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In srder %o Investigabte whish phrsicel assumptions are relg
vant to the walidity of disyersion relationsg for fizxed momentum
transfer,; 2 simple case i3 treated: the scatitering of a classical

scalar field by an acbitrary spherically symmetrlic scatterer of fi-

4

afficient to asgsme: (&) restrictions, due to

-

nite rading. It ig

i

ot

causalitys, on the prepagetion of signals with gzarp fronts; (b)) con

w

ditions on the behaviour of the phase-ghifie in the low-frequency
and high-angular-momentum limits. To relate the scattering ampli-
tude for fixed momentum transfer with the prineiple of striet cause

alitys a new representation for this amplitude; in terms of the

# Supported by Conselho Nacionsl de Pesquisas.

#% Now on leave of absence at the Instituut voor theoretische Fysilce der Rijks~
universiteit, Ubtrecht, Nedsrland.
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seattered wave at finite distances from the scatterer,is introduced,
The dispersion relations are rigorously derived from the basic as-

sumptionso The results are partiaily extended to the scattering of

Schrodinger particles. An explicit example (totally reflecting

sphere) is treated as an illustration..

T Intro&netiom and SUrvey of results

{a) Relation to previous work.
The connection between causality and dispersion relations

for the ﬁmmatrix_has baen thorsaghly_investigated by van Kampen; who
has considered the scattering foa zlassical electromagnetic field -
or of o SshrSdinger particlie z'by a scatterer of finite radius. He
has shown that the dispersion relations follow from a very small num
bar of assumptions about the scatterer; .the most essential one is
a causality condiﬁiona' In quantum field theory; the dispersion re-
lations have also bheen de:ived from a set of general assumptions
{although the.assumptions'concerning the interaction are more speci
fic in this case)y and a céusality condition also plays anessential
role 330

An entirely different approach has been taken in the deriva
tions of disPersién relationg for fixed momentum transfer which

4

have been given by Khuri * and by Klein and Zemach ° for the scat-

1. Van Kampen, N.G., Phys. Bev. 89 (1953) 1072.
2. Van Eampen, N.G., Pbys.Rev. 91 (1953 1267; Physica 20 (1954) 115.

3. Bogeliubov, N.N. and Shirkov, D.V., Iptroduction to the theory of quant gg@
fieldy, Interscience, New York {1959) chapter IX.

4o Khuri, N.N., Phys. Rev. 107 (1957) 1148.
5. Klein, A. and Zemach, C., Annals of Phyeics 7 (1959) 440.
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tering of Schrodinger particles by a potential, and by Khuri and
é

Treiman for the scattering of Dirac particlies by a potenﬁialo The

form of the interaction is completely specified in Lthese casess and

the derivations are based on the formal solution of the seattering

. . o o AT ; e T
integral eguation, by means of a Fredhosis expansion 490 v a Lioue
ville=Neumann expaunsicn 2, It has‘alsm been stressed that ne X

plicit use is made of a cavsality conditicon, However, it iz clear
that many physical assompticns are impiic it;v contained iu the fope
mal sclutions employed » thege derivations. The adopted procedure
makes it very hard te ses whic h of these assampbions play & signifi

cant role. Moreover; it is diffizult to prediei how the resulis
wouid be affected in case some-af'the agsumpbiong were modiiicd.
Thus, while this approach may be useful for sztablishing the dowain
of applicability of dispersion relations in sgecific problems, il
does net lead to a clear understanding of the vhysical content of
these relations.

In the present papers following vaanampenfs approaciiy o
simple and rigorous derivation df the dispersion relatians foar fixe
ed momentum transfer will be given. The derivation; which refers
tc the simple case of a cleassical scalaf field and a scatterer of fi
nite radius, is based on a small rumber of physical assumptions. It
will be presented in such a way that the assumptions which are o~
levant to the validity of the results can be‘recognized at eask
step. The treatment can be at least partiallj extended to the caze

of Schrodinger particles. The results are less general than Khurds

in the sense that only scatterers of finite radius will be consgider

6 Khuri, N.N. and Treiman, S.B., Phys.Rev. 109 (1958) 198.
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ed; on the other handy the nature of the interaction need not be
specified. The main result which will be obtained is that, contrary
to what has been suggested in the literature,; the dispersion rela=

tions for fixed momentum transfer are closely related with causality
The remainder of this section is devoted to a heuristic for

mulation of the basic assumptions and a-géneral survey of the re-
sults. The aim is to present a physical picture of the derivation,
leaving aside mathematical considerations. Thuss the assumptions
will bé stated oply in very loose termsj precise statements will be

given In the subsegquent sections,

{b) Preliminary considerations.
| The scattering amplitude f£(k,€), expressed as a function of
the wave number k and the momentum transfer ¢, is obtained from the
gcattering ampiitude £(k.9) in a giﬁeri _direcfion by making the sub=
stitution |
eogd = 1 - 3£%~9 (1)
&
which expresses the relation between the scattering angle and the
corresponding momentum transfer. In the cases which weshall consi-
dery the well<known partial-wave expansion of £(k,0) can be employ-

eds Replacing (1) in this expansion, we find
Y _ @ (p+41) : 2,
26,9 = Lo gy, = LY CEL s -1) p(1- £5),

(2)
where Se(k) is the S-function for the {th partial wave, and P, is

the £th Legendre polynomial. According to (1), the physical

range of values of k corresponding to a given value of § is: k»%‘c.

We shall assume the validit‘y Of the ﬁsual symmetry relation,
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Spl<k) = Se(k)g which allows us to define f£{k,B) for negative k by
fl=k®) = f” (k3% (3}

The 'non-physical regien® is therefore the interval - %BQ;( % G.
Equation {2) has been employed by Khurdi % 4o define £{k,%) in the

non-physical region. In the pregent paper, the partial-wave expan

sion will be emp;oyed pot only on the whole real a3 axis, but aiso to

define the analytlis continuat tion of ugkz ‘6] o complex values of Ko

This will allow us to make use of van Kampen's results on the ana-

lytic behaviour Uf:stﬁk}u

W T

The usual method %o derive dispersion relaticns consists of
two stepss (1) proof that f£{k,;%), considered as a function of k,
for fixed $, has a regular analvtic continnation 4n the upper haif-
plane (in the Schrédinger case, however, there may be peles on the
positive imaginary ax$33 (ij) deuermina+ion of the asymytﬁtic b
‘havior of f{k,6)for k|- in the upper half-plane. If £{k;%) does
not diverge more strongly than a power of k, it is possible to de-
rive dispersion relations by carrying out a finite number of ‘sub-
tractions’. In the case considered by Khnrig'it followed from ap-
propriate restrictions on the potential that f{zgﬁ) iz bounded at
infinity. It mas! be emphasized that ghtep (1i) is essential in a
rigorous derivation.

In sections 2 to 4, we‘shali consider a classical scalar
field, which obeys the wave equation (we shall take the velocity
of propagation = ¢ = 1) in the exterior of a‘spheri@ally symmetric

il . - i 1
scatterer of radius a,. We shall take over van Kampen'sassumptions

concerning the interaction. The main results on the analytic bee-
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*
haviour of S,{kJ} in the complex k-plane are gucied below . Ws

shall dencte by I, and I, the real k-axis and the upper half of the
k-plane, respect?geiyg-;;é by I,, the real axis together with theup
per half-plane. The fcliowiné#::usality condition was postulated by
van Kampsns

Van gen“s causality condition {classical field)s If an

ingoing mul ipoje weve packet vanishes for all tims t<:t on a

large sphere of radiug g & ufreunding the scatterer, the outgoing

wayve aiso vanishes on this sghere for all L<t + 2(r=2a),

The following resvlte, valid for all values of 4, were derived by

van Kamperns

Sy (k) is regular in I, (4)
18 (k) exp (2iked] < 1. in I, (5)

These results still do not allow us o draw any conclusiecn
about the analytic behaviour of £{k,6). It is easy to devise exam—

ples of &i(kr such th T the partia1MWave sexpansion does not converge

for any value of ky even though (4) and (5) avre satisfied. The
point is that the cOnvergence of the partial=wave expansion imposes

restrictions cn tha behaviour ef mlgﬁ) as a funct‘on of ﬂ vhereas

no such restriatiaa xollaws from van Kampenﬂs resulis.
(e) The'eonvergemea conditiong.

The nature of the restrictions which are imposed by the con
vergence of the partial-wave expansion iz twofold. in the first

place,; for any value of k, it is necessary that Sa(k)=-1 shall ap-

* Van Kampen {reated the case of & classical electromegnetic field, but his re-
suits can bs readily adapied to the present case.
4
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proach zerc sufficiently rapidly for { — o . This means that partial

waves of sufficiently high angulay momentum must be practically un-
affected by the scatterer. In the second place, the COnVergence
must be ensured at the critical point k = 0. This may be geen from

(2): the factor k=* Pa(lefczfzkai has & pole of order 2+1 at k=0.

The simplest way to compensate this singularity is to have a corre-
sponding convergence fagtor in Sgtk) e 3 Fon g;;Qo We cdncludeﬁ
therefore, that a convergence @gzggzi:gz‘pr@seribing the behaviour
of the phase-shifts in the lov-fragueney and high-gngular-momentum
limits, is required. A condition whieh embudiés these requiréments
the ‘'weak convergence eonditicm¥, will be fmrmulﬁted in section 2.
When this condition; which will be postulsted only for real values

of kK, 1s taken in conjunction with van Kampen's resultsy it already

suffices to prove that the analytic continuation of £{k,5), defined

by the partial-wave expansion, is regular in L) inéludihg the orj-
The only remainihg problem Is the asymptotic behavicur of
f{k,% for |k|—o00., An argument based on the optical theorem sug=
gests that f£{k,0) (forward scattering ampiitvde) cannct diverge
more strongly than lineariy with k ou the real axis. In order to
obtain an equivalent limitstion for £{k,%); we shall employ a mors
restrictive convergence condition for large values of ka. This
'strong convergence condition’ will be formulated in section 3. It
requires; essentially, that, for large ggg'pértial waves of suffi-
ciently high angular momentum (such that the corresponding impact

parameter is much larger than the radius of the scatterer) shall

¥



280
not be much disterted by the scatterer. It follows from this condi-

tion; as will be shown in section 3, that fgkgﬁg,cannot diverge more

strongly than linearly with kin I .

{d) The strict causality condition.

it is-still necessary to consider the asymptotic behaviour
of £{k,%} in £io A very significant difficulty arises im this con-
nection. According to (5); the asymptotic expansion of Se(k) for

large lka! may contain a factor exp{-2ika). This factor appears, for
instance, in the examplé of a totally reflecting sphere {section 6),
and it is also krniown te appear in the ¢ase of Schr@dinger particles
scattered by a_potential'@f-fiﬁiteiraditsy The presence of this fac
tor implies that each term @f*the partialcwave expansion blows up ex
penentially f@r-igi;;g;@inlIén ’Keverthél@ssg in the case treated by
Khari 49 the asymptotis eXpaﬁsi@n'@f-fgkg%Q contains no exponential
- factor. In order that thisfghail'hald'also in the present case; ip
respactive of thélgp&éifi@:f@rm,@f_%ha'interactiong it is clear that
some'very p@werfﬂirphygieél'prineipla is fequiredo

The ei@dﬁeﬁtial‘faetor-in.&5} arises from the phase advance
ment {coxfespoa&iﬁg-t@ a &iéﬁéﬁd& 2a) which takes place when a spher
ical wave front is'refle@@&ﬁ;atﬁthe,sufface of the-seatterero Let us
now consider the effact of such & factor when the scatterer is
stricken by an incident wave with a plane wave front. If the phase
factor were still present in this case; it would give rise to the im
mediate appearance ¢f a scatiered wave all over the surface of the
scatterer. This instantaneous propagation is not ruled out by van

Kampen'’s caugality cohditiong which refers only t¢ spherical wave
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fronts. However; it would contradist the prineiple of strict causali
ty; according to which no signal can be transmitted with a veloeity
greater than g. Arguments of thie %ype have often been employed +to
show that an exponential factor camnot appaar in the partieular case
of forward scattering (T = Q).

The question mow arises whether the principlg of striet
causality still enables us to eliminate thﬁ,exp@nantial,faetar for
L £ 0. The answer is affirmative; as will be shown in seetion 4.
The following condition will be postilateds

Strict_causalif For_ap incident wave with a

Dblane wave fromt, the scaitered wave must V@Qish;atrggg poink in
space which has not vet been reached by-thé,inc@@ent vave.

gcondition:

It is noteworthy that this‘@@ﬁdi@iﬁn is entirelyfindependént cf the
radius of the scatterer, and may bé applied at éﬁy distance from the
scatterer. This is @l@seiy'ralateﬂ with the fa@t_that the radius of
the scatterer doss not appear in the disperéi@n"relations for £(k,G)
in contrast with the case of the dispersion relations for Sp(k) or -
£(ks9)(0 £ 0j,

In order to apply the stri@t‘eauéality condition to the‘dg
termination of the ssympioiic behsviour of g&gﬁgﬁ_in I,9 4t is neceg
sary to find & relation between £{k,%) and the saatté;;& wave. In
section 43 we shall derive from Ruygénsﬂ principls an integral repre
sentation of f£{k,%) in terms of the écatteredgw&ve-aﬁd its normal de
rivative; evaluated on a spherisal surface aronnd_ﬁhe éeatterero, We
shall then apply the strict @aﬁsality_conditi@ng-to prove that the
scattered wave and its n@rmal a@r%vateg ragarded-as;fﬂnatiqn of ki

have a regular analytic eontinuation in I and slso to determine up
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per bounds for these guantities in I ., This will finslly enable us

to eliminate the exponential factory and to prove that fgkgfﬁ cannoct
diverge more strongly than linearly with k in I . The dispersion rg

lations for fixed momentum transfer follow from the results of sec-

tiones 2 to 4.

(e) Additional resulis.

Secti@n_s deals with the extension of the previous results
to the case of Schridinger particles and a scatterer of finite ra-
dius. It has been shown by van Kampen z thaty in spite of some dif-
ficultiesg a ‘causallty condition® can also be formulated in this
case, and results simiiar o (4) and (5) can be obtained. The only
essential modificazion is the possible appearance of poles (usunally
associated with beund states) on the positive imaginary axis. These
results have been derived by ven Kampen only for s-waves, but it is
very likely that théyran be extended to higher angular momentas this
will be assumed in section 5. We shall restrict ourselves to the
case in whick the'gatél number of poles on the positive imaginary ax
is is finite. The convergence conditions can be taken over without
any change. In the particular case of a potential of finite radius
belonging to the:elass'gonsidered'by’Khurig all the assumptions are

fuifilled. It follows from thase assumptions that £{k %) is regular

in I, except for a finite number of goleé on_the positive imaginary

axis; and cannot diverge more strongly than linearly with k in Eg'o

The extension of the results of secticon 4 seems to bpe a more 4iffi-
cult problem. and it will not be undertaken here.
Section 6 is devoted to an illustrative examples the case

of a totally refleciting sphere., Explicit results; which agree with
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those obtained in the previous sections, will be given. The problem
of the numerical convergence c¢f the partial-wave expansion in the
non-physical region, which 1s of great interest for the practical ap

plication of dispersion relationsy; will be discussed in this example.

2. Weak convergence condition and regularity in I;o In this sectim

as well as in sections 3 and 4, we shall consider the scattering of a

classical scalar field by a spherieally symmetric scatterer of radiw
8o We have seen in the intfoducti@n that; in addition te van Kame
pen's assumpiicns, we need & condition on thé.behaviour of,Si(k)==l
at low frequencies or high angular moments.  In the low-frequency 1i
mit; we want to compensate the singularity at the‘crigin‘agising
from the factor k™t Pt(lcfﬁzfakajriﬁ (2}s For this purpose, it suf-

fices to assume that
Sy = 1= 0 (k¥ g kw0, (8)
It follows from (6} that we may define, for emen &, a range of values

of ky 0¢ k<lk;; in which |8yik} = 114 c£k2£%%f( 2y where ¢) is a con-

staht. It follows, a fortiori, that
Isptie) = 1l 2 (emd® o (0gkeEy). (7)

Thus, for sufficiently low frequencies (k@i(kﬂ)y“the effect of the

scatterer on the Lth partial wave may be-eonSidered as a small per-
turbation. This will not be true if k = 0 1is the center of a resé-
nance line. However, for k # Oag'resqnances=are allowed; since no
restrictions have been made,; as yety on the behaviour of k ..

Nows; let us consider the behaviour'of k, for A—@ ., For a

scatterer of finite radius, it may‘be expected that, for any given k,

partial waves of sufficiently high angular momentum will not be much
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distorted by the scatterer, Thusg it is reésonable to assime that,
for very large L, the domain of validity of (7) will increase with {3
so that '
ey —> 0 for 4 —soo (8)

No azsumptiong will be madey Tor the moment,; as to the rate of growth
of k) with {3 it may be arbitrarily slow.

The above sesuwptionsg can be summed up as follows:

Weak conwergence eonditions: There exists a sequence of
EL (£ = 041420000} such that (7) and (8) are satisfied.

This condition mavy be considered as an additional restric-

tion on the nature of the scatberer. It will now be shown that the
weak convergenee 3oadiﬁion9_tcgether with van Kampen's results,; im-
plies the regulevity of Z{k.B) iz I

Azeording to (4) and {73: St(k} = 1 is a regular analytie
function in I, with & zexo of ordef.(at least) 2¢+1 at the origin.

On the other hemd, Pgfle 65/2k%) is a polynomial of order 4 in G/K*,

It follows that fy{k, 6); the general terr of (2), is a regular ana-
ot

]

iytic funetion of kg in I,

According t@xgéiersﬁfassﬂs theorem 7), to prove the regu-
larity of fgkggzﬁx{any'b@unﬁeﬁ domain of I, it now suffices to show
that the pariial-wave expansion ig uniformz; convergent in such a do-~
maine For this gurpovse; we shall derive é basic inequality for

ISE(k) - 1]

Let us notice; to begin with, that, since [§y(k) - 1{¢ 2

for real k; the inequality (7) is certainly valid for k2>ky; so that

it can be extended to the whole real axis. Thus, if we consider the

7. Titchmarsh, E.C., Tke theory of funciicns, 2nd.ed.,Clarendon Prese,Oxford,(1939)
po‘gﬁo
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o) = 5 (i, /w12 [5)(k) - 1] exp(ika), (9)
it fellows that
I @Q(k)! <1 in I, (10)

According to (4) and (7), ?&£§2 is regular in Ei; also, according to
(8), l%ﬁk)i—*o for |k|-—so0 in I, It may then be concluded from the
maximum-modulus theorem (referEZEe 73 po 165) that the inequality(lo)
is still valid in I,. Thus, |
(k) = 1] & 2 | kigy |24 fexpl-2ika)|  1n Ioes (11)
which is the basic inequality referred to above. T
It follows from the inequality 8y

L
I (2)] <z # (2% - DV, (12)
which is valid for arbitrary (real or complex) gz, that
2 12\
S call ( (] ) .
’Pt(l Zka)%@ 3‘*‘@‘; (13)

Let us restrict k to the semi-circular domain D of I,
which is defined by: |klg K. Pusting together (2); (11) and (13), we
find that

- wpf=3 o . 2.4 .
]fﬂ(kg‘z)lsugcs) = (zml)lklﬁ LT3R 4+ 1%[<)" exp(2Ka) in D (14)
It follows from (8) and (14) that

U8l ) o 2 ( 2| g AUy
= [ e | - o e 101% i (i T) <o

(15)

S —

so that the partial-wave expansion converges absolutely and uniformly

in Dg. Since K may be taken arbitrarily large, we finally conclude

that the Eartialwwave'expansion is abgpluteiy'and uniformly conveigent

in any bounded domain of I ; and £f(k;%) is a regular analytic func-

8. Hobson,E.W. , theory L1ipscidal {o8, University Press,

Cambridge, (1955) pg. Lt Spherical
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ticn of ¥ in I;o

It also follows from the above results that £f{k,%) is, for
fixed k in Iyes @ régular analytic function of gé‘in the whole com-
plex J&Emplgzgo_,xn fact, QQ(k313'possesses this property, and; if we
consider the domain iﬁLfé;iii‘the'inQQﬁality (14), with igii replaced
by T, may be axplied in this domain, so that the partial-wave expan-

sion is albc wniforaly convergent with respect to ﬁﬁo

2. Strong cbnvegg?ﬂe@ conditions and asymptotic behaviour in Ioo

We must now inxestlﬁafe the asymgtotic bhehavicur of £{k,%) forlk|—
This will be done first f@r'reaa_valaas of k. Throughout this sec-
tiong it will be ag”hﬂ@ﬁ hat kaz>£a§>13 where k is a sufficiently
large waﬁe nnmbeﬂa the actual order of magnitude of g (which may de=
pend on the range and strength of the interaction) is irrelevant,
gince we are concerned @nly'with the 1limit k-0 . We shall also in-
troduce the notatiom: B = & k8.

So fary no assum@ti@ns have been made concerning the rate
of growth of ky 4n (B}  However, the asymptotic behaviour of £(k,%)
is clearly related % the rate of convergence of the partial-wave ex-

ansion for 1argef§3 s that we shall now make g more specific agsamp
tion.

It is well ¥mown that an ‘*impact parameter’ of the order of
£gg can be associated with the Lth partial wave. If this parameter is
much larger than the radius of the scgtterer, it is to be expected
that the corresponding partial wave will pot suffer much d;stortion.

A convenient meaSHre of distortion may be defined as follows: 1let

Wé(kg&} be the logarithmic derivative of the radial wave function,
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evaluated at the surface of the scatterer. Let wi (kya) be the value

of this quantity in the absence of a scatterer; which is given by
vjksa) = kir(B)/ 3 (P, | (16)
where EL is the spherical Bessel function of order {. We shall take

as a measure of distortion the following quantity:
Slksal = [vlksa) = 7P(k,8)] /mflk;a). (17)

On the basis of what has been said above, it may be assumed that this
quantity does not exceed unity for {/k >>a, i.e. for -Q’?—N&, where N
is a large number (we shall always take N 3 2). This assumption ecan
now be formulated as follows: |
Strong convergence condition: |6, (k,a)] <1 for ¢ »Np.
(18)

A similar condition is usually employed 9_to prove the convergence of

the partial-wave exparsion for a scatterer of finite radius. In the
present case, it will be employed only for large valumes of ji o

The S~-function can be expressed in terms of §3(kya) by
the following exact formulas
Sp(E)-1 = -2 157 §,(B) 31, (P) 8y (kqa) 14302 33 (BIn(R) 8yChsa)] 72

(19)

where El is the spherical Hankel function of the first kind *) of or-
der {.

It follows from (18) and {(19) that

18y(1) = 1] < 2 (5E)2t* for 12 Ng, (20)

where g is the base of natural logarithms. The derivation of this ip

9. Schiff; L.I., Quantum mechanics, McGraw-Hill, New York, (1949), p.107.

+ ©Since only spherical Hankel functions of the first kind will ocour in the pre -
sent work, we shall omit the superscript (1).
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%
equality will be briefly sketched in appendix A )
Now iet us czonsider the behaviour of the partial-wave expan

sion for a value of k that satisfies the conditions: k> k, k2»%%6, so

that |Py(le 62/7%%) & 1. It follows from (2) and (20); by employing
the majoration [8,(k) - Y€2 for LSNP, that

_ Ng-1 . 2 = 2¢
.:.L ISR £ Hg;Eu 2 e
ESNAIRY Q}’; (2041) + ea eiﬁ.ﬁ (5587 & (Ha)? Ktea QZ%P S s
ory finallss '
|2k, 63| € (Mad® x + {“f:‘ = (ST ey Es kato). (21)
- “‘Im"—'ﬁ"—‘aﬂ‘ﬁ v .
. E.N?y

Notice that, ascowdiog so She oybical theoremy (Z21) implies that the
taotal eros$=se@ﬁiém in the high-freguency limit cannoi exceed
Tt follows frow {21} and from the symmetry relation (3)

that

|

iFlky 60 = o0l for ] — o0 in I (22)

o
ey

An explicit ewampie irn which a linear divergence coccurs will be given
in section 8.

The only remaining problem is the asymptotic behaviour of

f{‘kga) in I,g..

It may b2 seen at cnce that (11) is of no avail in this re
spect, owing to the factor [axp{-zika)ls; which blows up exponentially

in I,. This diffieulty nas been discussed in the introduction; and it

# Notise that, if one zszwnes The validily of the strong convergence condition for

0 < P<UN (for lavgs £}, it follows frem {20) that one may take in (7) k.= &/(Ns)
{for large 4).
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has been stated that the exponential facter can be eliminated by ap-=
plying the strict causality condition. This will be proved in the
next section. B

4. Strict causality and asymptotie behavicur in I,. We shall
start by deriving an integral representstion of §kg J o Let thetotai
wave function at the point R Lw&ulnl in the. axterior of the scatter

er, corresponding t¢ an incident plam-; wave exg{ik(ﬂco t)] y be

given by : _ '
0k Bot) = [exp(ik R cos ©) +u_(i,8,0)]exp(~1kt). (23)

10

According to Huygens?® principle s the scattered wave us(kgﬁ) can be

fe‘presented in the following form:

u(koR) = f a i) 28 (e Rp) - w(k?a,m (ksp)] 4y
(24)
where n denotes the direction of the outward nermal to the closed sur
face ¢ surrounding the zcatterer, and
6(k,Rop) = SERUIKIR=]) - (25)
T an|Re
We shall choose € .as a sphere of radiug p = i;l-;gg_co’ncentric with
the scatterer.
If we now let R—walong the direetlon ﬁ/ﬁglwe flnd from

(24) the following expression for the bca‘i:tering amplitude in this di

o Baker, B.B, and Copson, E.T., The mathematical theo, uygens' principle,
2nd. ed., Clarendon Press, Oxford 1950) Po 26
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‘rectic
(k,0) = = .15'3 Qf [i BT u “’ksr) + m{kgr)] exp(=ik.rlde (26)
47 r
T

where ¥ = Kk R/R = {k0,9). Let » = {r.0',91): thens the integration
with respect to QL In (26} can be performed; with the help of +he

well-=knom f@mm.a
2w : -
{ XD {i‘!? cog (@=9i)] 49 * = Zm J@(V)

where 'J denofat—* Begselts funation of order gero. By carrying out the
in‘segratian and by e,:wmasing 8 in verms of 5 with the help of (1),
we finally arrive at The following "integra.g representation of f£(k,%)

{(the integraticsn wariabla ig now denoted by € instead of 81):

T

- 21
f(k,6) = = % € f {éﬁlik 2 Tym 923 u (kyr,0) + gz(kgﬁgrge}—ﬁr (kal‘a@)] o
0 o . L

~

.o GE\Y
o gxp | -1k v cos@ (1 = —x sine 4e, (27)
| (- 22)]
where r2a is arpi rery, and

g}i_(kg‘Gg,rgQ) = 3k oo 59(1'-‘»“}3 m(r sin 9)+C§sin@;l’l(6&r sin @), (28)

2,(k:6,750) = T, {6%r sin ), | (29)
where J; is Bessel's funciion of order one, and
iy * -;. .
' . L i, 1=
c 23 {J, == ’fi ‘:C[K)ZJ @ (30)

Notice that the sign of the square root in (30) is irrelevant.

We shall now take (27) to define the analytie continuation
of flk,%B) to complex values of ¥o» It is possible to verify directly
that (27) is equivalent to (2), by making the substitution

o0
ug(ksrs0) = 2 L7 (2041) 1(5y(k) ~ 1] By (kr)  (cos ), (31)
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and by employing some formulae which may be derived from Gegenbauer's

integral 11,

In order to apply the strict causality condition, we shall

now take an incident wave packet,

+00 .
¥o(Ts0,t) =[ A(k) exp[-1kit -r cos ©)]dke. (32)
0
According to (23), the corresponding scattered wave packet is
+00 : _
¥olrs@st) = [ Ak) u (kyz,0) exp(-ikt)ds. (33)
=00 -
A
]
]
1Q
7
2 ____________
y
7
B FKi.j

Fig. 1. Por an incident wave with & plans wave front

AB, the scattered wave cannot arrive ay any point P

before the incident wave arrives there. If P belongs

to the geometrical shadow region S$1Sz, nc btrongercon
‘ dition can be formula edo

11. Watson, G.N., A treatise on the theory of Beasel func‘l:‘t.oma9 2nd ed.; Univer-
sity Press, Cambridge (1952), p. 378.
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The strict causality condition, which has been stated insec

tion 1{d), cen now be formilated as follows:

Strict causality conditiom: If ¥, vanishes for t(rcos & so does LA

(34)
This condition is illustrated in fig. 1, which shows the ineident.

wave front AB at a given moment and a s;hefeﬂg of radius r surroand-
ing the scatterer. The scattered wave cannot reach any point on & in
advance of the Incident wave.

It may be zeen at once in fig. 1 that causality scbually
leads to a condition whick is stronger than {(34) on a large part ofc .
The shortest path conneebing a point such as P in fig, 1 with the wave

front, via the gcatterer, is longer than PQ. However, no condition

stronger than {34} can be formulated for those points of ¢ that lie in
the geometirical shadow of the scatterer (indicated by 8182 in fig. 1)

Thus, (34} is the strongest condition that can be uniformly
all the points of g,

__applied to

Qther advantages of (34) are its simplicity and
its independence of the radius of the scatterer. Notice also thatgin

contrast with %an Kempen's <ausality condition, (34) ensﬁreé the ecaun-

sal propagation of signals secrvss the scatierer.

The aim of the following derivation will be tp find upper

bounds for {u_| and [8u_/or| for iarge |k| inm Iys s0 as to obtain

from (27) the asymptotic behaviour of £{k,6). For this purpose,

T >

we
shall apply the strict causality condition neot only to L but alse

to 8u§/aro It is slear that; in (34); dv /9r must alse vanish for

tsr £os o

In order to apply a reasoning similar to that which was em-
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1 in the derivation of (4) and (5), the inte-

ployed by van Kampen
grand of (33); as well as its partial derivative with respect to Lo
must be square integrable. Thug, it is nece&safy to find bounds for
the asymptotic behaviour of u, and auS/ar for g~ . For this pur-
pose, we shall employ {31} agg the igzggzzity {20)0

The value of r in {27), as well as in.(34), has been left
wiidetermined hitherto. . It‘is conWenient at this point to meke, once
and for all, the following cholce s

r = Na . (35)

The following imequalities, whiech are valid for gufficiently large k
(k>2k), can be derived from (20) and {31}z

lu (k sNa @) % Na ¥ + g‘(péﬁg' (36)
oug : 2 3/2 ‘
153 (kyNaye)| € Na k5 + 0 (R ), (37)

The proof of these resulls will be glven in spvendix B, It follows
from (36) and (37} that there must exist constants M and o >0 such
that

la (k,Na,8)| & Mik + £ o] if k 4s in I, (38)

aus

rY: if g 15 in I, o (39)

It is now possible to choose A(k) in such a way that the fol

lowing conditions shaill be fulfilled: (a)y o Vanishés for t4r cos @:
(b) (32) and (33) are square intsgrable; (a) (33) may be differenti-

ated with respect to y under the integral sign,

* The reason for this cheice is the repid increase of ]hg(kr)| for 4> kr; the choice
(35) enables us to make full use of {20) in order to Gompensate this growth.
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2y +00 au
= y -——nu-—-s on -1
- J" Alk) =5 (k,r50) exp(~ikt) dk ; (40)

(d) (40) is squaré integrable. According to (38) and (39), it suf=-
*
fices,; for this purpose, to choose

MY = ALK + 49)7% (41)

where A, 4s & eotnstant factor having the appropriate dimensionality.
- Notice that it is pot sufficienﬁ to require that the total

irdcident energy per uait area should be finite, since this is equiva=
lent to the square integrabilisy of kA{k), which is not enough. It
alsc does not seeﬁ t0 be pessible %o derive stronger llmitations than
(38) and (39} from physical re¢uirements on the scattered energy. Such
requirements usually lead o restrictions on the behaviour of inte~
grals containing ths cumantitiszs in question, but not on their ;Qgg;
behavicnr. The gingular behavisur of (38) and (39) in the 'geometri-
cal optles iimite {kem! is physically related to the possibility of
existance of Toeal points or lines.

| Tber$trict cgusality condition requires that, with the
cheice {(41)y the seeond members of (33) and (40) shall vanish for

1

t<r ¢cog 8. By applving a familiar reasoning , which neéed not be re-

X : * %
produced heres this lzads to the following conclusion 2

s R
us(ngageﬁ and <3 {k4N5,0) have regular analytic continuations in I,

oS Fa

(42)
IusiksNag.Q} exp {-iNka ccs 8)|& Mlk + 1 ~| in I , (43)

* I% can be verified that, with this choice, (40) is uniformly convergent in an ip
terval around p = Na, so that (2) is valid.,

*+ In the derivaticn of {43) and {44), the Phragmén-Lindeldf theoremi® is employed
in conjunction with (38) snd (39),
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U - 2
<7{k;Na;8) exp(-iNka cos 8) | Mlk + 1] in I, (44)

The inequalities (43} and (44) are the desired results,
which allow us to obtain upper bounds for the asymptotic behaviour of
f(k,%) in Eio If we replace them iz (27) (with z = Ka), and if we em
ploy the inequalitiss (referencs ily po49)

f.‘fo(z)I.é_-c_axp(Im Z) !Jliz)ls% 2zl exp{Inz ),

to derive upper bounde for (283 and (29), we finally arrive at the

following results

: w2 2
2005 9| € 1N YPlk + 2of {jas sl + 1520+ £ ma ?52:,(1 + jopl )}

oexp{NZagﬁ? (.,.L #i%‘?‘) ” in I,.
| (45)

It foliows from (45) that

£k, Y] =0 (1x]&y tor  Juleo I, ., (46)
so that the troublescme exponential factor iz indeed eliminated by
the strict causality conditior.

Let us now notice that; according %o {21) end (22); there

mst exist constants ¢ and § > O such that [£{x, B Clk+i8] in I,
On the other hand, it follows frem section 2 that f§k3'62(§k+ié }.;:
regular in I,. It can therefare be conziuded from {46) and from the
PhragmémmLi;gelbf theorem 1% that the above inequaiity is also valid
in I.:

|£(k, B)| < Clk + 15] dn I, . (47)

12, Nevanlinna, R., Eindeutige ana_leﬁisehe Funkt,ionen, 2.Aufl.,;Springer Verlag,
Berlin (1953)9 po 44,
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Thuss £(k,%) cannot diverge more strongly than linearly with k in Io¥

It is worthwhile to poial out that the striet causality con
ditiony together with (38) and (39), enables us to give another deri-
vation of the regularity of ffkazz in I,, provided that we exclude a
neighbcurhaod‘eflthe oéiginq Let us c;;sider the domain 2545 of Io+’
which is defined by: 0 < &£ g |kl K. If we replace k by £ in the de=
nominators of {45), gnd by 5 in the numerators, we cbtain an upper
bound 4 ;ggggegﬁeagmgi;ggggiﬂg;:f@r the integrand of (27), in E§1_°
According to (28)@(3@33 g and g5 are regular analytic functions of k
ig-Eéﬁga Taking into aceount (ZE)? we conclude that the integrand of

(27) is a-regglagg uniformly baundédg analytic function of k in DE K*

It follows from thie =7 that £(ka8} is vegular in Dg y. Since K may
be taken;arbitfa?ily'iarge-and g arbitrarily.sméllg we oObtain indeed
the announced resﬁlto HoweVer,,én account of the denominators in (45
this method doez rot allﬁw Qs to'ﬁfbve the regularity'at the origin
(in contrast with the method of secuion 2)a

We sTS nmw iﬁ POaSessien of all ‘the results required for the
derivation of dispersion relgtionsg._lt follows from (3), (47), and
the results of ssotion 2, thay £I g.-gti; _satisfies the following disper-

sion relations:

Re £(i,8) = £(0,%) + & k2 p flf——?;fﬁ-gk—;% (48)

where P denotes Cauchy's principal velue.

13. Bieberbach, L., Lslirbuch der Funkbicnentheorie, vol. 1, Chelsea Publishing Co.,

New York (1945), p. 172.
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5. Extension tc Schrddinger particles.

{(a) General scatterer.

In thils section; we shall deal with the problem of extend-
ing the above treatment %o the cage of Schrodinger particles. The re
su¢ts which will be presented are. inasmol .ete: they reply upon ap ag-
sumption conecerning the possibility of ¢xtending van Kampenss work,
and the extension of ths resulis of section 4 will not be considered.

Nevertheless, it seems.warthWhilﬂ“t@lindicaxg a possible procedure for

vianding the tréstnen tosdven dnsgmotion £ oand 3146 %hRis case.
We shall consider the ggattoring 22 Sshrbdinger particles

g

ny 2 suherleadly gymwetric seawtompr of vading ge This problem bas
heen invegtigated in ;exm*ﬂmea 2 the agse of gewaves. The caugali
ty condition for a classlcal fiskd senuwat be asoplisd Ly Sehrddinger

partielas$ cwing to oqgrf&i“ﬁiﬁfi@ﬂlti&&g‘Sgﬂth@@fiﬁqWaS'rGIOTMUlat@d

Van Kam Ieﬂ“Q_sth&a?itEi@Undiﬁqﬁ 4 {Gehroginzer ﬁaﬁticies)g

3f ap qgmggge Ba”kft Le.se nermaliacd @s,tqwzggggﬁent at L = 4@1
one incidsnt 3ﬂ“tiﬂleg he sut al yrgbabll_ﬁw& gt . ahy glven moment, of

Iinding 5 particle outside of the pesttorer . cannct e greater than

o

I one postuletes; in eddition, the wsesl symmetry relatica
ot the S~funetion, it follows mnaﬁ §£§g,caana$ have apy singularities
in I+g exeept on the imaginary axis. 4T one agsumes that there are

no other than lsalated singularitigga there gan only be simple poles.
it is very likely that these resultg can be extended to higher order

mitipeles waves. It will be zssumed here that ven Kampen's results

=5
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are valid fer all wvaiuzs of L.

We shall nov restrict our consideration to the case in
which the following conditiom is fulfilled:

The total number of poles of the S-matrix on the pogitive

imasdnary axis iz finite. (49)

In the problem of gzattering by a potential, this is the only case

- - P o 3 0 s 445 . o
which has been congidered hitherto 293, It follows from (49) that
there must exist a finike integar f,.o such thai S)(kj has no poles on

the positive imagirary axis for 2 aﬂoo
The foilowlngz concelusions can be derived from the asbove as-
somptionss

(1} For 14v%9 Sgik) iz rsgulsr in 1., excspt for a finite number of

a7 et i

simple poles oun the imaginary~axi$:f (II) For-Qégﬁ;(é) and (5) remain
valide. |

It 1s now oo trivial metber to extend the results of section
2 and 3 to thegpfégeﬁﬁ c‘asea= The wsak and etproeng convergence condi-
ticns can be jaken aver'withﬂni_aﬂy modificaticn. If one decomposes
the partial-wave expansion inte £I§k§3) {the sum from =0 to £ = 20-1)
and £17{kyB) (tne zum from Eg.towdjg.it follows from (I) that £i{k;%)
is regular in ziﬂ exgept for a finite number of poiles on the imaginary
axis, while, according to (II)Q the results of section 2 still aéply

te fII(ksn} No change Iis necegsagry in seetion 3, since it refers on

1y to real valués of . Therefore,; according to'the above assump-
tions, tie only modification in the result of gections 2 and 3 is
that f(k,%) may have a finite mumber of poles on the posative imagi-
ngry axise.
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Although the integral repregentation (27) remains wvalid in
the present case; the extension of the resulis of ssetion 4 seems to
be a more difficult problem (thé difficulties are of the same nature
as those which were discussed in reference 2). This problem will not

be considered here.

(b) Special case: potential of finite radius.
Now let us consgider the special case in which the scatterer
i1s a central potential ¥Y(r) (vanishing for r>a). In order to satisfy

condition (49); it is sufficient to impose the restriction i4

a _ |
bf r{vir)|dr £B <w 5 (50)

which is the form taken ty Khurifs conditions 4 in the pre;ent case,
Van Kampen's causality condition and the symmetey ¥elation of the §-
matrix are always satisfied in this cases The above conclusions (I)
and (II) can alsoc be derived independently 15}'

Let us dlscuss the validity of the convergence conditions.

16 that condivion {6); and consagﬁently also (7); 1is

It is well known
satigfied *o To prove {8), it suffiges to show that, given a wave
minber K (ne matter how large), it ig always possible to find an intg
ger L such that

I8p(k)-1] € 27k/KIEP gor 0k <k, L. (51)

14. Bargmann, V., Proc.Nat.Acad.Sci. U,8. 38 (1952) 961,
15, Humblet, J., Mém.in -8° Soc.Rey.Sc.lisge 12 (1952) nos 4o

16. See e.g. landau, L.D. and Lifshitz, E.M., Quantum mechanics, Pergamon Press,
London {1958) p. 404. ' .

* The case in which there exists a 'bound state at zero energy’ must be excepted.
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To show thiss we employ a2 result due to Carter 17, according to which
for any given ks and large enough £, Sg(k)ﬂl is always bounded by

Bornts appr0x¢ma*ion9 is@s
|5y (k=1 & Ck ér['\f(r)l,j[a(kr) ar, (52)
where C is a constant. On the other hand; it follows from {(50) and
from Watson's inequeiity (reference 1l; p. 255) that
L.
(53)
Let L be chosen in such a wey that (52) i¢ velld for OQgk<K, £ 21,

Nil—'

a ) - : -
ok [ wlvir)[3Xur) apg Bl (EBHEL 4p oqkay
° t (24+1) 2441

and also: L22Ka, 2L+¢>’%BGQ Then, it follows from (52)and (53) that

L]

(51) is valid, Ehi& shows that k ai in {7) cannot approach a finite 1%
mit for L—oo; so that (8) mast be %yue. Therefore; the weak conver=-
gence conditiosn ié vérifiedo The vaiid%ty of the strong convergence
¢ondition follcws £rom Ghe v&llai?y (at least in order ¢f magnitude),
of Born's appr QX¢matlon for izggﬁ and sufficiently large ka 180
ihusg 831 ths assumpiicns which bave been made above are va
1lid in the preseﬁt CAge. Tﬁé results which have been derived from
ﬁhese assumpﬁiéns*agree with thoge obtained by Khuri 4)9 with only
one exception: we have found no branch points of £{k,8) at k = % %th
Khuri's claim that such branch points exist,; and that they arise
from the integfal in his equatiom (20), is incorrect: the integral
has a¢ branch points, because it does not dspend on the direction of

Lo Our limitation (22) 1g actually teo weak in the present case: it

g

17. Carter, D.S., Princeton thesis (195?), unpublished (this result is quoted in
reference 4).

18. Kohn, W., Rev. Med. Physs 26 (1954) 292.
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has been shown by Khuri that f£{ks% 1s bounded (and tends to Born's
approximation) for lk| e .

6. An examples - totally reflectine sphere. To illustrate the re-

sults derived in the previcus sections, we shall now consider a spe=

cial example,; namely, scattering by 2 totally reflscting sphere. The
corresponding boundary conditiom will be taken %2 be the vanishing of
the total wave function on the surface of the sphere. There is noadif
ference between the resuité.f&r-a“eiaﬁsimal reld and those for a

Schr8dinger particle in this caze. . Thisz examle (des ﬁﬁt‘belﬁﬁg to

the class of scavterers admitted in previess investigations 4933 but
it falls within the szope of the pressnt fresiment.
Employivg the well-knewti sxprégsion f4% the phase-shifts

corresponding to this eremple; amd the nutabiva B = kay we find

Sq(k)=l = w2 5,{Bi/iy{f)s (54)
It follows from (54), hy'emplqying-the axpansions of the spherical

functions arcund the criging thaty for real or somplax B,

So(k) =1 =z ap [ 1 +0 (IB}y] (ipl « )y (553
251 146 (B 3 pahel
Sf(k) - 1 = ainp s J‘E ‘3 F —— p by vy _}_££>1)9
(20=1533C20+10 88 | 1407 (B3 {20kX48{29+1)14 | (56)
| | 5

where (20-1)31 = ;ABosqﬂo(ggalﬁg and, according to Nielsen's inequali

ty, (reference 1l; p. 44),



1 % ; _ 1 1(a12y.

- 1[ (s18! >::,] ; le (pg ( €+3)[exp(zll3| )1]0
(87)

Let {f be an integer, such that '3 1 and (Jog { ')‘%» 1,

18,

and let us congider the behaviour of Sg(k)wl for real k and £ 24'. If
08B «glng;&lf {86) mey be employed {(with Stirling's approximation
for the factorizls), and it follows from {57) that the expressionwith
in square brackets i& {56) differs 1itt1e from unity. On the other

LY

handy if l«pfg Q? the sphericsl Bessel end Hankel functions in (54)

may be replaced by the Debye agymptotie expansions 190 In this way

it is fdﬁﬂd that
ep azﬂ | 1
|8 Ciedstlg g.{-—{—., tor  0<pgzd, Pxit. (58)

it £43lows from (55} to (58) that ‘conditions (6) to (8} are
sati sfied (with. k il mgy’a for: § }»2 Y. - According to (58),; the inequal
ity (20) iz also Sa‘aisfied (with E = 2), in spite of the fact that

(18) is #Hot fuifii&ed.gvtﬁkggﬁ diverges)s Therefore, all the results
of sectidns Z to 4_are';;1§32fénd_gigﬂgg satisfies the dispersion re-
Jation (48},

In orderf to apply the digperszion relation in practice, it
is necessary %0 evaluate £{k.%) in the non-physical region. The par=-
tial-wave expansioi can be employed for this purpose only if it con-
verges rapidly emough. It is therefore limportant to investigate the
mmerical convergence <f (2) in the non-physical region.

it follows from (55) to (57) that the partial-wave expan=~
sion converges unifofmly in a complex neighbourhcod of the origin.

Thereforey ng,tI can be evaluated by taking the limif as k=0 under

19.Jahnke,E.and }ndesl?o, an;es of functions. 4th ed.,Dover, New York (1945) p.139.
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the summation sign, with the following result (which 1s well known

for 6= 0):
20,9 = Lo £,(0,0 = a Z bt @B L (.

(2e)4
(59)

This gives the value of the constant term in (48) for the present ex

ample. Moreover, it can be concluded from (59) that the numericel

at the point k = O is rapid
This eonelusion can be ex-

tended without difficulty te the whola nnnmphysieﬁl region,

It is also possible; in this exampla, 1o derive an explicit
expression for the asymptotic behavicur of f£(k.%) on the real axis.
We shall only quote the-resultg,whiéh"is found to he

(Fa)
£k %) = ka2 -l--3 + 0 (I (k) (60)

where Ji denctesnBesselﬂs functien'ﬁf'the first order. This result
is well known 20 for,gmingo-The physical origin of the linear diver-
gence in this case is the diffraction peak in the forward direction
( ishadow scattering'). Bquation (60) is consistent with (22), and
shows that it is not possible to degrease the number of subtractions
in the dispersion relation (48) without imposing further restric-
tions on the scatterer,

We also mention, without giving the propf,.ﬁhat the partial-
wave expansion enables us to extend the defihition'af:fggaﬂ) to the
lower half of the k=plane, In the present example. It then becones
a meromorphie function of k {nﬂ’ﬁranch pointss ), having an infinite
number of poles in the lower half«plane; thege are obtained by taking

20, Kear, G., Annals of Physics § (1959) 102,
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the poles of St(k} for ail values of L.

It méy finally be observed that, in agreement with the re=-
sult obtained at the end of section 2, the last member of (59) is a
regular analytic function of §_ (noticeg however, that it has an es-

gsential gingularity for t?,r

2o Lonclugion. The existence of a close connection between causality

and digpersion relations for fixed_momentum transfer; in the case of
a- classicél fialdg'cah now be regarded as clearly establighed. 1In
the case of Schrddinger parfticles, the above results; though less
completey iudi¢ate that ven Kampen's causality condition plays a sig~
nifizant relés However; the extension' of the results of section 4 to
this cage rémaﬁﬁ,an oper problem,

The mady Pequirements whish have been employed in the deri=-
vation, in additicn tﬂ‘eausalityg'aré‘the weak and strong convergence
conditions. Théese sonditions ave vary natural from the physical
poiat of wviews they ars related tafthe usual assumption, in phase=
shifs dna1§3159 that contributions from sufficiently high angular mo-
menta may be negiected. It has been pointed out by Alleock 2L that
assunptions of this kind are' necessarys in order that the analytic
continuation of fgggﬁ!fby meang or the partial-wave expansion shall
be stable; f.e. that it shall nct depend too eritically on the un-
aveidable uncertainties which affect the experimental data. Since no
other method is available for computing £(k;6) in the non-physical re
tions it is clear that such stability is an essential requirement for

the practical applleation of the dispersion relations,

21. Allcock; GeRay Topias in the theory af dispersion relations (preprint).
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It would be interesting to know to what extent the form of
the interaction is restricted by the assumptions made in the present
work. While these assumptions ca probably be considerably relaxed,
without affecting the essential résultsg it 1s to be expected that

they are valid for a large class of scatterers.

The author is indébted to[Pro£essor~NQ:GG van XKampen for
suggesting this problem and fér.valuablediscnssidns,as weil as for
a critical reading of the manuseript. He'wishés'ﬁo thank Professor
L. Van Hove for the hospitality of the Instituut voor Theoretische
Fysicas Utrecht, and to acknowledge his indebtedness to the National
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APPENDIX

(A}, Proof of the inegualitv (20). 1In this appen&ixg the deriva-
tion of the inequality (20) of the tekﬁ will be briefly indicated.
It will be assumed throughout that MN?ka)Eg R1. Onder these con-
ditions, it follows from (18) and {19) that

I8y (k)=tlc 2 2] 3,(B) 39 (B)] [1=-p21.5"e(m by (B} ]‘l > (A1)

provided that the expression within square bracketS”is positive.

It follows from Watson's inequalities for J, (+x) and JJ(vx)

(reference 11, p. 255) that |
p213,(R) 34 (DS 3 (sEEn2t - (42)

The expression within square brackets in (Al) can be estimated by em-
ploying Debye's asymptotie expansions.lg-o -It 1s found that, under
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tre above con&itioﬁﬁs

BEL5y (B) By(BIK S - (a3)
Sabstituting (A3) and (A2) in (Al); one obfains the ineguality (20)
of the text, A4n equivalent inequality”has been proved by Schiff 9for
£»ee,

B s e ad

.-g&} ‘he. qugﬂangie* (36} and (37). To prove the inequality (36) of

the text, we notics = Tirst thaty ac@erding to (31),

g_usugmagelﬂzsg g (Ztﬂ}lst(k)«-l] hp(wp) |, (B1)

o
where 8= ka. 7o estimate m&}ﬂﬁ)ia we may employ Debye's and Wat=

i3

ontg symrbwgfo eupasions m9§, Lét 1¥<:NB and 1" >NB be values of

R soeh that the Deaye exprnsions way” be employed for 1< or 1241

wWe-have g .yp?agﬁm&%@ly@-

Pip - stEp) 3 P ¢ s (wp)R3, - (N2)
% &g fomnd  thak

thy (Wp3 Y mmp e i fgl = ;‘4‘33-«3» ]“1’/4 f-o:é ot (B3)

[h{{N@H’ i u‘mp) ""{5] for nr + 1452 42'==1, (B4)

By (8P| < w*’*“-”/“’ (A “‘; ) ter Py (B5)

Let us decompose the second member of (Bl) into three parts: the sum
from 0 te L' (U}, the sum from L1 to L':-1 (U,), and the sum from

g --Lm

An to o {Ei;. in E& and ip U &ég we employ the inequality:

lsplki-1i<2; tnU; o we cupley the inequalify (20). It then fol-
inws from {(B1) ta(BS) that

- z: /4
< (mpyd (::H:L){:L - (maﬁp) ] = -‘;‘- Ng + o(p #)s
. (B6)
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U,Lr-10)e 9(pl/6) = g (p}), | (B7)
6 = 2.1 2 o 2 \Qte

Uz< §ImY/ g;‘..(z_g?) =f[2- (;;E) ] -1 /6 (Eez)
| (38)

Putting together these results, we obtain the inequality (36).
To prove (37) we employ the following inequality, whieh fol
lows from termwise differentiation of (31) with respect to r (this is

Justified by the uniform convergence of the derivative series):

du 1 © . - L
SkNas0)| <3k L, (g£+1_> | 8ytk)=11] nyy (wp). (B9)

If we also employfthe relation

=1 NI C LT

the inequality (37) can be derived by the same procedure that has
been used for the derivation of (36),





