B, we have calculated the first integral whose final

result 1s

- a. tE =T t -7 4
Llq,k,) = - ‘@;C 5 d m et vt - - (3.14)
A(T, - T) t, - T t_ =T,

The variables agre defi‘ned in gppendix B,



The backward cross-section corresponding to this
approximation is represented in figure Slurve d). The absolute
normalization and the peak position are quite wéZZ reproduced.
This result shows the importance of performing the loop
integrals as complete as possible when one 1s interested in

reproducing quantitatively the experimental data.
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4 - RESULTS AND CONCLUSIONS

The backward ( - 180°) elastic pd cross
section as a function of the incident proton kinetic energy

in the lab. ©is shown in figure 5. The experimental references
are listed in the figure. The errors on daéa points include the
incertainties of extrapolating the ewxisting data to 0, = 1807
except those from ref.[11] which are taken at O, .= 170°. The
data of ref. [?,lilare from neutron-deuteron elastic scattering.
The continuous curves (b), (¢) and (d) are the contribution of
the double pion exchange graph (fig.4) when approximations
(3-b), (3-¢) and (3-d) of section 3 are used to calculate the
integrals in equation (2.16). Calculations were performed with
the Mc Gée[?gjwave function. As one can see these approximations
give simiiar results and reproduce, with no free parameter,
the good shape and the good normalization for the cross section.
To:see how the normalization depends on the choice of the wave
function we have also used the thﬁrd.Moravcsiktsi]wave
function. The results change less than 2% in the peak region.

We also show in Fig. §, for comparison, the one-nucleon-exchange
contribution (dotted line) calculated from equation (2.19)

where we took into account the D-wave componenf in the deuteron
wave function. As we see the O0.N.E. fails completely to explain
the cross section behaviour near T=600 MeV. The dashed curve in
figure 5 is the incohevent sum of the O.N.E. contribution and
that of intermediate A excitation (curve (e)). Although tﬁis
sum fits quite well the data[ggj, we must have in mind that we
neglected the interference term and that duality claims for

the possibility of double counting. These points become

relevant mainly in the regions where the two contributions are

of the same order.
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We present in fig. 6 the differential cross section
as a function of cos Oc m at fixed energy. All the curves
correspond to the approximation (3-d). The continuous lines are

obtained when cos © and cos 0., are related by equation (A9).

N
This choice gives a too large slope for the cross section

what was somehow expected since we neglected the integrations
over the b angular dependence and since there are incertainties
about off-mass-shell extrapolations (see eq. A8 and A10).
The dashed 1line is obtained when we keep cos GﬂN:-J over the
entire angular range. |

In our calculations we neglected the deuteron
D-wave coupling. We think however that, as it was shown in
ref. [32] for the graph 3b , its contribution would not change
apreciably the results.

To conclude we think that our results are a
quantitative confirmation that intermediate A(1232) exeitation
is responsible for the enhancement observed in the energy
dependence of the backward eross section for elastic pd
scattering near T=600 MeV. Fyrthermore the methods used to

caleulate loop integrals can be applied in similar triangle-

type graphs.



APPENDIX A: Kinematies

Here we shall follow the notation shown in figure 4. As

an exemple, p(pl,kl) means that the particle is a proton with four-—

momentum p and spin projection kl.

The energy-momentum conservation writes

p; * dl =py * d2 . (A1)

d.
_ Z
N, =5 * ¥
17 = 1,2
d;
Mz -7 T fi

where £ 's are the Fermi momenta inside the deuterons.

The virtual pion momenta are

K. = k. + f. 1=1,2 (AZ2)
1 1 1z .
where
d d :
_ N S - -2
kp Py 5 5 Ky TP 73 (43)

If we call T the proton kinetic energy in the lab. system (d =0),
the square of the cm. energy is given by
_ 2 _ .2 '
s = (p; # d;)" = 9m” + dm T . (A4)
where we took the deuteron mass equal to 2m. The other Mandelstam

invartants are

17
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(d1 - d2)2: - 2 p2 (1 - cos 0)

~

o+
i

(AS5)

u = (pl - d222= 10 m2 - s - &

where p and © are the momentum and scattering angle in the pd c.m.

~

system:

p =P (s, m2, 4m21

- T 1/2 o
P (a,b,c) = [E“ b el - 4bi} (A6)
4a

Of course in the final cross—sections formulae

only f-independent quantities  appear, such as the Mandelstam variables

corresponding to inéermediate m N scatering for fi': 0:
Sop = q2 = F%— Cpl + p2)2“ m® - t/4 M
Uy — ¥ (A7)
tﬂN = 2(m2 * 322 - sﬂﬁ T Yapy

vhere k% = 1% = 1%, = 1 (u - nf)

The scattering angle in the TN e.m. is given by

t
T
cos 0O = 1 + Ty (A8)
my ' 2
2 agy

_ 2.2,. : s ’ o
where q,N*P(SHN’m sk”)is the off-shell pion momentum. Thus when the relative momenta

f% of nucleons inside the deuterons ave neglected equations (A5) and (A7) give

L2
(cos®_, —~1) = —272 (cos O~ 1) ' (A9)
W 4y
For the delta width Tand for the pion exchange form factor F(RZ)we take the Wolf[gqj

parametrization
FA my Ay uz(ﬁh .’

IN
VsﬂN ) uZ(Rf qi)




2 2 . .
14
F(kz) ) ul(BA qu) | (1 + R v 9 N)
. ) P 2
ul(RA qu) (1 + R v @ N)

2 2 2 2 2
where Aoy = P( sy M u2) s )7 P(m pr Mo, M ) s ay = P(m?,m2,u ),
q', = P(m2, m2, k2), r=o0.114 GevVv, m,= 1.232 GeV, R,=1.76 GeV—l 5

N A A A
R, = 2.86 GeV'! and
1 2x2 + 1 2
ul(x) = 5 5 n (42 + 1) -1 (A11)
2x dx -

In section 3 the different results for the integral

(3.1) are expressed in terms of the variables kidlki| s 4, and |ql.
In the lab. system we have
a
k =m - U 3 k = k ———-—t
1o 4m 20 10 8m
2= k? - i
~T N
(A12)
.8 - u 2 _ 2 2
9 = 8nm s 4 T4, 7 4
2 _ _ 2 2
(q k) (qo k1 )7 - m

19
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APPENDIX B:

We want to calculate the integral

a’r, vf,)

L(q,kl) = J 5

(B1)
: 2y 02
(My = @ (K, - u

?)

where @ = q + fz and K, = kl + fl
The approximation (2.4) and the very rapid fall-off
of the wave function suggest to take, for simplicity fl = 0., Then
o

we can put the integral (B1l) in the form

C 1 1.

L =- | d%r ver) ' (B2)
o 23 (q + )Zb2+(k+f)2
a a+* I L1741
. g _ .2 _ 2 .2 2 2
with a” = MA 9, s b"= u klo
P In fact a better approximation would be to take
f
fl v =1 Even in this case, as it 18 shown in ref. [29;1 we can
0 - 2m

put the integral in the form (B2). However, as the numerical
result does not change appreciably, we will keep fl = 0.
. 0
Now,using the method of Feynman parameters,

(1

7 : dB ' (53)
= - ) B3
vy . (Bx + (1-8ly)”
and taking
x:az f’(g + fZ)Z K y:b2 + (51 + fz)g
we have . d3 fower) ’
L = - [dBJ e ”122 (B4)
o [» gy + 0]

where



=B q + (1 - 8) Kk,

e
f

D= »° (-~ 52 + hB + gl
=1+ (a° - bg,)/rz
g =17/0"

Expressing waj) in the coordinate space and taking
exponential type (3.2) wave function the integration over £, ean

be performed and we get

1
S oa, dB (B5)

YT acC
2 ;o . 2 )
J , o D E_ocjw). + 13]

L = - -

using the Euler substitution

t - 48 = (8% + np+ 91272 = pyp

we obtain

V2 rc 3 a; + dt
o r J A ‘ (t -t )(t - T_J

(B6)

and then, finally,

a. t, - T t - T
L(q,kz) :—__‘[_2‘;‘1‘-_2 z _—____Q___{Zn_i_____t._ + In —_—
i A(T,- T_) t, - T t_- T,

(B?7)

21



where t, =1+ a/r
t -=b/r
T, = (- B +/B27= 4AP ) /24
4 = 2iraj + S
B = 2¢R + 2 hruj.
P = hR + g(Ziraj - S)
R = a? + b2 + EZ
= a2 - b2 4 gz _ 52

The logarithm cuts must be chosen carefully in order to avoid

crossing the integration path.

23
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FIGURE

CAPTIONS :

The one-baryon-exchange diagram for pd +~dp scattering.

Impulse sertes diagrams: a) single scattering; b) double

séatterihg.

The one-pion—exchange diagrams for the reactions:

a) pp »~ 7d ; b) pd->dp

The double-piton—-exchange graph for the pd-+dp scattering,
obtained by taking in diagram 3b the one-pion-exchange

mechanism for the pp »dT sub-reaction.

The backward c.m. cross section for elastic pd scattering
as a function of the incident proton kinetic energy in
the lab.. The three continuous curves represent the
contribution of the double-pion-exchange graph with the

following approximations, defined in section 3:

- Curve (b): pions pole integration}

Curve (e¢): delta pole integration;

Curve (d); delta and piomn pole integration.

The dotted line represents the one-nucleon-exchange
contributﬁpn and the dashed one is its incoherent sum

with curve (c).

fig.6 - Differential c.m. eross sections as a function of

eos Gc m. The curves are obtained with the approximation
(3-d);continuous line: cos 0 and cos O u linked by eq, (A9);
dashed 1line: cos eﬂN = ~1 over the entire angular range.

Similar behaviour occurs at other energies.
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