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I . INTRODUCTION

The problem of calculating the spin polarization associateu v «
localized spin in a metal has been the subject of much work. In particular
the effect of electron correlations in such a problem is a quite interesting
subject. If one intends to discuss rare earth systems, where the existence
of d~band is now shown through band calculations, such effects should be
included. In a previous workl » correlation effects were introduced in a
narrow d-band using Hubbard's picture, taking into account in a self-
consistent way the effect of scattering on the correlated electron motion.

It is the purpose of this work cf extend this treatment including the broad
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s-band and the hybridization between s and d-bands. We expect that, even in
the simplified model adopted here, the main features of a transition metal
host (s and d hybridized bands) are conserved and then a complete calculaticn
of -the spin polwrizations p s and p a associated to these bands may be
performed. We adopt here the treatment of hybridized s and d bands introduced
by Kishore and Joshi’ in discussing the stability of magnetic phases in
transition metals. The hybridized s~d bands is then coupled to a localized
sp:m § through exchange couplings J° and Jd (this is an appropriate
description of a localized f state in a transition host or rare earth metal
or intermetallic). We recover the main results of reference 1 for the
"feed-back" effects, although s-d renormalization is present everywhere, and
the enhancement of the spin polarization is still present. In the general

discussion we present possible applications of this calculation.

II . FORMULATION OF THE PROBLEM

We start defining the host metal hamiltonian which includes the
s and d bands, intra d-band electron correlations and s-d mixing. In the

Wannier representation this hamiltonians reads:

+ +
BHo= ] Tt + T Mata +ITnn +v]celd +d’cy (D
» » - > G
o 1,:2,:,0 ijfieTje Ty ¢ Jijio o P irae T s oo Tiod
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In expression ({1} create s

Py

+ + .
g and d, and ‘d electrons respectively and
+ - . . . .
Ny = d‘odi03 the s-d mixing term 13 an Anderson type of mixing, the matrix
ko
elements of Vfd baing assumed constant for s
e

cirplicity sake.

There are now two types of exeo

-’
electrons, through the couplings of the

localized spin S to conduction states,
. S d o . - . 1
respectively J° and J7, n the Wamier representation :

s aZ ; . s D z_ .+
Hyo= § J (R;,R.)870e, e, + bR GRS od; ds (2)
i,3,0 J L UG I J

The total hamiltonien is then

H=H +H (3)
(o} 1

One expects physically that in (3) to the separate scatterings (the d electron

spin polarization being enhanced by the Coulomb repulsion)

one adds the
interference processes induced through s-d mixing.

The procedure to calculate the spin polarization is as usual to
introduce the d and s propagators. We start discussi

ng the equations of motion
for d-propagators.
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t )  EQUATIONS OF MOTION FOR d-PROPAGATCRS

. 1 21 R
Let us define the prcpagators Gij = <<d, o’ d30>>w G;.(w) =

<«<ny_ 9505 94 0>>w and G (w) = <<c; 3 d, These propagators satisfy

J
the following equations of motion:

Jw'

1, _1
BRI LT, Gpi(w) + I GG tw) + v 6 (w)
+ Jpa%r, RS oGt - (w) (4-a)

L]

st -
w 635w Xz.Tu 25 Hw) + v G (w) + }sz (R, , t)s cGt . () (4-b)

(wPI)G (w) = ;; @y >85s * LeTip (<0 g dso>>
+<<d, Td, d. ;4 oy - <<d d. 3 4 )
i-0 £-07 10’ 40 Tw £ -o%i-0%0} jc 0

+ lqd(R z)S o(<<n tc’ djo %
+
- <<dy odz oJig’ dj >y ¥ <dp dl-odlc’ djo>>w)

+V <<ny (4=c)

R
d. »>
-o%ig? 30w



Zquations (4-a) and (4-b) are exact, and now one must adopt a decoupling

schome in oxder to desd with equation (4=2). The

.. i 11, 4z
v I A (O e dE¢ .
v J u";‘i’“_i,"I\”’:i_j("'x) Ny g0 ,.]\w)_p. v

- (w) (52

Equations {(4-a),

detoymines the EPIN €3}
-}
i) EQUALITONS CF MUTION Fai TUR o-TPOPAGATORS

. s ‘ . +
We define the following propagators: 370 (w) = <<cg >

3 C. >
107 Ty w?

e (2

]
i

~N
n
+

2, >» . The propagators
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® Ggg(w) = -i-; Gij + ZL Tustg(w) +V G;(w)
+ zst(Ri,R£>schS§(w) (6-a)
w G;;(w) = ZlTudGE(w) +IESW + v RO

+ J%R, R 957065 (w) (6-b)

28 . . . < . . .
The propagator Gij (w) satisfy a equation quite similar to (4~c); performing
the same type of decoupling as above one obtains;

2g - s d 28
@63 = ny YT, %550 + g Ry Ry (635 w)
1s z g z ~18
- <ni-a>Gij(w)]s o+ <ni-o>ZLJd(Ri’R£)S osz(w)

Ss -
+ V <ni_°,>Gij(w) (6 c)

Again equations (6) forma closed set which determines the propagator

ss
Gij (w)
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IITI. SOLUTION OF THE COUPLED EQUATIONS USING PERTURBATION THEORY

1 )  SOLUTION FOR THE Gg?( w) PROPAGATOR

We start Fourier transforming equations (4) and (5); introducing
Aﬁ%(, through the definition:

- - Zj_ Al.’l.g ei(k“‘k?}c.ﬁi N

and assuming that the exchange integrals JS(k,k') and J%(k.k') depend
only on k~k' one obtains:

1
(e, DGy r (@) = i-; St * T G (@) + V 6L, ()
+ qud(q)szon gkt (@ (8-a)
8,51 - 11 Z .Sl _
(g NG (W) = V G, ) + [ 0%(@IS"06 1 w) (8~b)

2 1
@D @ = L o640 + 2 a5 4 e Ty W

- 11
+ Zk"e)c:"%"%"k'(“’) +V <n-°_>G;l<,(w)
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#V D OB )+ %] J° Y@ek! fqe @ (8-c)

The perturbation sclution of equations (8) to first order in J% and ud goes

v

as follows: firstly one obtains the G et (w) propagator as:

11 (o)
2 g —E — Gk_q )t (@ (9
X k~q

Gﬁi,(s) + vs®o

Gkk' (w) =

L&)"‘G

Where G;dl(, (o) is the zeroth order d-d propagator (this propagator contains

only correlation and hybridization effects of the pure host).

Next step is to derive an approximate expression for the Gi;-](w)

propagator; substituting (9) in (8-c) one gets:

d
I<n > I <n >
21 @w~1I w-~1T
IV2<n 1" 1 I Aﬁ}ik'
+ < G}(}(' (w) + - — —
(w=I) (m-—e:k 2r w- I
d g (o V2<n d_{5>SZUI I35 (@)
+ Z n€p nln nGkn vew) +
w=~1I KR ek k (w-I) (we ")~ w- e>
k" q k-q
11 1 11(0)
Gk"q 2 2 MM 2 !\I‘* },n s ";\nkl
k" Ekn
18% § A (o) (10)
+ ,_m) (Q)( . Kt La3)

w-~-1TI 3
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Equation (11) becomes then:

L
Gl s X LT g W
mw - g w =g
. V% @) 1 (o

(w-%(d) (w—eks) q w - e}s(_q Gk-q,k‘

1 z 11 (o)
Dy ) qu(q)S Oy o1 @ (13)

x

From equations (10) and (13) one sees that the complete solution is
1 2

obtained when GkkEO) (w) and GMLSO) (@) are knownj; in order to get them we

calculate explicitly:

I<n, > I<xn, > e.d
21(0) 1 d-o d-g” Ek" .11(0)
I (W) = = () 4 (w) (14-a)
Gkk' 2r w~-1I Kk w=~1 Gkk'
and
8

11¢(o) _ 1 kk' 1 21(o0)

Gt o Tozat T zal Gt W (14-b)
W= W&

The solution of equations (14%) is the usuval s-d renormalized Hubbard
propagator;
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1+ E:EQ:gi
11 - T
Gl = s, wr X (15)
27 . d I<nd—c>
w - Gk 1+ o "E[—-

Which is expected in the absence of the localized spin.

Introduce now the notation: Gkk,GO) & (m)&kk., one expects
then for the propagator Gkk.(w):

G @@ = g s, , + GV (w (16)

11(1) . . .

Where Gkk' (w) is the first order correction to the d-d propagator due to
the scattering by the localized spin. The equation for it is obtained
retaining the first order terms in equations (10) and (13) and using

equations (14) to connect Gkk(O) to gkd(w). The result is:

2.2
Gk](tl)( ) = I 1(1)( ) + V S CJ (k k') gk'(w)
w- " (w- ) (w~e %) (w~sk.
ek 5% g5 (W) (17-a)
w - Ek

I’ I<n, >34

21(1) kKT d~o" "k 11Q1)
I (w) + )
S T om w1 w =1 e




+ """‘"‘?:“‘""""' Ekc‘i AI] Q C—T r\w)

w =~ 1

,-,Z - oo .
V an o 8Tl JU (k)

r\ (i

+ - ky(“}l
(w~1) (w—e ®) (w- £y ,) ‘
u? -0y o
W2 b g s%03%0c-k") 11 TTg-g
+ . S gk,(w) + [......
(1) (m-ek.) w = 1 2n w-I
d
I<n e € 3
+ dg KX gkc}(w)] (17-b)
w~ I ¢

It is clear that substituing (17-b) into (17-a) one obtains the complete

. 11 .
sclution CM,(M) in terms of known propagators.

At this point it is useful to introduce the simplifying

approximation of infinite repulsion (I-w). We calculate then lim I G\«:k (w)
T

and substitute the result into (17-a). One finds for (17-b) in this

1imit:
211) 1 ) IO
L Gger Tlw) = - o o = Mg 5 G
4 g v2en SRSl D T
- £ by gk,(w) gk.(w)
(w-¢, 7 (w-e, )
y k!
7 Y
Ve obn o
- et g S (18)
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Using (18) one easily obtains the final result for the G;(,;,(w) propagator.
In order to put things in a simpler and more visible way we define the

propagator:

- d - 1
% W = - € d (1~<n, >)
w k d-o

The propagator Ekd(w) should be compared to equation (15) in the limit of
I+, They differ only in the l-<n -5 factor that appears in the numerator,

the poles being identical. Physically the poles correspond to a Hubbard
narrowed s-d hybridized d-band.

. e . 1,
In texms of this propagetor the final solution for Gkk.(w)

reads:
11 — il - —
Gt (@) = gkd(w) Syt *+ B W) I Gex$0(1-any_ ) E d(w)

1 —=d -0 _=d ~d , =0 .. —a
- —2-; 8 (w) Mg~ 8 (w) €1 Ankk,(l <nd-c>) gk,(w)

vis%0u (k) (meny_ )Y _
* g (w) 5 S gk,(w) (19)
(w-g, ") (ar-e:k,)

Written in this way the propagator G;dx(, (w) is shown to be the sum of three
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main comtributions. Firstly one has the pure host propagator gkd(w) 6}«,
which is (15) in the infinite repulsion limit. The next three terms
correspond respectively to the f{iret Born approximation for direct d-d

scattering associated to Jd

and the "feed-~back effects"l. The expression
for these d-d terms is formally identical to that obtained in reference 1
for the non-hybridized band. The only difference introduced by the
existence of hybridization is that the involved d-electron energies
(explicitly or implicitly in the Ekd(w)) are now s-d renormalized d-electron
energies as defined in (12). Finally the last term is a new one which

describes a process where a d electron of wave vector k' is s-d admixed

into the s-band, scattered into wave vector k through J° and then admixed

into the final d-state.

ii)  SOLUTION FOR THE Gi?(w) PROPAGATOR

Again one starts Fourier transforming equations (6) to get:

Log 0 vV ED w + L 50,kms%eGn () (20-a)
2r )

s
(w-€

) Giﬁ.(w)

#

it

(we,d G, ) = T A7 ) + V6w + LI kMgl @ (20-D)

"k t

i o das ¢ . d , "0 Al8
P G,r&*xw} t g€ Ankk,.(;k,,k.(w)

it

(w= 1) qii,m
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+V <n >G’(k' ((0) +V Zk" Ank)( Gk"k'((ﬂ)

+ Ek,.J (x,k™M 570G “’k"k' w) (20-c)

Following the perturbation scheme we first calculate the zero order

propagators .from (20-b) and (20-c) one gets:

DG W) =y 55963 W) + v <ny_ 6531 (w) (21-a)
and
1s(o) 28(0) , ~55(0) _
e 2w = 1 65w v e w (21-b)

From which one gets for G;E,O)( ):

G,‘(if"’( )= v 6w 1w (21-¢)

the Hubbard propagator being defined as:
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To complete the zero order solution we substitute (21-c) in the zero order

equation for G§S$O>, namely:
W-e e ) = s+ v S0 W) (21-d)
2n

to obtain the final solution:

ssSo)(w) - };'Gkk' . 1 —
2 w-g, = v Gk(m)

(22)

This represents an s-electron which can be admixed into a Hubbard

correlated d-band. Again we search for solutions Gii,(w) in the form:

ss(1) )

and write down first order equations associated to the system (20), Trese

equations are:

JS(k,k">szoGi§£?)<w) (23-a)

1

velS Wy 43

5,,5s(1)
(w—ek )Gkk' (w) Kk X!

1s(1)

d 25(1)
(w-ek )Gkk' (w)

TG ) + v Giifl)(w)

{1

+ Jnd%00kms%06l 502 () (23-b)
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(w‘-I)GJiiS’)(w) = <n d_0>ekds]l<i’$1)(w) + Zk,.ekﬂ An?-]o.,G}l(.s,(iz(w)

1 -
+ vy >3 + v §, v, 65w

+ Lt 20 kMSZ0e25 ST (w) (23-0)

Substituing in (23) the values of the zero order propagators obtained above
and performing a straightforward algebra one finally gets (in the limit
I+o):

et @ = g (W) Sy + g S 370,k )S%0g, T (w)

+ g5 Vv [g3w 3%k,kN5% (-, »ETW] V g 5w

- g W vV BT gy + 6357 a2, Q-my MES] Vgl (20

Equation (24) shows clearly the effects of exchange scattering and
hybridization in the s-states. The first and second terms are respectively
the host metal s-propagator and the Born approximation for the scattering
through J%. The third and fourth term show r‘es;pctively how direct d-d
scattering and feed back effects present in the d-;band affect through the

s~-d mixing the s-electron propagator.
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IV . SELF-CONSISTENCY PROBLEM FOR THE d-PROPAGATOR

In expression (13) the d-propage;or is melated to Xnown
quantities and to An;;,z, » thus implying in a self-consistency problem. From
the standard procedure to calculate thermal averages from Green'gfunctions

one needs to calculate:

s<c o >=F [86), () (25)
“k'6%ko w LTRK T

Where 6G]1()1<,(w) is just eguation (19) without the first term. In (25) the

notation for Fw is just Bloomfield's one’. Since we are interested in

calculating An;lo, the involved thernal c‘iverage1 is

+ _ s )
6<Ck+qccko> =F, f.6€}<,k+q(w)1‘ From equetion (19) one gets:

+ . d Z - d —d
Zk6<0k+qoc1<o> = J7(Q)8%0(1~<n,_ >) szm lgk (w) gk+q(w)]

1 -0 d, -
- bn LE, (g W]

o g Mhes Fy B B @)

--d
- g Ve 2 7, B s Bieg)
w +q
2.z 1 1
+ V%% (@) (1ny_ M2 I, . BY s s g},+q] (26)
w=g k+q
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Since An zk 6<ck+qck> it follows from (26) that the self-consistency is
readly obtalned 1f one evaluates the Fw symbols. We do that in such a way

to introduce sore kind of generalized susceptibilities. Fiwrstly consicer

the propagator Ekd(w):
W=
'gfkd(w) = 1 = X (27-a)
2
V' .1 2
w - (l-<n >)(e + S ) (w-nkc) (w Ekc)
w-€
Xk
In (27) Ek1 and Ek2 are the roots of:
S d 2
w’-we,® + (1-<ng >)ek] + (-<ny > e " = VE) = 0 (27-b)
For further calculation we separate (27-a) as:
s
w=- €
dw) = Kk (-1, (28)

o " Bo B g

Using the form (28) for the propagator ékd(w) now it is easy to evaluate
the Fw symbols in (26). Using (?28) one gets for:

d 1 -dn,
Fw fEk “k+qd”

(w- S) (o €k+q)
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~d 1 -~ d 1
Fol B WES ) X T e hE T iy
WL TR g B0 Bro? BxrgErerg

1 «
F T ]
w 1 - 1 -

+F L 1 1

w L( 2 2 -
w-E ) (T
ko' ~k+qo)

-7 K 1

w ( T,l 2 -
w~E " Y(w-E
ko K+q, )

R —D (29)
( m'*Ekc) (um;ko )

Now one uses the usual formila:

1 ) f(El)-f(Ez)

F
w

(w-—E])(w—Ez) E,-E,

Where f(E) is the Fermi-function to obtain:

2
B[ BIW —2 g lw] = ] M
(w—hk )(w~Lk+q)

1

1
2 1 2
H5V=1 k (Eko-Eko)(Ek+q,c-Ek+qc)

£ Y-£e.Y )
x Lko krao (30)

U_p V
Eyo Ek+qo)




]
[+3)
~3

Introducing the generalized susceptibility

£ Hy | g V
T*V(q) = X 1 (E" ) (L -<+qc)
q’ = k ,. 1 . 2), 1 P ) Y Y
Mo ko Vkeqo k-mc o kg

one obtains finally:

~;d 1 1 IERN Sagb ¥ = v
LE, & Rl gk, =5 (-1 V@) = (@) (31)
W= W qu HyV

Using a quite similer procedure for the other terms involving products of

&  one gets:

Zk » [gxm(w) ‘}dq((”)] u )y (- l)n+uxlu\)(q) = xl(q) (32-a)

Where the "generalized susceptibility" xl(q ) is defined as:

- My -
(q) ) (Ekc ek)(*ko €rtq0’ f By (E'+n o 81)( X+ ,0 €P+o)f(Ek+ac)
k

(32-b)
2
(B~ Ek ) (B}dqq"Ekw‘qc) (Ekc—Equ)
Similarly for the feed~back term:
LF, [ (w)ck+q Cw)] = ] MV W) = X, @ (32-¢)

HyV



268

Where

(“Pc—ek)(‘ko k+r

Y(ER I=(EY, ~e) (T, €, 5 V()

(q) 2kt‘k+q
(Lko-Eko)(Ek+oo “P+qc)(Lko Ek+ccr

The last “susceptibility" appears in

LE L B ltw —2— gkm(wﬂ I DY) =y, ()
w~sk+q U,V

Where

(Eko~€k (“kc) (E?+co 8:\+c VEE, | o)

(Ekongko)(E‘+qc “k+oc)(Eko ‘k+qo)

xzw(q)

Finally for Pw[‘ékd(w)j one obtains:

k
N = LE (g le) = I [k o k £CE, B"‘,’-e" £E2)
oo ] < b Ry r e o o e

(32-d)

(32-e)

(32-1)

(33)

Now substituing equations (31), (32) and (33) into (26) one obtains for a

paramagnetic host (<nt>=<ni¥>):
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& = IU@IS%0(1-<n>)x, (@) + 75(@)s%0vA (1~<n>)%(q)
oy 1 7 s \’2 b - i H 2
- Ang [55 N+ (1-<n>) xl\q) + ¥ (*~\n>)x?£q)j (3u)

Changing the spins ¢ into -¢ one obtains a similar equation for Aﬁg;

solving this system of equation one gets for the self-consistent

g
Fi\s S
q

s @%@ + 3%(@S7ev (1) (@)

An (35)
q 1 - 2 .
1-[=N=+ (1-nx;(q) + V- n )x2(q,]
27
DISCUSSION

The self-consistent solution obtained in (IV) is now discussed.
Firstly one notes that a quite similar procedure may be developed for the
s-like spin polarization. From equation (24) one sees that using the self-
consistent Ang obtained in (35) the s-spin polarization is uniquely
determined in terms of host metal propagators and An:. The complete self-~
consistency is then solved exactly for this simple picture of the problem.
Now it should be noted that in the absence of sd mixing (V=0) one recovers
for the d-like part the result obtained in L . To see that, one notes

that in this limit equation (35) reduces to:
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o Jd(q)szo(1~<n>)x1(q)
Anq = (36)
1- 13N+ (1—<n>)')'('l(q)|
2n

From definitions (32-a) and (32-¢) and using the fact that the roots Eku
for V = 0 are respectively Ekg and Eks one finds that:

d d
) f(zlﬁgo) - f(Eko)
k

d d
Ek+qo - Be

0 g,

and

a . d
@ = 3§ d f(Ek+q0) - &)
X'e k “ko p a

v=0
Ek+qcr - B

Then equation (36) is precisely the result obtained for the pure d-band
case. In this limit the s-like propagator reads:

55 () = gf(wy, + £ W(k,k")5%0g (W)

Which is precisely Watson's® result for the spin polarization in a
independent particle model.

Comparison between the general solution (35) for the changes

in d-occupation numbers in the hybridized form and the pure d case shows
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that a formal similarity is conserved. In the pure d-case the numerator
involves (in equation 36) the puré Watson's result, proportional to the
band susceptibility,and feed back effects introduce the enhancement factor
~appearing in the denominator. In the hybridized version two driving
contributions appear, namely the direct one JdSzo(l-<n>)x1(q) where xl(q)
is some kind of s-d renormalized d-susceptibility and a term describing a

scattering of a s-electron admixed into the d-band.

The enhancement factor occuring in (35) still envolves as in
its pure d-counterpart a term involving the renormalized d-susceptibility,
but now a pure mixing term proporticnal to V2 also appears. Since the
enhancement factor may be understood as a kinetic effect (the exchange
scattering acting as a change in hopping motion) it is natural that
mixing acts as a reduction factor for hopping motion. A possible
application of this calculation is the case of intermetallic compounds of
xﬁre earths with a localized f-moment. In particular for some
intermetallics it is thought that the d-bands originate from transition
atoms only, the s-band being associated both to the transition and rare
éarth atoms. An example of such a situation could be the case of LuCo,
intermetallics with Gd impurities. For such systems the coupling
between the 4f local moment and the 3d states is very weak since d-states

are almost concentrated on the transition metal sites, then one takes

J%q)

m

0. In such a situation equation (35) involves only as driving

term Js<q>quv2<1~<n>)2§(q) which shows that the d-polarization
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originates only through s-d mixing. Similarly all terms in (24) involving
J~ are dropped and only indirect terms are present as far as the d-band is

concarned.
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