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Abstract

We use the stochastic quantization method to study systems with complex valued path integral
weights. We assume a Langevin equation with a memory kernel and Einstein’s relations with
colored noise. The equilibrium solution of this non-Markovian Langevin equation is analyzed.
We show that for a large class of elliptic non-Hermitian operators acting on scalar functions on
Euclidean space, which define different models in quantum field theory, converges to an equilibrium
state in the asymptotic limit of the Markov parameter τ → ∞. Moreover, as we expected, we
obtain the Schwinger functions of the theory.
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1 Introduction

The program of stochastic quantization, first proposed by Parisi and Wu [1], and the stochastic
regularization was carried out for generic fields defined in flat, Euclidean manifolds. A brief
introduction to stochastic quantization can be found in Refs. [2] [3] [4], and a complete review
is given in Ref. [5]. Recently Menezes and Svaiter [6] implemented the stochastic quantization
in the theory of self-interacting scalar fields in a static Riemannian manifold and also a manifold
with a event horizon, namely, the Einstein and the Rindler manifold. First, these authors solved a
Langevin equation for the mode coefficients of the field, then they exhibit the two-point function
at the one-loop level. It was shown that it diverges and to regularize the theory they used a
covariant stochastic regularization. The presence of the Markov parameter as an extra dimension
allows the authors to implement a regularization scheme, which preserves all the symmetries of
the theory under study. It is clear that the stochastic quantization program can be implemented
without problems, if it is possible to perform the Wick rotation, obtaining a real Euclidean action.

The picture that emerges from the above discussion is that the implementation of the stochastic
quantization in curved background is related to the following fact. For static manifold, it is
possible to perform a Wick rotation, i.e., analytically extend the pseudo-Riemannian manifold
to the Riemannian domain without problem. Nevertheless, for non-static curved manifolds we
have to extend the formalism beyond the Euclidean signature, i.e., to formulate the stochastic
quantization in pseudo-Riemannian manifold, not in the Riemannian space (as in the original
Euclidean space) as was originally formulated. See for example the discussion presented by Huffel
and Rumpf [7] and Gozzi [8]. In the first of these papers the authors proposed a modification
of the original Parisi-Wu scheme, introducing a complex drift term in the Langevin equation, to
implement the stochastic quantization in Minkowski spacetime. Gozzi studied the spectrum of the
non-self-adjoint Fokker-Planck Hamiltonian to justify this program. See also the papers [9] [10].
Of course, these situations are special cases of ordinary Euclidean formulation for systems with
complex actions.

The main difference between the implementation of the stochastic quantization in Minkowski
spacetime and in Euclidean space is the fact that in the latter case the approach to the equilibrium
state is a stationary solution of the Focker-Planck equation. In the Minkowski formulation, the
Hamiltonian is non-Hermitian and the eigenvalues of such Hamiltonian are in general complex. The
real part of such eigenvalues are important to the asymptotic behavior at large Markov time, and
the approach to the equilibrium is achieved only if we can show its positive semi-definiteness. The
crucial question is: what happens if the Langevin equation describes diffusion around complex
action? Some authors claim that it is possible to obtain meaningful results out of Langevin
equation diffusion processes around complex action. Parisi [11] and Klauder and Peterson [12]
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investigated the complex Langevin equation, where some numerical simulations in one-dimensional
systems was presented. See also the papers [13] [14]. We would also like to mention the approach
developed by Okamoto et al. [15] where the role of the kernel in the complex Langevin equation
was studied.

We would like to remark that there are many examples where Euclidean action is complex.
The simplest case is the stochastic quantization in Minkowski spacetime, as we discussed. Other
situations are systems, as for example QCD, with non-vanishing chemical potential at finite tem-
perature; for SU(N) theories with N > 2, the fermion determinant becomes complex and also the
effective action. Complex terms can also appear in the Langevin equation for fermions, but a suit-
able kernel can circumvent this problem [16] [17] [18]. Another case that deserves our attention is
the stochastic quantization of topological field theories. One of the peculiar features within these
kind of theories is the appearance of a factor i in front of the topological actions in Euclidean space.
In these topological theories, the path integral measure weighing remain to be eiS, even after the
Wick rotation. An attempt to use a Markovian Langevin equation with a white noise to quantize
the theory fails since the Langevin equation will not tend to any equilibrium at large Markov
parameter. In the literature there are different proposes to solve the above mentioned problem. In
a pure topological Chern-Simons theory, Ferrari et al. [19] introduced a non-trivial kernel in the
Langevin equation. Other approach was developed by Menezes and Svaiter [20]. These authors
proved that, using a non-Markovian Langevin equation with a colored random noise, it is possible
to obtain convergence towards equilibrium even with an imaginary Chern-Simons coefficient. An
interesting application of this method can be found on Ref. [21], where a Langevin equation with
a memory kernel was introduced in order to obtain the Schwinger functions for the self-interacting
scalar model. In conclusion, although several alternative methods have been proposed to deal
with interesting physical systems where the Euclidean action is complex [22] [23] [24] [25], these
methods do not suggest any general way of solving the particular difficulties that arise in each sit-
uation. Here, we wish to report progress in the stochastic quantization of theories with imaginary
action, introducing a memory kernel.

It is the purpose of the present paper to use the method of the stochastic quantization to
study systems with complex valued path integral weights. We assume a Langevin equation with a
memory kernel and Einstein’s relations with colored noise [26]. We show that for a large class of
elliptic non-Hermitean operators which define different models in quantum field theory converges
in the asymptotic limit of the Markov parameter τ →∞, and we obtain the Schwinger functions
of the theory. In section II, we briefly discuss the Parisi-Wu stochastic quantization for the case
of free scalar field. In section III we implement the stochastic quantization for scalar field with
complex action using a non-Markovian Langevin equation. Conclusions are given in section IV.
In this paper we use h̄ = c = kB = 1.
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2 Stochastic quantization for the free scalar field theory:

the Euclidean case

In this section, we give a brief survey of the stochastic quantization. This technique in flat space-
time with trivial topology can be summarized by the following steps. First, starting from a field
defined in Minkowski spacetime, after analytic continuation to imaginary time, the Euclidean
counterpart, i.e., the field defined in an Euclidean space, is obtained. Second, it is introduced
a monotonically crescent Markov parameter, called in the literature “fictitious time” and also a
random noise field η(τ, x), which simulates the coupling between the classical system and a heat
reservoir. It is assumed that the fields defined at the beginning in a d-dimensional Euclidean space
also depends on the Markov parameter, therefore the field and a random noise field are defined in a
(d+1)-dimensional manifold. One starts with the system out of equilibrium at an arbitrary initial
state. It is then forced into equilibrium assuming that its evolution is governed by a Markovian
Langevin equation with a white random noise field [27] [28] [29]. In fact, this evolution is de-
scribed by a process which is stationary, Gaussian and Markovian. Finally, the n-point correlation
functions of the theory in the (d + 1)-dimensional space are defined by performing averages over
the random noise field with a Gaussian distribution, that is, performing the stochastic averages
〈ϕ(τ1, x1)ϕ(τ2, x2)...ϕ(τn, xn) 〉η. The n-point Schwinger functions of the Euclidean d-dimensional
theory are obtained evaluating these n-point stochastic averages 〈ϕ(τ1, x1)ϕ(τ2, x2)...ϕ(τn, xn) 〉η
when the Markov parameter goes to infinity (τ → ∞), and the equilibrium is reached. This can
be proved in different ways for the particular case of Euclidean scalar field theory. One can use,
for instance, the Fokker-Planck equation [30] [31] associated with the equations describing the
stochastic dynamic of the system. A diagrammatical technique [32] has also been used to prove
such equivalence.

After this brief digression, let us consider a free neutral scalar field. The Euclidean action that
usually describes such theory is

S0[ϕ] =
∫

ddx
(

1

2
(∂ϕ)2 +

1

2
m2

0 ϕ2(x)
)

. (1)

The simplest starting point of the stochastic quantization to obtain the Euclidean field theory
is a Markovian Langevin equation. Assume a flat Euclidean d-dimensional manifold, where we are
choosing periodic boundary conditions for a scalar field and also a random noise. In other words,
they are defined in a d-torus Ω ≡ T d. To implement the stochastic quantization we supplement the
scalar field ϕ(x) and the random noise η(x) with an extra coordinate τ , the Markov parameter,
such that ϕ(x) → ϕ(τ, x) and η(x) → η(τ, x). Therefore, the fields and the random noise are
defined in a domain: T d×R (+). Let us consider that this dynamical system is out of equilibrium,
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being described by the following equation of evolution:

∂

∂τ
ϕ(τ, x) = − δ S0

δ ϕ(x)
|ϕ(x)=ϕ(τ, x) + η(τ, x), (2)

where τ is a Markov parameter, η(τ, x) is a random noise field and S0 is the usual free Euclidean
action defined in Eq. (1). For a free scalar field, the Langevin equation reads

∂

∂τ
ϕ(τ, x) = −(−∆ + m2

0 )ϕ(τ, x) + η(τ, x), (3)

where ∆ is the d-dimensional Laplace operator. The Eq. (3) describes a Ornstein-Uhlenbeck
process and we are assuming the Einstein relations, that is:

〈 η(τ, x) 〉η = 0, (4)

and for the two-point correlation function associated with the random noise field

〈 η(τ, x) η(τ ′, x′) 〉η = 2δ(τ − τ ′) δd(x− x′), (5)

where 〈 ...〉η means stochastic averages. The above equation defines a delta-correlated random
process. In a generic way, the stochastic average for any functional of ϕ given by F [ϕ ] is defined
by

〈F [ϕ ] 〉η =

∫
[dη]F [ϕ ] exp

[
−1

4

∫
ddx

∫
dτ η2(τ, x)

]
∫

[dη] exp
[
−1

4

∫
ddx

∫
dτ η2(τ, x)

] . (6)

Let us define the retarded Green function for the diffusion problem that we call G(τ − τ ′, x− x′).
The retarded Green function satisfies G(τ − τ ′, x− x′) = 0 if τ − τ ′ < 0 and also[

∂

∂τ
+ (−∆x + m2

0 )

]
G(τ − τ ′, x− x′) = δd(x− x′)δ(τ − τ ′). (7)

Using the retarded Green function and the initial condition ϕ(τ, x)|τ=0 = 0, the solution for Eq.
(3) reads

ϕ(τ, x) =
∫ τ

0
dτ ′

∫
Ω

ddx′ G(τ − τ ′, x− x′)η(τ ′, x′). (8)

Let us define the Fourier transforms for the field and the noise given by ϕ(τ, k) and η(τ, k). We
have respectively

ϕ(τ, k) =
1

(2π)
d
2

∫
ddx e−ikx ϕ(τ, x), (9)
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and

η(τ, k) =
1

(2π)
d
2

∫
ddx e−ikx η(τ, x). (10)

Substituting Eq. (9) in Eq. (1), the free action for the scalar field in the (d+1)-dimensional space
writing in terms of the Fourier coefficients reads

S0[ϕ(k)] |ϕ(k)=ϕ(τ, k) =
1

2

∫
ddk ϕ(τ, k)(k2 + m2

0)ϕ(τ, k). (11)

Substituting Eq. (9) and Eq. (10) in Eq. (3) we have that each Fourier coefficient satisfies a
Langevin equation given by

∂

∂τ
ϕ(τ, k) = −(k2 + m2

0)ϕ(τ, k) + η(τ, k). (12)

In the Langevin equation the particle is subject to a fluctuating force (representing a stochastic
environment), where its average properties are presumed to be known and also the friction force.
Note that the ”friction coefficient” in the Eq. (12) is given by (k2 + m2

0).
The solution for Eq. (12) reads

ϕ(τ, k) = exp
(
−(k2 + m2

0)τ
)
ϕ(0, k) +

∫ τ

0
dτ ′ exp

(
−(k2 + m2

0)(τ − τ ′)
)
η(τ ′, k). (13)

Using the Einstein relation, we get that the Fourier coefficients for the random noise satisfies

〈 η(τ, k) 〉η = 0 (14)

and
〈 η(τ, k)η(τ ′, k′) 〉η = 2 δ(τ − τ ′) δd(k + k′). (15)

It is possible to show that 〈ϕ(τ, k)ϕ(τ ′, k′) 〉η|τ=τ ′ ≡ D(k, k′; τ, τ ′) is given by:

D(k; τ, τ) = (2π)dδd(k + k′)
1

(k2 + m2
0)

(
1− exp

(
−2τ(k2 + m2

0)
))

. (16)

where we assume τ = τ ′. Therefore, for τ →∞ we recover the Euclidean two-point function.
The self-interacting theory is beyond the scope of this paper, however it can be carried out in a

straightforward way. In the next section we present a modification of the Langevin equation that
allows us to treat systems with complex Euclidean actions. Although non-trivial, it is intuitively
obvious that the method can be extended to interacting field theory.
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3 Stochastic quantization for complex actions

As an application of the ideas discussed previously, in this section we show how it is possible to
quantize a theory with a complex action using a non-Markovian Langevin equation. We will be
following similar steps as in Ref. [21]. Consider the following Euclidean action:

S =
1

2

∫
ddx ϕ Kϕ, (17)

with the following Markovian Langevin equation:

∂

∂τ
ϕ(τ, x) = −Kϕ + η(τ, x). (18)

where K is an elliptic operator (with some minor changes, our proof in this section can be made
to hyperbolic operators). The function ϕ is a scalar field, for simplicity, but we can generalize our
results to fields of higher spin. If we let K to be non-Hermitian, the action in Eq. (17) becomes
complex. There are many approaches in the literature to deal with complex actions; one of them
is to employ a complex Langevin equation, separating the field in a real part and in a imaginary
part, Re(ϕ) = ϕ1 and Im(ϕ) = ϕ2 [5]. With this approach, we get two Langevin equations, one
for each of the two fields ϕ1 and ϕ2. Another one is to use a modified Langevin equation:

∂

∂τ
ϕ(τ, x) = −

∫
ddy κ(x, y)

δ S0

δ ϕ(y)
|ϕ(y)=ϕ(τ, y) + η(τ, x), (19)

where a subsequent change in the second moment of the noise field is

〈 η(τ, x) η(τ ′, x′) 〉η = 2δ(τ − τ ′) κ(x, x′). (20)

With these modifications, we may choose an appropriate kernel:

κ(x, x′) = K†
xδ(x− x′), (21)

so the Langevin equation becomes

∂

∂τ
ϕ(τ, x) = −K.K†ϕ + η(τ, x). (22)

We see that we get a “bosonized” version of the Langevin equation given by Eq. (18) and the
problem with the convergence towards an equilibrium disappears, since K.K† is a Hermitian
operator. This is the prescription usually employed in the literature to deal with the stochastic
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quantization of fermions [16] [17] [18]. In fact, the root of this problem lies in the fact that there
exists no classical analogue of fermion fields.

Another approach can be used as well. Let us consider the following non-Markovian Langevin
equation:

∂

∂τ
ϕ(τ, x) = −

∫ τ

0
ds MΛ(τ − s)

δ S

δ ϕ(x)
|ϕ(x)=ϕ(s, x) + η(τ, x), (23)

where MΛ is a memory kernel and the stochastic random field η(τ, x) satisfies the modified Ein-
stein’s relations

〈 η(τ, x) η(τ ′, x′) 〉η = 2MΛ(|τ − τ ′|) δd(x− x′). (24)

In this case where MΛ(|τ − τ ′|) has a width in the fictitious time, the description is Gaussian in
spite of being non-Markovian. For the case of Euclidean free scalar field theory we have that the
generalized Langevin equation reads

∂

∂τ
ϕ(τ, x) = −

∫ τ

0
ds MΛ(τ − s)Kϕ(s, x) + η(τ, x). (25)

We shall prove in this section that this method leads to convergence towards equilibrium, even
though we have a complex Langevin equation.

We can introduce a mode decomposition such as

ϕ(τ, x) =
∫

dµ̃(n)ϕn(τ)un(x) (26)

and
η(τ, x) =

∫
dµ̃(n)ηn(τ)un(x), (27)

where the measure µ̃(k) depends on the metric we are interested in. Each Fourier coefficient ϕn

obeys a (non-Markovian) Langevin equation given by

∂

∂τ
ϕn(τ) = −λn

∫ τ

0
ds MΛ(τ − s)ϕn(s) + ηn(τ), (28)

where λn is an eigenvalue of the operator K and ηn(τ) obeys

〈 ηn(τ) ηn′(τ ′) 〉η = 2MΛ(|τ − τ ′|) δd(n, n′). (29)

Following Fox [33] [34], we define the Laplace transform of the memory kernel:

M(z) =
∫ ∞

0
dτ MΛ(τ) e−zτ . (30)
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With the initial condition ϕn(τ)|τ=0 = 0, the solution of the Eq. (28) reads:

ϕn(τ) =
∫ ∞

0
dτ ′ Gn(τ − τ ′) ηn(τ ′), (31)

where using the step function θ(τ), the Green function Gn(τ) is defined by:

Gn(τ) ≡ Ωn(τ) θ(τ). (32)

The Ωn(τ) function that appears in Eq. (32) is defined through its Laplace transform:

Ωn(τ) =
(
z + λnM(z)

)−1

. (33)

¿From Eq. (31) and the modified Einstein relations, we get that the free scalar correlation function
Dn(τ, τ ′) is given by:

Dn(τ, τ ′) =

= 2δd(n, n′)
∫ ∞

0
ds
∫ ∞

0
ds′ Gn(τ − s) Gn(τ ′ − s′) MΛ(| s− s′ |)

= 2δd(n, n′)
∫ τ

0
ds
∫ τ ′

0
ds′ Ωn(τ − s) Ωn(τ ′ − s′) MΛ(| s− s′ |). (34)

To proceed we have to write Dn(τ, τ ′) in a simplified way. Note that the double Laplace transform
of the right hand side is given by:∫ ∞

0
dτ e−zτ

∫ ∞

0
dτ ′ e−zτ ′

∫ τ

0
ds
∫ τ ′

0
ds′ Ωn(τ − s) Ωn(τ ′ − s′) MΛ(| s− s′ |) =

= Ωn(z) Ωn(z′)
∫ ∞

0
ds
∫ ∞

0
ds′ e−z′s′

e−zs MΛ(| s− s′ |). (35)

Now, with simple manipulations, we get:∫ ∞

0
ds
∫ ∞

0
ds′ e−z′s′

e−zsMΛ(| s− s′ |) =
M(z) + M(z′)

z + z′
. (36)

Therefore, we get the identity:∫ ∞

0
dτ e−zτ

∫ ∞

0
dτ ′ e−zτ ′

∫ τ

0
ds
∫ τ ′

0
ds′Ωn(τ − s) Ωn(τ ′ − s′) MΛ(| s− s′ |) =

= Ωn(z) Ωn(z′)

(
M(z) + M(z′)

z + z′

)
. (37)
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Remembering Eq. (33), we can show that:

Ωn(z) Ωn(z′)

(
M(z) + M(z′)

z + z′

)
=

1

λn

(
Ωn(z) + Ωn(z′)

z + z′
− Ωn(z) Ωn(z′)

)
. (38)

So, in parallel with result given by Eq. (36), we finally obtain a very simple expression for Dn(τ, τ ′)
in terms of Ωn(τ). We have

Dn(τ, τ ′) =
2

λn

δd(n, n′)
(
Ωn(| τ − τ ′ |)− Ωn(τ) Ωn(τ ′)

)
. (39)

Now, we need an expression for the memory kernel in order to investigate the convergence of Eq.
(39). A series of kernels were proposed in the literature:

M
(m)
Λ (τ) =

1

2m!
Λ2(Λ2 | τ |)m exp(−Λ2 | τ |). (40)

For simplicity, we shall take the case for m = 0. Then, from Eq. (30), Eq. (33) and Eq. (40), and
applying the inverse Laplace transform [35], we obtain the following expression for the Ω-function:

Ωn(τ) =

(
Λ2

β
sinh

(
βτ

2

)
+ cosh

(
βτ

2

))
exp

(
−τ

Λ2

2

)
, (41)

where we have defined a quantity β given by:

β ≡ x + iy, (42)

where

x =

√
Λ4 + αR + |z|

2
, (43)

y = αI

√
1

2(Λ4 + αR + |z|)
, (44)

and, finally:

|z| =
√

(Λ4 + αR)2 + α2
I , (45)

with α = −2Λ2λn and we have written α as α = αR + iαI , where αR and αI are real quantities.
Similarly, we have, for the Green function:

Gn(τ) =

(
Λ2

β
sinh

(
βτ

2

)
+ cosh

(
βτ

2

))
exp

(
−τ

Λ2

2

)
θ(τ). (46)
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Now, in order to have convergence, we must demand that Gn → 0 when τ →∞. Using hyperbolic
identities we see that, in order to have Gn → 0 when τ →∞, we shall have:

|λR
n | >

(λI
n)2

2Λ2
, (47)

where we have written the eigenvalues as λn = λR
n + iλI

n. Since Λ is, in principle, arbitrary,
we see that the condition given by Eq. (47) does not seem to pose any serious restrictions on
the eigenvalues of the operator K. However, we have another restriction. Note that, with this
prescription, the function M(x− y; τ) defined in the Ref. [21] as

M(x− y, τ) ≡
∫ τ

0
ds MΛ(τ − s) G(τ − s, x− y), (48)

where G(τ−s, x) is the retarded Green function for the diffusion problem, whose Fourier transform
is given by:

M(k, τ) =
Λ2

2

1

9 Λ4 + β2

{
8 Λ2 −

4 exp
(
−3Λ2

2
τ
)[

2Λ2 cosh
(βτ

2

)
+
(

3Λ4

2β
− β

2

)
sinh

(βτ

2

)]}
, (49)

will no longer be Hermitian. But, if we impose the following restriction:

|λR
n | < 5Λ2, (50)

its real part will remain positive, which implies that the real part of the eingenvalues of the Fokker-
Planck Hamiltonian defined therein are positive, assuring, therefore, convergence to equilibrium,
i.e., the system reaches its ground state. It seems that Eq. (47) and Eq. (50) can be imposed
simultaneously without restrictions on Λ. In particular, we are allowed to take arbitrarily large
values for Λ, which would imply that our approach works for almost any value for the eigenvalues
λn. It can be easily proved that the presence of the zero modes destroys the convergence to
equilibrium.

¿From the results above, it is easy to see that the free two-point function is given by:

Dn(τ, τ ′) =

=
2

λn

δd(n, n′)

[(
Λ2

β
sinh

(
β(τ − τ ′)

2

)
+ cosh

(
β(τ − τ ′)

2

))
exp

(
− Λ2

2
| (τ − τ ′) |

)

−
(

Λ2

β
sinh

(
βτ

2

)
+ cosh

(
βτ

2

))(
Λ2

β
sinh

(
βτ ′

2

)
+ cosh

(
βτ ′

2

))
exp

(
− Λ2

2
(τ + τ ′)

)]
.(51)
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For τ = τ ′, we get:

Dn(τ, τ) =
2

λn

δd(n, n′)

(
1−

(
Λ2

β
sinh

(
βτ

2

)
+ cosh

(
βτ

2

))2

exp(−Λ2 τ)

)
. (52)

So, in the limit τ →∞, we obtain the following result:

Dn(τ, τ) =
2

λn

δd(n, n′). (53)

Therefore, apart from an unimportant constant, we have obtained that, in the asymptotic
limit τ → ∞, we have reached convergence towards the expected equilibrium, and the two-point
Schwinger function was obtained.

4 Conclusions and perspectives

There are many examples where the Euclidean field theory is defined for an imaginary action.
Since in this case the path integral weight is not positive definite, the stochastic quantization in
this situation is problematic. Parisi and Klauder proposed complex Langevin equations [11] [12],
and some problems of this approach are the following. First of all, complex Langevin simulations
do not converge to a stationary distribution in many situations. Besides, if it does, it may converge
to many different stationary distributions. The complex Langevin equation also appears when the
original method proposed by Parisi and Wu is extended to include theories with fermions [16] [17]
[18]. The first question that appears in this context is if make sense the Brownian problem with
anticommutating numbers. It can be shown that, for massless fermionic fields, there will not be a
convergence factor after integrating the Markovian Langevin equation. Therefore the equilibrium
is not reached. One way of avoiding this problem is to introduce a kernel in the Langevin equation
describing the evolution of two Grassmannian fields.

In this paper, we have used the method of the stochastic quantization to study systems with
complex valued path integral weights. We assumed a Langevin equation with a memory kernel
and Einstein’s relation with colored noise. The equilibrium solution of such Langevin equation
was analyzed. We have shown that for a large class of elliptic non-Hermitean operators which
define different models in quantum field theory converges in the asymptotic limit of the Markov
parameter τ → ∞, and we have obtained the Schwinger functions of the theory. Although non-
trivial, the method proposed can be extended to interacting field theory with complex actions.
The generalization of the method for this situation is under investigation by the authors.
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