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1 Introduction

Quantum fields in the presence of macroscopic boundaries have received a great deal of
attention in the literature. Since boundaries can introduce a characteristic size in the theory,
nontrivial phenomena may arise. A well discussed effect is the electromagnetic Casimir effect
[1], where neutral and perfectly conducting parallel plates in vacuum attract each other.
The introduction of a pair of conducting plates into the vacuum of the electromagnetic field
alters the zero-point fluctuations of the field and thereby produces an interaction between
the plates [2] [3] [4] [5]. A basic question that has been discussed when quantum fields
interact with boundaries, is about the issue that the ratio between global variables which
define a macroscopic state, as the mean energy, entropy, etc of the systems may be subjected
to certain fundamental bounds.

In black hole thermodynamics, the generalized second law of thermodynamics states that
the sum of the black-hole entropy and the entropy of the matter outside the black-hole does
not decreases. Motivated by considerations of gravitational entropy, Bekenstein proposed
a bound that relates the entropy S and the energy E of the quantum system, respectively,
with the size of the boundaries that confine the fields, even in the absence of gravitational
fields [6] [7] [8] [9] [10]. It states that S ≤ 2π E R/h̄ c, where R stands for the radius of the
smallest sphere that circumscribes the system. Although analytical proofs of this quantum
bound on specific entropy for free fields has been proposed in the literature, many authors in
the past criticized the bound [11] [12] [13] [14] [15]. Many of these criticisms were answered
by Bekenstein and collaborators [16] [17]. An strong argument used in one of these examples
is based in the fact that the renormalized zero-point energy of some free quantum field could
be negative. Some authors claim that, if we take into account the boundaries responsible
for the Casimir energy, it is possible to compensate their negative energy, yielding a positive
total energy which respects the Bekenstein bound, although this is far from a simple problem
[18].

We may observe that a quite important situation has not been discussed systematically
in the literature. A step that remains to be derived is the validity of the bound for the
case of interacting fields [19] [20], which are described by non-Gaussian functional integrals,
at least up to some order of the perturbation theory. In this paper we generalize previous
results [21], showing that for the O(N) self-interaction scalar field theory in the limit of
large N , in which situations the specific entropy satisfies a quantum bound. In the strong-
coupling regime, using the strong-coupling expansion [22] [23] [24] [25] [26] [27] [28] one can
evaluate the mean energy and the canonical entropy of the system, obtaining the validity
of the bound for the case of strongly coupled fields. Note that for a very large number of
fields, general arguments said that at least in the weak coupling regime, there a critical Nc,
such that for N > Nc the bound is violated. This is known as the species problem. Our
results show that the species problem does not appear in the strong-coupling regime.

Using the generating functional of complete Schwinger functions Z[V, h], and assuming
that the source is constant we can perform the strong-coupling expansion. In the strong-
coupling regime, we perform the perturbative expansion around a independent-value gen-

erating function, up to the order (g0)
− 2
p . Up to this order, it is possible to split lnZ(V, h)

in two contributions: one that contains only the independent-value generating function and
other that contains the spectral zeta-function. Therefore, in order to obtain the thermody-
namic quantities, one must proceed in two stages. First, one gives a operational meaning to
the independent-value generating function; then, one consistently implements the boundary
conditions in the strong-coupling regime. Since we are working in first order of perturbation
theory, to implement boundary conditions, we use the spectral zeta-function method [29]
[30] [31] [32]. Quite recently a very simple application of this formalism was presented [33],
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where it was considered an anharmonic oscillator in thermal equilibrium with a reservoir at
temperature β−1.

In this work we study the O(N) (g0 ϕ
p)d self-interacting scalar field theory in the limit of

large N , in the strong-coupling regime. We assume the presence of macroscopic boundaries
that confine the field in a hypercube of side L and also that the system is in thermal equi-
librium with a reservoir. Generalizing previous results, we present an analytic proof that,

up to the order (g0)
− 2
p , the specific entropy satisfies in some situations a quantum bound.

Defining ε
(r)
d as the renormalized zero-point energy for the free theory per unit length, ξ = β

L

and h1(d) and h2(d) as positive analytic functions of d, for the case of high temperature,

we get that the specific entropy satisfies the inequality S
E
< 2πR h1(d)

h2(d)
ξ. When considering

the low temperature behavior of the specific entropy, we have S
E
< 2πR h1(d)

ε
(r)
d

ξ 1−d. We are

establishing a bound for the specific entropy in the O(N) model in the large N limit, de-
scribing a strong-coupled system in the following cases: in the high temperature limit and
if the renormalized zero point-energy is a positive quantity, at intermediate temperatures
and also in the low temperature limit. We would like to point out that the problem of the
sign of the renormalized zero-point energy of free fields described by Gaussian functional
integrals, which is crucial for the subject that we are interested to investigate in this paper,
is still open question in the literature. See for example the Refs. [34] [35] [36] [37].

The organization of the paper is as follows: In section II we discuss the strong-coupling
expansion for the O(N) (g0 ϕ

p)d theory. In section III we discuss the free energy and
the spectral zeta-function of the system. In section IV we discuss the contribution in lnZ
coming from the independent-value generating function in the large N limit. Finally, section
V contains our conclusions. To simplify the calculations we assume the units to be such
that h̄ = c = kB = 1.

2 The strong-coupling perturbative expansion for O(N)

scalar theory

Let us consider N scalar fields with a (g0 ϕ
p) self-interaction, defined in a d-dimensional

Minkowski spacetime. The vacuum persistence functional is the generating functional of all
vacuum expectation value of time-ordered products of the theory. The Euclidean field theory
can be obtained by analytic continuation to imaginary time. In the Euclidean field theory,
we have the generating functional of complete Schwinger functions. In a d-dimensional
Euclidean space, the self-interaction contribution to the action is given by

SI(ϕ) =
∫
d dx

g0

p !
ϕ p(x). (1)

Notice that, in that case, the field ϕ must be regarded as a N-isovector ~ϕ = (ϕ (1) ; ... ; ϕ (N))
with ϕ p = (ϕ 2)p/2 and ϕ 2 =

∑N
i=1 ϕ

(i) ϕ (i).
The basic idea of the strong-coupling expansion at zero temperature is to treat the

Gaussian part of the action as a perturbation with respect to the remaining terms of the
action in the functional integral. Let us assume a compact Euclidean space with or without
a boundary, where the volume of the Euclidean space is V . Let us suppose that there exists
an elliptic and self-adjoint differential operator O acting on scalar functions on the Euclidean
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space. The usual example is O = (−∆ +m2
0 ), where ∆ is the d-dimensional Laplacian. The

kernel K(m0; x, y) ≡ K(m0; x− y) is defined by

K(m0;x− y) =
(
−∆ +m2

0

)
δd(x− y). (2)

Using the fact that the functional integral which defines Z(V,~h ) is invariant with respect
to the choice of the quadratic part, let us consider a modification of the strong-coupling
expansion. We split the quadratic part in the functional integral which is proportional to
the mass squared in two parts; one in the derivative terms of the action, and the other in
the independent value generating functional. The Schwinger functional can be defined by a
new formal expression for the functional integral given by [38]

Z(V,~h ) = exp

(
−1

2

N∑
i=1

∫
ddx

∫
ddy

δ

δh i(x)
K(m0, σ;x− y)

δ

δh i(y)

)
Q0(σ,~h ), (3)

where Q0(σ,~h ), the new independent value functional integral, is given by

Q0(σ,~h ) = N
∫

[dϕ] exp

(∫
ddx

(
−1

2
σm2

0 ϕ
2(x)− g0

p !
ϕp(x) + ~h(x) · ~ϕ(x)

))
. (4)

Notice that the external source ~h = (h (1) ; ... ; h (N)) is also an isovector. The modified
kernel K(m0, σ;x− y) that appears in Eq. (3), is defined by

K(m0, σ;x− y) =
(
−∆ + (1− σ)m2

0

)
δd(x− y), (5)

where σ is a complex parameter defined in the region 0 ≤ Re (σ) < 1.

The factor N is a normalization that can be found using that Q0(σ,~h )|~h=0 = 1. Observe
that the non-derivative terms which are non-Gaussian in the original action do appear in

the functional integral that defines Q0(σ,~h ). At this point it is convenient to consider ~h(x)
to be complex. Consequently h i(x) = Re(h i) + i Im(h i). In the paper we are concerned
with the case Re(h i) = 0.

Since we are assuming a spatially bounded system in equilibrium with a thermal reservoir
at temperature β−1, the strong-coupling expansion can be used to compute the partition

function defined by Z(β,Ω,~h )|~h=0, and we are defining the volume of the (d− 1) manifold
as Vd−1 ≡ Ω. From the partition function we define the free energy of the system, given

by F (β,Ω) = − 1
β

ln Z(β,Ω,~h )|~h=0. This quantity can be used to derive the mean energy

E(β,Ω), defined as

E(β,Ω) = − ∂

∂β
lnZ(β,Ω,~h )|~h=0, (6)

and the canonical entropy S(β,Ω) of the system in equilibrium with a reservoir with a finite
size given by

S(β,Ω) =
(

1− β ∂

∂β

)
lnZ(β,Ω,~h )|~h=0. (7)

In the next section we will show that in the situation that we are interested, it is possible,

up to the order (g0)
− 2
p to split lnZ(β,Ω,~h ) in two parts: the first one that contains only

information given by the independent-value generating function and the second one that
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has the information on the boundary condition. As we will see, the information from the
boundary conditions comes from the imposition on the functional space where we perform
the functional integrals. For Gaussian theories the functional integrals can be performed
exactly and a powerful technique which gives the logarithm of the product of the eigenvalues
of some elliptic operator is given by the derivative of the spectral zeta-function defined in the
extended complex plane in s = 0. In the next section we will discuss these points carefully.

3 The independent-value generating function and the

spectral zeta-function

To obtain a generalization for the Bekenstein bound, it is necessary to obtain global quan-
tities as the entropy and the mean energy. Therefore, for simplicity we assume that the

external source ~h(x) is constant. In this situation we call Z(V,~h) as a generating function.
Since we are introducing boundaries in the domain where the field is defined, the spectrum
of the operator D = (−∆ + (1− σ)m2

0 ) has a denumerable contribution. Since the spec-
trum is unbounded above, divergences will appear. An analytic regularization procedure
will be used to control the divergences of the theory. As we discussed, in order to impose
Dirichlet boundary conditions over the fields, the functional integral must be taken over
functions restricted to the geometric configurations.

We will study the O(N) model in the limit of large N . In that limit, it is possible to
write the independent- value generating function as a function of |h|. For simplicity, we
will denote |h| ≡ h. Using this fact, it can be proved that at zero temperature, in the
leading- order approximation (up to the to theorder (g0)

−2/p) we can write the logarithm of
the generating function as

lnZ(β,Ω, h) =
1

Q0(σ, h)

∂2

∂ h2
Q0(σ, h)

(
−α

2
+

1

2

d

ds
ζD(s)| s=0

)
, (8)

where α is a infinite constant and ζD(s) is the spectral zeta-function associated with the
elliptic operator D.

Let us consider now the situation in which the system is finite along each one of the spa-
tial dimensions, i.e., xi ∈ [0, L], i = 1, 2, ..., d−1. Considering that the system is in thermal
equilibrium at temperature β −1, for the Euclidean time we assume periodic boundary con-
ditions (Kubo-Martin-Schwinger KMS [39] [40] conditions) and for the Euclidean spatial
dimensions we assume Dirichlet boundary conditions. We call this latter situation ”hard”
boundaries. See for example the Ref. [41]. For different kinds of confining boundaries
see [42] [43]. The choice of the hard boundary provides an easy solution to the eigenvalue
problem.

It follows that the operator D has the spectrum given by λn1, ... , nd where

λn1, ... , nd =
[(
n1π

L

)2

+ ...+
(
nd−1π

L

)2

+
(

2nd π

β

)2

+ (1− σ)m2
0

]
, (9)

n1, n2, ... , nd−1 are natural numbers different from zero, since we are choosing Dirichlet
boundary conditions and nd are integer numbers. The spectral zeta-function associated
with the operator D in this situation reads

ζD(s) =
∞ ′∑

n1,..., nd

λ−sn1,..., nd
, (10)
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where s is a complex parameter, and the prime sign means that the term n1 = 0, n2 =
0, .., nd−1 = 0 must be excluded. The series above converges for Re s > d

2
and its analytic

continuation defines a meromorphic function of s, analytic at s = 0. Since we should have
to introduce an arbitrary parameter µ with dimension of a mass to implement the analytic
procedure with dimensionless quantities, we have scaling properties.

Using n as a general index instead of n1, ..., nd, the scaling properties follows from the
fact that

ζµD(s) =
∞∑
n

(µ−2 λn)−s = µ2s
∞∑
n

λ−sn = µ2sζD(s) . (11)

Therefore we have

1

2

d

ds
ζµD(s)| s=0 =

1

2

d

ds
ζD(s)| s=0 +

1

2
lnµ2 ζD(s)| s=0. (12)

Before continuing, we would like to discuss two points. The first one is the fact that
for different boundary condition, as, for example, Neumann boundary conditions in all the
hyperplanes or periodic boundary conditions in all the spatial directions, the presence of
the zero-mode can make the calculations more involved. It is important to remark that
this zero mode problem does not appear in the calculations that we are presenting, since
we are choosing Dirichlet boundary conditions in all hyperplanes, excluding the possibility
of the spatial zero mode. The second point is that it is possible to show that there is no
scaling in the situation that we are interested in. For the case of hypercube with Dirichlet
boundary conditions it is possible to prove that the spectral zeta-function in s = 0 is zero,
consequently B d

2
= 0 and there is no scaling in the theory.

Let us study in Eq. (8) the contribution arising from the spectral zeta-function which
takes into account the geometric constraints upon the scalar field. Using the spectrum of
the D operator given by Eq. (9) and the definition of the spectral zeta-function given by
Eq. (10), we get that the derivative of the spectral zeta-function in s = 0 yields

d

ds
ζD(s)| s=0 = −

∞∑
~nd−1=1

∞∑
nd=−∞

(
ln
((

π β q

L

)2

+ (2πnd)
2
)

+ ln

(
1 +

a2β2

4n2
dL

2 + q2β2

))
, (13)

where ~nd−1 = (n1, n2, ..., nd−1), q
2 = n2

1 + n2
2 + ... + n2

d−1 and a2 =
(

(1−σ)m2
0L

2

π2

)
. Note that

in Eq. (13) we are using that ζD(s)| s=0 = 0. Using the following identity [44]

ln

((
π β q

L

)2

+ (2πnd)
2

)
=
∫ (π β q

L
)2

1

dθ2

θ2 + (2πnd)2
+ ln

(
1 + (2πnd)

2
)
, (14)

we can see that the first term in the right hand side of Eq. (13) gives a divergent contribution.
To proceed we use another useful identity given by

∞∑
nd=−∞

1

θ2 + (2πnd)2
=

1

2θ

(
1 +

2

eθ − 1

)
. (15)

Using both identities given by Eq. (14) and Eq. (15), it is possible to express the double
summation that appears in Eq. (13) by a single summation given by

∞∑
~nd−1=1

∞∑
nd=−∞

ln

((
π β q

L

)2

+ (2πnd)
2

)
= 2

∞∑
~nd−1=1

∫ (π β q
L

)

1
dθ
(

1

2
+

1

eθ − 1

)
+ α1, (16)
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where α1 =
∑∞
~nd−1=1

∑∞
nd=−∞ ln

(
1 + (2πnd)

2
)
. Carrying out the θ integration, we finally

arrive that Eq. (16) can be written as

∞∑
~nd−1=1

∞∑
nd=−∞

ln

((
π β q

L

)2

+ (2πnd)
2

)
= 2

∞∑
~nd−1=1

(
π β q

2L
+ ln

(
1− e−

π β q
L

))
+ α2 , (17)

where α2 = α1 −
∑∞
~nd−1=1

(
1 + 2 ln(1 − e−1)

)
. Since this divergent contribution α2 is β-

independent we will see that it can be eliminated using the third law of thermodynamics.
The first term on the right side of Eq. (17) is a divergent contribution, corresponding to
the zero-point energy term. Using the following mathematical result [45] [46] given by

∞∏
n=−∞

(
1 +

a2

n2 + b2

)
=

sinh2(π
√
a2 + b2)

sinh2(π b)
, (18)

we can write the last term of Eq. (13) in a more manageable way. Using the Eq. (17) and
Eq. (18), the derivative of the spectral zeta-function in s = 0 can be rewritten as

d

ds
ζD(s)| s=0 = −2

∞∑
~nd−1=1

ln

sinh
(
πβ
2L

√
q2 + a2

)
sinh

(
πβq
2L

)
+ ln

(
1− e−

π β q
L

)
+
π β q

2L

− α2 . (19)

In the next section we will evaluate the contribution of the O(N) model independent-value
generating function. In order to give operational meaning to the independent-value gener-
ating function we will use Klauder’s results.

4 Contribution of the large N O(N) model independent-

value generating function in lnZ

To give meaning to the independent value generating functional Q0(σ,~h ), we are using
the Klauder’s result as the formal definition of the independent-value generating functional
derived for the O(N) model in a d-dimensional Euclidean space [28]. It is possible to show
that the independent-value generating function can be written as

Q0(σ,~h ) = exp

(
− cN

2V

∫
ddx

∫ (
1− cos(~h · ~u)

)
exp

(
−1

2
σmN

2u2 − gN
p !
up
)
dNu

|u|N

)
(20)

where cN , mN and gN are new parameters dependent of N . To solve the integral de-

fined in Eq. (20), we notice that both ~u and ~h are isovectors of N components, i.e.,

~u = (u0, u1, ... , uN) and ~h = (h0, h1, ... , hN).
If we use a N -dimensional polar coordinate system defined by

u0 = |u| cos θ1

u1 = |u| cos θ2 sin θ1

...

uN−1 = |u| sin θN−1 ... sin θ1

(21)
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with the N -dimensional volume element given by:

dNu = |u|N−1d|u| dΩN (22)

where

dΩN =
N−1∏
l=1

sinN−1−l θldθl, (23)

we can rewrite Eq. (20) as:

Q0(σ, h) = cN

∫
[1− cos (h |u| cos θ1)] ×

× exp

(
−1

2
σmN

2u2 − gN
p !
up
)
d|u|
|u|

sinN−2(θ1) dθ1 dΩN−1, (24)

where the integral over dΩN−1 gives the surface of the unit sphere in N − 1 dimensions.
Using an approximation to the integration over θ1 valid for very large N , and the change of
variables |u| → v = |u| 2/(N − 2), it is possible to write the independent-value generating
functional as:

Q0(σ, h) = exp

(
− 1

2V

∫
ddx

∫ dv

v

[
1− exp

(
−1

2
h2v

)]
exp

(
−1

2
σm2v − g

p !
vp/2

))
. (25)

Here, the normalization parameter cN , the mass m and the coupling constant g are rescaled
in a way that Q0(σ, h) in Eq. (25) has no N -dependence. For more details of this discussion,
see the Ref. [28].

In order to study Q0(σ, h) let us define E(m,σ, g, h) given by

E(m,σ, g, h) =
∫ dv

v

[
1− exp

(
−1

2
h2v

)]
exp

(
−1

2
σm2v − g

p !
vp/2

)
(26)

Using a series representation for exp x and using the fact that the series obtained (
∑∞
k=1 ck fk(u))

not only converges on the interval [0,∞), but also converges uniformly there, the series can
be integrated term by term. It is not difficult to show that

E(m,σ, g, h) =
∞∑
k=1

(−1)k

2k
h2k

k!

∞∫
−∞

dv vk−1 exp

(
−1

2
σm2v − g

p !
vp/2

)
(27)

Now let us use the fact that the σ parameter can be choose in such a way that the calculations
becomes tractable. Let us choose σ = 0. Therefore we have

E(m,σ, g, h)|σ=0 =
∞∑
k=1

(−1)k

2k
h2k

k!

∞∫
−∞

dv vk−1 exp

(
− g

p !
vp/2

)
(28)

The sum in Eq. (28) has odd and even terms. For even p > 4, the integral of the odd terms
will be zero and, remembering that the integrated function will be even for k = (1, 3, 5, ... ),
the integral of the even terms can be rewritten as:

E(m,σ, g, h)|σ=0 = 2
∞∑
k=0

(
−1

2

)2k+1 h2k+1

(2k + 1)!

∞∫
0

dv v2k exp

(
− g

p !
vp/2

)
(29)
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Let us use the following integral representation for the Gamma function [45]

∞∫
0

dx xν−1 exp(−µxp) =
1

p
µ−

ν
p Γ

(
ν

p

)
, Re(µ) > 0 Re(ν) > 0 p > 0. (30)

At this point it is clear that the (g0 ϕ
p) theory, for even p > 4, can easily handle applying

our method. Using the result given by Eq. (30) in Eq. (29) we have

E(m,σ, g, h)|σ=0 =
∞∑
k=0

j(p, k)
h2k+1

g(2k+1)/p
, (31)

where the coefficients j(p, k) are given by

j(p, k) =
(
−1

2

)2k−1 [
p (2k + 1)!

]−1
(p !)(2k+1)/p Γ

(
4k + 2

p

)
(32)

Substituting the Eq. (31) and Eq. (32) in Eq. (25) we obtain that the independent-value
generating function Q0(σ, h)|σ=0 can be written as

Q0(σ, h)|σ=0 = exp

[
− 1

2Ωβ

∫ β

0
dτ
∫
dd−1x

∞∑
k=0

j(p, k)
h2k+1

g(2k+1)/p

]
. (33)

It is easy to calculate the second derivative for the independent-value generating function
with respect to h. Note that Q0(σ, h)|

h=σ=0
= 1. Thus we have

∂2

∂ h2
Q0(σ, h)|σ=0 =

1

4

∞∑
k, q=0

j(p, k, q) (2k + 1)(2q + 1)
h2k+2q

g(2k+2q+2)/p

×
× exp

(
−1

2

∞∑
k=0

j(p, k)
h2k+1

g(2k+1)/p

)
+ J(g, p, h), (34)

where J(g, p, h) is given by

J(g, p, h) =

(
−1

2

∞∑
k=1

j(p, k)(2k + 1)(2k)
h2k−1

g(2k+1)/p

)
exp

(
−1

2

∞∑
k=0

j(p, k)
h2k+1

g(2k+1)/p

)
, (35)

and j(p, k, q) = j(p, k) j(p, q).
We are interested in the case h = 0, therefore J(g, p, h) does not contribute to the Eq.

(34), since limh→0J(h) = 0. Using the fact that we are interested in the case h = 0, we have
the simple result that in the Eq. (34) only the term k = q = 0 contributes. We get that the
independent-value generating function Q0(σ, h) satisfies Q0(σ, h)|

h=σ=0
= 1, and

∂2

∂ h2
Q0(σ, h)|h=σ=0 =

1

p2

(
p !

g

) 2
p
[
Γ

(
2

p

)]2

. (36)

We will define Φ(p) = 1
p2
p !

2
p

[
Γ
(

2
p

)]2
. In the next section we show that it is possible

to obtain a quantum bound in the spatially bounded system described by the O(N) self-
interacting scalar field theory in the strong-coupling regime in the large N limit. In high
temperatures the bound is always correct, nevertheless, for the cases of intermediate or low
temperatures, the sign of the renormalized zero-point energy is crucial for the validity of
the bound for the specific entropy.
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5 The specific entropy for strongly coupled (g0 ϕ
p)d the-

ory

In this section we compute the specific entropy S
E

of the system. For simplicity, let us define
lnZ(β,Ω, h)|h=0 = lnZ(β,Ω). From Eq. (6) and Eq. (7), and using for simplicity that the
mean energy E(β,Ω) = E and the entropy S(β,Ω) = S, the specific entropy is given by

S

E
= β − lnZ(β,Ω)

(
d

dβ
lnZ(β,Ω)

)−1

. (37)

Substituting Eq. (19) and Eq. (36) in Eq. (8) we have that lnZ(β,Ω) is given by

lnZ(β,Ω) = −Φ(p) g−2/p

(
α ′

2
+ I2(β)

)
, (38)

where α ′ = α + α2 and the quantity I2(β) is given by

I2(β) =
∞∑

~nd−1=1

ln

sinh
(
πβ
2L

√
q2 + a2

)
sinh

(
πβq
2L

)
+ ln

(
1− e−

π β q
L

)
+
π β q

2L

 . (39)

Defining C1 and C2 = −2C1

α ′
that depend only of p and g0 and do not depend on β as

C1 = −α
′

2
Φ(p) g−2/p , (40)

the quantity lnZ(β,Ω) can be written in a general form as

lnZ(β,Ω) = C1 − C2 I2(β). (41)

It is worth to mention that the quantity C1 corresponds to a divergent expression, C2 is finite
and the summation term in the right-hand side of Eq. (19) is proportional to the zero-point
energy. In order to renormalize lnZ(β,Ω) we first can use the third law of thermodynamics.
The derivative of lnZ(β,Ω) with respect of β yields

d

dβ
lnZ(β,Ω) = −C2

d

dβ
I2(β), (42)

where the derivative of I2(β) with respect to β is given by

d

dβ
I2(β) =

π

2L

∞∑
~nd−1=1

((√
q2 + a2 coth

(
πβ

2L

√
q2 + a2

)
− q coth

(
πβ q

2L

))
+

2 q

e
π β q
L − 1

+ q

)
.

(43)
Using the definition of the mean energy given by Eq. (6), Eq. (40), Eq. (42) and Eq. (43)
we have that the unrenormalized mean energy in the massless case (a = 0) is given by

E(β,Ω)|a=0 =
π

2L
Φ(p) g−2/p

∞∑
~nd−1=1

(
2 q

e
π β q
L − 1

+ q

)
. (44)
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The formula above has the simple interpretation of being phase space sums over the mean
energy of each mode, where the zero-point energy is included. Note that the divergence
that appear in the mean energy given by the Eq. (44) is coming from the zero-point energy,
which is given by

E0 =
π

2L

∞∑
~nd−1=1

(n2
1 + n2

2 + ...+ n2
d−1)

1
2 , (45)

and its sign is given by the ratio between the first and the second terms of the right-hand
side of Eq. (44), for a negative zero-point energy. An analytic regularization gives the
renormalized zero-point energy. Using the definition of the Epstein-zeta function given by

A(a1, a2, ..., ak; 2s) =
∞∑

~nk=−∞
(a1n

2
1 + a2n

2
2 + ...+ akn

2
k)
−s , (46)

we can find the analytic extension of the Epstein-zeta function in the complex plane, in
particular at s = −1

2
, to define the Casimir energy [34] [47] [48] [49], as the finite part of

a meromorphic function that possesses simple poles. Although, in general situations, there
is an ambiguity in the renormalization procedure, in our case ζD(s)| s=0 = 0. Therefore
there is no scaling in the theory and consequently the renormalized zero-point energy does
not depend on the renormalized scale µ. Note that although in the expression for the

renormalized mean energy, up to the order (g0)
− 2
p , the coupling constant appears, we are

interested only in the ratio S
E

, and the dependence of the coupling constant disappears.
After this discussions we are able to present the entropy of the system. Substituting

Eq. (41) and Eq. (42) in the definition of the entropy given by Eq. (7), we have that the
entropy of the system can be written as

S = C1 − βC2

(
I2(β)

β
− d

dβ
I2(β)

)
. (47)

A system with a unique ground state corresponds to a state of vanishing entropy at zero
temperature. Since at zero temperature the system goes to a non-degenerate ground state,
the entropy must go to zero. The expression of the entropy given by Eq. (47) must satisfy
the third law of thermodynamics, i.e., the entropy of a system has a limiting property that
limβ→∞ S = 0. To proceed, lets analyze the limit given by

lim
β→∞

I2(β)

β
= lim

β→∞

d

dβ
I2(β) =

πa2

2L

∞∑
~nd−1=1

1√
q2 + a2 + q

+
π

2L

∞∑
~nd−1=1

q . (48)

Substituting Eq. (48) in Eq. (47), and using the third law of thermodynamics, we get

lim
β→∞

S = C1 = 0 . (49)

Therefore the first step to find a finite result for lnZ(β,Ω) was achieved, since we were able
to renormalize C1 to zero using the third law of thermodynamics. After this step we have

lnZ(β,Ω) = −C2 I2(β) . (50)

Substituting Eq. (50) in Eq. (37) we can see that for the case a = 0, i.e., the massless case,
the quotient S

E
yields

S

E
= 2πRTd(ξ) , (51)
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where we are defining the dimensionless variable ξ given by ξ = β/L. Since the field is
confined in a hypercube, the radius of the smallest (d− 1)-dimensional sphere that circum-

scribes this system should be given by R = 1
2

√
(d− 1)L. The function Td(ξ) defined in Eq.

(51) is given by

Td(ξ) =
1

π
√
d− 1

ξ Pd(ξ) +Rd(ξ)

ε
(r)
d + Pd(ξ)

, (52)

where ε
(r)
d = LE

(r)
0 and the positive functions Pd(ξ) and Rd(ξ) are defined respectively by

Pd(ξ) =
∞∑

~nd−1=1

π q
(
eπ ξ q − 1

)−1
(53)

and

Rd(ξ) = −
∞∑

~nd−1=1

ln
(
1− e−π ξ q

)
. (54)

It is interesting to study the behavior of the specific entropy for low and high temperatures.
For the case of high temperatures, using the results obtained in Ref. [21] we get

S

E
< 2πR

h1(d)

h2(d)
ξ . (55)

where the functions h1(d) and h2(d) are given respectively by

h1(d) =
Sd−1

πd
√
d− 1

ζ(d)
(

Γ(d) + Γ(d− 1)
)

(56)

and

h2(d) =
Sd−1

πd−1

(
Γ(d) ζ(d)− f(d)

)
. (57)

The quantity f(d) that appears in the definition of h2(d) is given by

f(d) =
∞∑
l=0

Bl

(d+ l − 1)l!
. (58)

At high temperatures the dimension in the imaginary direction shrinks to zero and the
system behaves like a classical system in (d − 1) dimensions where quantum fluctuations
are absent. This behavior of the specific entropy increasing with β in the high-temperature
limit was obtained by Deutsch in Ref. [13]. Bekenstein using the condition β � R (high
temperature limit) also obtained the same behavior in Ref. [10]. Since the thermal energy
can compensate the negative renormalized zero-point energy, the quantum bound holds.

When considering the low temperature behavior of the specific entropy, we can see that
the problem of the sign of the renormalized zero-point energy can invalidate the quantum
bound. In this limit also using the results obtained in Ref. [21] we have

S

E
< 2πR

h1(d)

ε
(r)
d

ξ1−d . (59)

Although some authors claim that the energy of the boundaries of such systems can com-
pensate the negative renormalized-zero point energy yielding a net positive energy, for us
this is still an open question that deserves further investigation.
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6 Conclusions and perspectives

In this paper we studied self-interacting scalar fields in the strong-coupling regime in
equilibrium with a thermal bath, also in the presence of macroscopic boundaries. Using
the Klauder representation for the independent-value generating functional, and up to the

order (g0)
− 2
p , we show that it is possible to obtain a quantum bound in the system described

by the O(N) self-interacting scalar field in the strong-coupling regime in the limit of large
N . Note that for a very large number of fields, general arguments said that at least in the
weak coupling regime, there a critical Nc, such that for N > Nc the bound is violated. Our
results show that this problem does not appear in the strong-coupling regime. Our results
are quite similar to the previous one obtained for the one component scalar model.

We have shown that, for fields confined in a hypercube of size L, in the strong-coupling
regime, at low and intermediate temperatures (β ≈ L), the quantum bound depends on

the sign of the renormalized zero-point energy given by E
(r)
0 . Defining ε

(r)
d as the renormal-

ized zero-point energy for the free theory per unit length, we get the following functional
dependencies. For low temperatures we get S

E
< 2πR h1(d)

ε
(r)
d
ξ d−1

, where R is the radius of the

smallest sphere circumscribing the system. For the case of high temperature, we get that
the specific entropy always satisfies a quantum bound, given by S

E
< 2πR h1(d)

h2(d)
ξ. Since in

our approach, we have to evaluate spectral zeta-function, our results can easily be general-
ized fort geometries where the analytic form of the spectrum is known. For domains with
unknown spectrum, the problem is more involved. Also for scalar fields in non-isometric
domains but isospectral situation, the ratio S/E must obey the Bekenstein bound.

A natural extension of this paper is to extend the results, i.e., the validity of the bound
for the case of interacting field theory described by asymptotically free models [50] [51] [52]
[53] [54], at least up to some order of perturbation theory. This situation of field theory
with asymptotically free behavior, defined in a small compact region of space may occur
in QCD-the confinement-deconfinement phase transition at high temperatures or if usual
matter is strongly compressed. In ultra-relativistic heavy ion collisions we expect that the
plasma of quarks and gluons can be produced, just after the collision, hot and compressed
nuclear matter is confined in a small region of space. The validity of the Bekenstein bound
in systems defined in a compact spatial region, described by asymptotically free theories is
under investigation by the authors.
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