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ABSTRACT: We treat the galactic fluid, in the early epochs of the

Universe, as a non-linear Stokesian fluid. Some general

comments on fluids with viscosity are made. Then we
examine an exact solution and give a qualitative

analysis for Bianchi type—-I cosmological model gene-

rated by a fluid with quadratic viscosity dependence
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I - INTRODUCTION

In the ambitious program to create a coherent global
description of the Universe, cosmologists have been conducted
to the analysis of some idealized cohfigurations of the Cosmos.
Starting with the assumption that Einstein's General Relativity
is a good model for a theory of gravity, the essential task is
to present a coupled system constituted by a given distribution
of the energy contents in the Universe and the corresponding
geometrical structure of the space-time. Due to its high degree
of complexity one can achieve a good answer to this problem only
through succesive idealized schemas.

The most acceptable cosmological models, i.e.,
Friedman's homogeneous and isotropic expanding Universe, assumes
a continuous fluid description for the galactic matter plus
radiation. Actually, the great majority of cosmical models deals
with a perfect fluid behaviour. This has the great advantage of
simplicity and far besides this, it seems to be in good agreement
with current experimental cosmical observation.

Recently, however, the idea that Cosmology can go
beyond the investigation of our present equilibrium era(l) has
led some authors to try to incorporate dissipative terms on the
energy-momentum tensor of the galactic fluid. Although such Study
is still at its begining it seems conceivable that viscosity
effects will play an important role in Cosmology.

In 1968 Misner(z) suggested that neutrino viscosity
could be an efficient mechanism by means of which arbitrary initial
anisotropy dies away rappidly as the Universe expands.

As a phenomenological description of such process the
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Cauchy linear relation between anisotropic pressure m
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shear deformation o y was postulated. The second viscosity co-

efficient has been used by Klimek(s) and later by Murphy(4) in
order to create a homogeneous and isotropic cosmolegical model
without singularity. The effect of first and second viscosity
coefficients on the structure of the cosmical singularity have
been qualitatively investigéted by Belinski and Khalatnikov(s).
Grischuk has considered the possibility of describing particle
creation mechanism as a viscous effect in a non-stationary
Universe, like Friedmann's models. The purpose of the present
work 1s to initiate a program of systematic analysis of viscous
cosmological model of a more general type than those that have
been examined so far, by making an appeal to non-linear models
of viscous fluid. This non-linearity may be intimately related
to the feed-back mechanism of creation of particles in an expan-
ding Universe and the modification on the geometry induced by

the newly created matter. How this relation appears is a very

interesting matter for future investigations.

IT - STOKES FLUIDITY

The energy-momentum tensor of a viscous fluid, without

heat conduction, is given by

(1) Tuv = quVv - P huv + ﬂuv

where huv = gy

rest-frame of the observer co-moving with the fluid velocity V

- Vuvv is the projector on the 3-dimensional
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L is the anisotropic pressure responsable for Visco§ity effects.
The tensor v is symmetric, trace-free and orthogonal to v ,
that is Wuv= ﬂvu , wuvguv =0 , ﬂquV = 0. In the analysis of

the evanescence of some eventual primordial anisotropy some
authors made the hypothesis by means of which the anisotropic
pressure is linearly related to the dilatation tensor e“B ,
actually to its trace-free part, the shear oa6 = e“B - % haB.
This hypothesis is a special case of a more general fluidity
principle which has been set up by Stokes, among others. This
principle is based on more fundamental assumptions which makes
possible to relate the fluid dynamic quantities (as anisotropic
pressure, heat conduction) to the kinematical ones (as dilatation,
vorticity). Such relation, which is indeed the support of any
phenomenological description of the fluid behavior represents the
Principle of Generalized Viscosity. As a first typical example

of such Principle we can take the Stokes fluidity definition(6),
which states that the stress tensor of a fluid is a continuous
function of the dilatation tensor e“v . By taking the time-like

velocity vector vH = 6”6 and considering latin indices to vary

in the domain {1,2,3} we can write

(2) L. = ¢ &

in which e and ¢, are polynomials in the principal inva-
riants of the matrix elj , that is, the scalars I, II and III

which are given by

(3a) I =86, = 9
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As a second example we could consider a non-Stokesian

fluid in which the stress tensor is a function of the vortex ma

. . 2 .
trix o', = wle - %T h'. constructed with the vorticity
vector w;. This vector is related to the vorticity tensor
1 A > .
= th
W)y > h[@ h@] Vxle by the expression
wi .11 eijkw

(A simple bar means derivative, a double bar means co-variant
derivative; the symbol [ | means anti-symmetrization).

In this case we can write, for instance

(4) o= g gl

Let us point out here that, as it has been remarked
previously by A. Sommerfeld and others , the dependence of
the stress on the vorticity is possible only in a quadratic
regime, at least.

In any case, the presence of viscosity effects can
change drastically the properties of the gravitational field
induced by such stress. Among these, special intereét deserves
those which are related to entropy non-conservation induced by
a non-null characteristic function ¢ = wijeji. From conservation

of energy-momentum projected in the rest-frame of the observer

V" we obtain



(5) p + (p*p)6 - @ = 0

in which a dot means derivative in the V“—direction; we obtain
also the acceleration equation
(6) (ovp) V% - pp, Yy e Yy T =0
The characteristic function is a measure of the time-
-variation of the entropy - as one can obtain from (5) - and sets
some restrictions on the possible values of the polynomials
¢0, ¢1 and ¢2 by the conditions imposed on it by the second law
of Thermodynamics. Thus, ® must either vanishes (entropy con-
servation) or be positive (increase of entropy) - see Table I.
The above phenomenological equations are set up in
the believe that it can gives us a better understanding of how
anisotropy can dies away as the Universe expands. The influence
of the anisotropic pressure on the evolution of the shear can be
investigated by the equations of motion of the kinematical quan
tities and the knowledge of the electric part of Weyl tensor

. . . - - B
CaBuv which is given by Euv_ CuavBVaV .

If we call u = oljoji, in the case there is neither

acceleration nor rotation, the equation of evolution of shear

gives
(7) WA on - - gsr1rr + BL.od,
3 joi
] . - i _ i k1 m, 1
in which we have set = j = (1-8) (o K° 3 3 Oon® h j). Thus

vanishing of u, as time goes on, depends crucially on the deter-

minant of the dilatation matrix and on the Electric tensor Elj.
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. o = .0 . constraints
L m 3974
aeij + eeaij (a+8)62 - 20 I1 a+3 B=10
(a,B are constants)
aezaij+bee§+ceikekj (a+b+c)83-(2b+3c)eII + (3a+b+c)e2 - 2cII=0
+ 3¢ III
(a,b,c are constants)
i i i,k 2 2 _

fs j+ge j+he K® ; fo+g(87-211) + 3f+gh+h(67-211) = 0

(f,g,h are polynomials
in I, II and III)

+h(63+31T1-3611)

Ami. + nw26i.
J J

(A,n constants)

XeijwiuB + newz A+3n=20

[:Table I -

These quant
very little
that the ab
explanation
ever, one s

initial geo

One can extract the conditions imposed by the second

law of Thermodynamics by simple examination of this

table. For instance, one obtains % > 2 l% - 1; for a
3]

non-expanding fluid we have % < % l%; ; 1f the second

invariant vanishes, we must have % > -0 - % l%l ;

6
and so on:]

ities should be analysed on each specific model, once
can be said in generic terms. Thus it is not evident
ove mechanism could be efficient enough to give an

of the high value of isotropy of our Universe. How-
hould make a more detailed analysis for each specific

metry and for each Stokesian fluid.



ITIT - EINSTEIN'S EQUATIONS‘FOR BIANCHI TYPE-I AND THE QUADRATIC

STOKESIAN REGIME

In order to gain some insight on the influence of the
non-linear Stokesian regime on the behavior of the gravitational
field, we will examine now a special geometry which represents
a homogeneous but anisotropic expanding Universe, of type-I in
Bianchi's classification scheme.

The infinitesimal element of length is given by

2

(8) ds? = qt?

2

-2l yax? - viay? - cfroazl

Choosing a co-moving observer with the fluid velocity

vH = 6“0, the energy-momentum tensor has the following non-null
components:
o _
(9) TO—‘p
i i 2.1 i i .k
T7. = -p&~. + 678 . + B.0 67. + yB, 0.,
A T (S S

Before proceding in this analysis, if seem worthwhile
to make the following remarkr In the discussion of viscosity,
cosmologists have limited their analysis to the linearized case
of Stokes fluid. Although it could be a difficult task to ela-
borate models by means of which one could evaluate the value of
the generalized second-order coefficients of viscosity, there is
no a priord reason to reject its presence. Further, in the region
near the singularity the non-linear regime could dominate and pro
bably could give a better approximation of the effect of newly

created particles byv gravitational field.



The entrance of the Universe in a full non-linear era,
in Stokes expansion, has the effect of changing radically the
early features of the Cosmos. For instance, it has been sugested
by many cosmologists that in the early epochs of the Universe
matter should be gravitationally unimportant. Thus, going back
in time one should enter a region (which is called vacuum stage)
where gravitation is sustained by itself. If this is true, then
the properties of the singularity in such models are independent
of matter behavior. This has been proved by Lifshitz et af. in
an equilibrium era in which matter is treated as a perfect fluid.
However, it is straightforward to prove that such vacuum stage
could not.exist in a quadratic regime for the Stokes fluid, for
instance. The reason for this is simple: the matter terms are no
more negligible - in Einstein's equatidns - by comparison with
pure gravity terms, e.g. the Ricci tensor.

Now, the dilatation tensor is diagonal and its non-null terms

1 3 2 3 . ] )

are 61 = % , 62 = % , eg = % . Einstein's equations are:
(10~ ab,ac,bc.

(10-a) ab ac b o

) b,c,bc¢c _ 2 a a, 2

(10-b) 5t ctpc T - P toabT+Be =+ y(x)

a c ac _ 2 b b, 2

(10-c)  Z*+g*ac~"p+ad”+80 ¢ + v(p)

) BB ab 2 Y

(10-d) atbtap - " P*rab”+ e =+ (D)

Further, we have the constraint relation:

(11) Garere® + y [+ @F 9] - o
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From the above set of equations, we can infer that in
the case of a power law dependence of the anisotropic functions
a,b and c on time, there is no posibility of a vacuum stage.

We will make now two very different discussion of these
equations. Firstly, we give a special exact solution in order
to have some feeling on its properties, and secondly we will
turn to a qualitative analysis of equations (10) by using the
standard techniques of qualitative investigation of ordinary
non-linear differential equations.

Let us set

a(t) = e"t A
(12) b(t) = evt tB
c(t) = et tc

in which uy, v, n and A, B, C are constants.

Using the ansatz (12) in equations (10) we obtain

(13-a) wuv + un + vn + E\(\Hn) + B(u+n) + C(uﬂ))] el

+ (AB + AC + BC) t°2 = o
(13-b) w2 4 nz + un + [%vB + 2nC + nB + vé] 14
+ |B(B-1) + C(C-1 -2 . 2
-1) + BCj t " = - p+ ap” +

+ Bou + Yuz + {:Zaw + Buf + BOA + ZUYAW el

+

{&QZ + BOA + yAz_Wt—z

(13-c) v° + uz + vy + {évB + 2uA + uB + vA] £
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+ {%(A—l) + B(B-1) + A-W ‘c_2 = -p + a@z +

+ Bon + Ynz + [%aéﬂ + BnQ + BOC + znyé1 t'l +

+ [&QZ + BAC + ycz:]t‘z

(13-d) nz + uz + nu + (éuA + 2nC + nA + uéw 7t .

+ [%(Afl) + C(C-1) + Aé} 1:_2 = - p + a@z + ROV +

+ yvz + [%a@ﬂ + BQv + BIB + Zvy%} t_l +

+ E)LQZ + BOB + szj 2
in which we have set 6. = ¢ + Qt_l : that is & = u+v+n and
2 = A+B+C.
Let us take the very special situation in which the

coefficients of viscosity are such that

(14-a) 3 + B = 0
(14-b) y = 0
Then we look for a solution which has & = 0 and A = B = C, in

order to obtain the simplest generalization of Friedmann's

Cosmos with Euclidean section . We set:

- -2
(15-a) P=pP,*t Pt T+ ooyt

(15-b) P=P,*Pp t " *+p,t
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where Py P1s P> Pgs» Pps Py are constants.
Then a straightforward calculation gives, for the

compatibility of equations (13) with our ansatz:

p =
(16) = 1/3
B = -1
_ _ 2 .2 i - i _
A=1/3 ;5 o5 = - u-vi-uv; PP =05 oy = 1/3

Let us make some comments on this solution. First of
all we remark that this is a very special solution and it may
not, certainly, be considered as a typical one.

The density p is not strictly positive for all time t.

2

Indeed, we have p = p  + 1/3 t in which o, is given

above. It is positive definite only for those times in the range
0 <t < %— T_LT-E te- The domain of positivity, measured by the
value of tes gepends on the anisotropy. Indeed, smaller the ani-
sotropy (that is, po) bigger t. - There is thus, apparently, a
difficulty here, due to the non-positivity of energy for all
times. However the above solution is to be considered in a cir
cunstance in which the viscosity is non-linear in the dilatation
tensor, and thus we are facing the hypothesis by which this
could occur in some restricted epoch of the history of the
Universe, but not for all times. Thus, for other periods the
galactic fluid behaves differently and thus we should match our
solution with other geometry with different matter behavior.
The unique non-vanishing components of the dilatation

tensor are:
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Finally, let us remark that the characteristic function 9
equals Zpé:£_1 and thus is a negative increasing function of
time. Thus, the evolution of such Universe is in the direction
of decreasing time, in accord with the second law of Thermody-
namics. We face here the same situation as encountered in( 5),
of break of invariance with respect to time inversion, due to the
effects of*&iscosity

Let us turn now to a dlfferent approach( ) of the in-

vest1gat10n(of the set of equations (10)

In order to simplify our prellmlnar analysis of

5

FecRe

equations in) we w111 1limit the anisotropy to a plane by assu-
ming b = ¢, for instance. Then we define two new variables by

the relation

_a
(17—3.) U = 5’
_ b
(17-b) V = b

In the new variables, the o0ld system reduces to

(18—3) yAY (U + V) = o
(18-b) U=-0%=+ %— vi _ouy - 13- + 2L (U,V)
(18-c) BRI A R T UAY

in which
2

[
I

[ 2ol + )% & gur2vyv o+ YV

and we will assume there is an equation of state p = Ap, A is a

constant. We will simplify further our discussion here by assuming
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conditions (14) for the coefficient of viscosity.

The existence of a plane of anisotropy has the effect
to reduce our system to equations (18) which defines what 1is
called an autonomous planar system of differential equations,

that is, we have

(19-a) U = R(U,V)

(19-b) V=1 (UV)

with

(20-a) R(U.V) = (2a-1) U2 + [%%l . 4%}v2 + (2a-1-0)UV
(20-b) TU,Y) = (20 - 3 - HVE - a? - () UV

The origin, in the (U,V) plane is an isolated singula-
rity for the system (19). Both R and t are homogeneous functions,
of degree two, on U and V. Thus, in order to analyse the proper

ties of the above system(lg)

it is conveniente to change coor-
dinates going into polar variables r, ¢ defined by U = r cos¢,

V = r sin¢. Thus, (19) goes into

r“R 6]
r T [¢]

(21-a) T

(21-b)

-
]

where R[ ¢ | and T[ ¢ | are given by

(22-a) R[ ¢ = sin¢(20 - 3 - 3) + (20 - 1) cos’¢ +



-15-

+ (a-x-1) sing c052¢ -[—% A+ 50 -~ %_}sin2¢cos¢

(22-b) T[ ¢ ] = - o c053¢ -{:l%i - 4a:]sin3¢ + (A%l)cos¢sin2¢ -

- (3a+ A - 1) cosz¢sin¢

In the investigation of the behavior of the tfajectories
of the system (21) in the (r,¢) plane the particular solution
wich pass through the (singular) origin are determined by the
real roots of the equation T[¢ | = 0. We examine two special
cases characterized by a dependence between the coefficient of

viscosity o and A , which are:

1 - 8o

case (i) : A =1 - 6o ! case (ii) : A

Firstly, let us consider case 1i). A simple inspection shows
that there is a unique characteristic line which makes an angle
of 45° with the U-axis. This line, which equation U =V, is not
hing but Friedmann isotropic solutioﬁ. The behaviour of the
trajectories (of the solutions) are given in figure 1 in which
we have made a conformal mapping in order to represent the infi-
nite as the boundary of a circle. The curves go approximatively
parallel to Friedmann's solution whith a small (not catastrophic)
atraction near the origin.

There are two singular points at infinity which are
the contact points of Friedmann solution with the boundary:
points Py and ﬁl of figure 1. These two points are two-tangent
nodes for the trajectories of our system. Thus, all solution
starts at 51 at past infinite and ends at P1 at future infinite.

The solution pass through a region in which the total energy is



-16-

negative that is U(2U+V) < 0. However the solution does not
sfay at this region for long periods of time. Remark that there
is no possibility of interchanging the axis of expansion/contrac

tion. Both axis begin contracting, pass through a region of

minimum and them both starts to expand. This general behavior

is stable for those perturbations that do not destroy the constraint

relation between A and a

Fig. 1 - Conformal representation of the characteristics of the plane auto

nomous system (19) in the special case XA = 1-6a. The arrows point

in the direction of increasing t.
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Fig. 2 - Conformal representation of the characteristics of the plane auto-

nomous system (19) in the special case A = 1-8a , é%-< o < %

The arrows point in the direction of increasing t.

FF is Friedmann's solution.

Let us turn now to discuss case 1ii) X = 1-8q

The roots of T[ ¢ | are given by the solution of
coseo = 0; cose1 = sinel; c0562 = 4sin62. Contrary to the previous
situation, here the behavior of the trajectories depend not only
on the relation between X and o but on the value of o itself.
From the systematics of qualitative analysis for homogeneous
system we know that the behavior of the characteristics depends

on the sign of R[_ ¢ | at the neighborhood of the invariant rays
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¢0 = 60, ¢1 = el s ¢2 = 62. This sign, as one sees from (22-a)
depends on the sign of the difference o - 7/24. Now, from the
natural limit on A , we obtain 0 < o < 1/8. Let us discuss

the situation in which 7/24 < o < 1/8. In figure 2 we represent
the conformal mapping of infinity into a circle. The contact
points of the axis ¢, =6, , ¢ = 64 and ¢, = 6, with the

circle are the singular points at infinity, which we represent

by Py, Py Py and its symmetrically related points P Py, Py
All these points are two-tangent nodes. The trajectory Plﬁl Te-
presents Friedmann solution. As trajectories in the planar sys-
tem cannot be crossed, figure 2 tells us that only in the Poﬁz
and ﬁOPZ regions the phenomenon of alternation role of the
axis - expansion turned into contraction and/or vice-versa -
can occur. Thus, in our case the expanding (contracting) plane
y-z can turn into a contracting (expanding) era, although the
x-axis cannot change the sign of its expansion (or contraction).
Particularly interesting is the behavior of the model under
perturbations of the Friedmann solution. In the region inside‘

the arc P0P1P2’ perturbations of Friedmann solution are unstable;
in the region P.P,P, perturbations of Friedmann solution are
stable.

Such time assymmetry of the behavior of the above model
Universe is a consequence of the viscosity effects, as has been
pointed out previously by some authors( 5).

We could like to call attention of the reader to the
high degree of instability in (Friedmann) F-solution. A small
departure frow it may be responsible for the model to annihi

late at P, or Po. If F solution happens to occur, then its tra-
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jectory until the point 0 must not be perturbed in order to the
solution enter the F-region. Thus, it seems very unlikely that
the previous era of our Cosmos, before the actual period of ex-
pansion, should share both properties that the geometry to be
of Friedmann type and the matter to behave like a quadratic

Stokesian fluid.

IV - CONCLUSION

In this paper we have presented the basic idea of how
to treat the viscosity of the galactic matter as a Stokesian
non-linear fluid. This could be a good description of the be-
havior of the energy of the cosmic fluid in that highly compre-
ssed early epoch in which large-scale anisotropy could be so im-
portant as to induce non-linear response.

In the preliminar analysis we have presented here the
basic features of solutions of Einstein's equations under such
non-linear Stokesian regime reveals a lot of new results. Among
these, one can quote the absence of vacuum stage and consequently
the need of a study of the behavior of matter coupled to geome-
try near the singularity; the very sensitive dependence of the
stability of Friedmann solution on the values of the quadratic
coefficients of viscosity; and, finally the non-symmetric beha-
vior of the Cosmos under time-inversion.

Finally, let us remark that, as it has been pointed
out by some authors, like Grishchuk(g), viscosity effects may be
related to the effects on the geometry due to created particles
by a non-stationary Cosmos. Thus, our present model could be related
to the created particle mechanism. We will come back to this point

elsewhere.
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