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Abstract

I review the present status of the classification of the irreducible representations of the alge-
bra of the one-dimensional N− Extended Supersymmetry (the superalgebra of the Supersym-
metric Quantum Mechanics) realized by linear derivative operators acting on a finite number of
bosonic and fermionic fields.

1 The Superalgebra of the Supersymmetric Quantum Me-
chanics

The superalgebra of the Supersymmetric Quantum Mechanics (1D N-Extended Supersymme-
try Algebra) is given by N odd generators Qi (i = 1, . . . , N) and a single even generator H (the
hamiltonian). It is defined by the (anti)-commutation relations

{Qi, Qj} = 2δijH,

[Qi, H ] = 0. (1)

The knowledge of its representation theory is essential for the construction of off-shell invariant
actions which can arise as a dimensional reduction of higher dimensional supersymmetric theo-
ries and/or can be given by 1D supersymmetric sigma-models associated to some d-dimensional
target manifold (see [1] and [2]).

Two main classes of (1) representations are considered in the literature:
i) the non-linear realizations and
ii) the linear representations.
Non-linear realizations of (1) are only limited and partially understood (see [3] for recent

results and a discussion). Linear representations, on the other hand, have been recently clarified
and the program of their classification can be considered largely completed. In this work I will
review the main results of the classification of the linear representations and point out which are
the open problems. The work here reviewed is based on the references [4–9]. Some material
here presented is new and is an anticipation of a work in progress ( [10]).

The linear representations under consideration are given by a finite number of fields, bosonic
and fermionic, depending on a single coordinate t (the time). The generator H is represented
by the time-derivative, while the Qi’s generators are linear operators (matrices) whose entries
are either c-numbers or time-derivatives up to a certain power. The main result of [4] states that
all such irreducible representations, for a given N , are expressed by

a) a fundamental irreducible representation, nowadays called in the literature “the root mul-
tiplet” or “root representation”, with equal number n of bosonic and fermionic fields and that
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b) all remaining irreducible representations of (1) are obtained by applying an operation, the
“dressing transformation”, to the root representation.

In the root representation the Qi generators are given by

Qi =

(
0 σi

σ̃i · H 0

)
, (2)

where the σi and σ̃i are matrices entering a Weyl type (i.e. block antidiagonal) irreducible
representation of a D-dimensional (with D = N) Clifford algebra relation

Γi =

(
0 σi

σ̃i 0

)
, {Γi, Γj} = 2δij . (3)

The dressing transformations, acting on the root generators Qi, are given by the operations

Qi �→ Q̂i = DQiD
−1 (4)

realized by some diagonal matrix D whose non-vanishing entries are given by the identity and
by non-negative powers of the hamiltonian H .

The regularity condition requires that only the Q̂i generators which do not admit entries
with 1

H
poles are legitimate operators of an irreducible representation.

A corollary of the [4] results is that the total number n of bosonic fields entering an irre-
ducible representation (which equals the total number of fermionic fields) is expressed, for any
given N , by the following relation

N = 8l + m,

n = 24lG(m), (5)

where l = 0, 1, 2, . . . and m = 1, 2, 3, 4, 5, 6, 7, 8. G(m) appearing in (5) is the Radon-Hurwitz
function

m 1 2 3 4 5 6 7 8
G(m) 1 2 4 4 8 8 8 8

(6)

The modulo 8 property of the irreducible representations of the N-extended supersymmetry is
in consequence of the famous modulo 8 property of Clifford algebras.

A dimensionality d can be assigned to any field entering a linear representation (irreducible
or not). The hamiltonian H maps a given field of dimension d into a new field of dimension
d+1. Bosonic (fermionic) fields have integer (respectively, half-integer) dimensions. Each finite
linear representation is characterized by its “fields content”, the set of integers (n1, n2, . . . , nl)
specifying the number ni of fields of dimension di (di = d1 + i−1

2
, with d1 an arbitrary constant)

entering the representation.
Physically, the nl fields of highest dimension are the auxiliary fields which transform as a

time-derivative under any supersymmetry generator. The maximal value l (corresponding to the
maximal dimensionality dl) is defined to be the length of the representation (a root representa-
tion has length l = 2).
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Either n1, n3, . . . correspond to the bosonic fields (therefore n2, n4, . . . specify the fermionic
fields) or viceversa. In both cases the equality n1 +n3 + . . . = n2 +n4 + . . . = n is guaranteed.
A multiplet is bosonic (fermionic) if its n1 component fields of lower dimension are bosonic
(fermionic). The representation theory does not discriminate the overall bosonic or fermionic
nature of the multiplet.

According to [4], if (n1, n2, . . . , nl) specifies the fields content of an irreducible representa-
tion, (nl, nl−1, . . . , n1) specifies the fields content of a dual irreducible representation. Repre-
sentations such that n1 = nl, n2 = nl−1, . . . are called “self-dual representations”. In [5] it was
shown how to extract from the associated Clifford algebras the admissible fields content of the
(1) linear finite irreducible representations. We discuss the results of [5] in the next Section.

2 The finite linear irreducible representations

The (1) superalgebra is not a simple Lie superalgebra. It admits reducible representations which
nevertheless are indecomposable. One class of representations of (1) is given by the so-called
“enveloping representations” (see [5]). For each N , the “enveloping representation” admits
2N−1 bosonic and 2N−1 fermionic states spanned by the monomials∏N

i=1 Qi
αi ,

where the αi’s take the values 0 and 1. The fields content of the enveloping representation
is given by the set of numbers entering the Newton’s binomial. Up to N ≤ 3, the enveloping
representation is irreducible. For N = 3 its fields content is given by (1, 3, 3, 1). The enveloping
representation is the unique N = 3 irreducible representation with length l = 4. Starting
from N ≥ 4, the enveloping representation is no longer irreducible. The fields content of the
N = 4 enveloping representation is (1, 4, 6, 4, 1). It contains twice as many fields than the
number entering the N = 4 irreducible representations. The N = 4 enveloping representation
is reducible, but indecomposable.

We review now the [5] results on the classification of the fields content of the linear finite
irreducible representations of (1). In [5] it was shown how to extract from the Clifford algebras
associated to the root multiplets (for any given N) the information about the allowed fields
contents. The results are the following. The complete list of the allowed fields contents is
explicitly produced for all values N ≤ 10. Some corollaries follow from the [5] construction.
N = 1, 2, 4, 8 are the only values of N such that all its irreducible representations have length
l ≤ 3. Conversely, starting from N ≥ 10, irreducible representations with length l = 5 fields
contents are allowed.

In [5] the length l = 4 fields contents were listed for all values N ≤ 12. A careful ex-
amination in [10] shows that the results are indeed correct for N ≤ 11, while missing cases
appear for N = 12. We took here the opportunity to correct the N = 12 results and present
the list of its length l = 4 admissible fields contents. It is given by the following values. Let us
denote with (h, 64 − k, 64 − h, k) the fields contents of the length l = 4 N = 12 irreducible
representations (their total number of bosonic or fermionic fields is 64). The allowed values for
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h, k are expressed by

h = 1 & k = 1, . . . , 52 h = 10 & k = 1, . . . , 28
h = 2 & k = 1, . . . , 48 h = 11 & k = 1, . . . , 24
h = 3 & k = 1, . . . , 44 h = 12 & k = 1, . . . , 24
h = 4 & k = 1, . . . , 40 h = 13 & k = 1, . . . , 20
h = 5 & k = 1, . . . , 36 h = 14 & k = 1, . . . , 20
h = 6 & k = 1, . . . , 36 h = 15 & k = 1, . . . , 20
h = 7 & k = 1, . . . , 32 h = 16 & k = 1, . . . , 18
h = 8 & k = 1, . . . , 32 h = 17 & k = 1, . . . , 16
h = 9 & k = 1, . . . , 28 h = 18 & k = 1, . . . , 16

(7)

together with the exchanged h ↔ k, dually related, admissible values.
The computational scheme of [5] allows to compute length l = 4 and higher length fields

contents for any given value N . On the other hand, it is still an open problem whether a closed
form algorithm exists allowing to iteratively compute, at increasing values of N , the allowed
fields contents.

3 The graphical presentation of the linear representations

In [7] and [8] it was pointed out that the fields contents alone do not necessarily uniquely spec-
ify the finite linear irreducible representations of (1). This result is based on a notion of class
of equivalence of the irreducible representations of the 1D N-Extended Superalgebra which is
motivated by the set of moves acting on its graphical presentations. In [9] an association was
made between N-colored oriented graphs and the linear supersymmetry transformations. With
slight modifications from [9] we can describe the identification as follows. The fields (bosonic
and fermionic) entering a representation are expressed as vertices. They can be accommodated
into an x−y plane. The y coordinate can be chosen to correspond to the dimensionality d of the
fields. Conventionally, the lowest dimensional fields can be associated to vertices lying on the x
axis. The higher dimensional fields have positive, half-integer values of y. A colored edge links
two vertices which are connected by a supersymmetry transformation. Each one of the N Qi

supersymmetry generators is associated to a given color. The edges are oriented. The orienta-
tion reflects the sign (positive or negative) of the corresponding supersymmetry transformation
connecting two vertices. Instead of using arrows, alternatively, solid or dashed lines can be as-
sociated, respectively, to positive or negative signs. No colored line is drawn for supersymmetry
transformations connecting a field with the time-derivative of a lower dimensional field. This is
in particular true for the auxiliary fields (the fields of highest dimension in the representation)
which are necessarily mapped, under supersymmetry transformations, in the time-derivative of
lower-dimensional fields.

Each irreducible supersymmetry transformation can be presented (the identification is not
unique) through an oriented N-colored graph with 2n vertices (see (5)). The graph is such that
precisely N edges, one for each color, are linked to any given vertex of the graph.

Despite the fact that the presentation of the graph is not unique, certain of its features only
depend on the class of the supersymmetry transformations. We introduce now, following [6],
the invariant characterization. An unoriented “color-blind” graph can be associated to the ini-
tial graph by disregarding the orientation of the edges and their colors (all edges are painted in
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black). For simplicity we discuss here the invariant characterization of the graphs associated
to a length l = 3 irreducible representation (the generalization of the invariant characteriza-
tion to graphs of arbitrary length is straightforward, see [6]) with fields content (k, n, n − k).
The connectivity of the associated length l = 3 color-blind graph can be expressed through the
connectivity symbol m1s1

+ m2s2
+ . . . + mrsr

expressing the partition of the n 1
2
-dimensional

fields (vertices) into the mj vertices with sj edges connecting them to the n − k 1-dimensional
auxiliary fields. We have that m1 + m2 + . . . + mr = n, while sj �= sj′ for j �= j′. The con-
nectivity symbol is an invariant characterization of the class of the irreducible supersymmetry
transformations.

In [6] the [5] framework to classify the fields content of the irreducible representations was
put in place to classify the connectivity symbols of the graphs. The analysis was conducted for
the N ≤ 8 irreducible representations. The results are the following. The length l = 2 and
l = 4 irreducible representations of a given fields content admit a unique connectivity symbol.
Therefore, up to N ≤ 8, the fields content uniquely specifies such irreducible representations.
For what concerns the length l = 3 irreducible representations, the following results hold. For
N = 2, 3, 4, 7, 8 the connectivity symbol is uniquely expressed for any given fields content.
Since N = 1 does not admit length l = 3 irreducible representations, the only values of N
admitting irreducible representations with same fields content and inequivalent connectivity are
given by N = 5, 6. The complete list of N ≤ 8 irreducible representations with same fields
content and inequivalent connectivity symbol is given below. For N = 5 we have

N = 5 : connectivities
(6, 8, 2)A 42 + 21 + 20

(6, 8, 2)B 22 + 61

(5, 8, 3)A 43 + 31 + 10

(5, 8, 3)B 13 + 52 + 21

(4, 8, 4)A 44 + 41

(4, 8, 4)B 14 + 33 + 32 + 11

(4, 8, 4)C 43 + 42

(3, 8, 5)A 15 + 34 + 42

(3, 8, 5)B 24 + 53 + 12

(2, 8, 6)A 25 + 24 + 43

(2, 8, 6)B 64 + 23

(8)
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For N = 6 we have

N = 6 : connectivities
(6, 8, 2)A 62 + 20

(6, 8, 2)B 42 + 41

(5, 8, 3)A 43 + 22 + 21

(5, 8, 3)B 23 + 62

(4, 8, 4)A 44 + 42

(4, 8, 4)B 24 + 43 + 22

(4, 8, 4)C 83

(3, 8, 5)A 25 + 24 + 43

(3, 8, 5)B 64 + 23

(2, 8, 6)A 26 + 64

(2, 8, 6)B 45 + 44

(9)

Just like the computation of the admissible fields contents, the computation of the admissible
connectivity symbols can be carried out for larger values of N . It is however unclear whether
a closed form algorithm exists allowing to iteratively compute, at increased values of N , the
admissible connectivity symbols.

4 Conclusions and open problems

In recent years the status of the irreducible representations of the one-dimensional N-extended
supersymmetry algebra realized by linear derivative operators acting on a finite number of
bosonic and fermionic fields has been vastly clarified. Several classifications are now avail-
able. They regard not only the total number of fields entering the irreducible representations,
but also the dimensionality of the fields (information which is encoded in the so-called fields
content) and the types of graphs (information which is encoded in the so called connectivity
symbol) describing the supersymmetry transformations. The computational schemes can, at
least in principle, be applied to arbitrarily large values of N , the only limitation coming from
the computational power. Some open questions still exist and some are finding an answer. We
limit here to mention some recent results which will soon appear ( [10]) concerning in particular
the nature of the dressing transformations (non-diagonal dressings of the length-2 root operators
can be associated to graphs such that more than one edge of a given color meet at a given vertex)
or the interpretation of the connectivity symbols in terms of subalgebras decompositions.

For physical applications the most important and poorly understood (for large values of N ,
typically N > 8) problem to be addressed consists in the construction of off-shell invariant
actions. We can mention the example of the one-dimensional supersymmetric sigma models.
Several techniques could be put in place. Multilinear invariants can be recovered by tensoring
irreducible representations (the notion of the fusion algebra discussed in [11] could prove use-
ful). Alternatively, the relation of the supersymmetry transformations with Clifford algebras and
division algebras already demonstrated its usefulness [5] in identifying at least a new off-shell
invariant action for N = 8.

Very recently a paper ( [3]) appeared. It suggests the possibility that non-linear realizations
of the (1) supersymmetry algebra could be understood from constraining at least two linear
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irreducible representations. The results here discussed could prove useful in addressing this
problem whose importance lies in the fact that non-linear realizations seem to be an essential
ingredient to produce one-dimensional supersymmetric sigma models admitting target mani-
folds which are not conformally flat.
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